






摘 要: 旨在建立鴿脂肪前體細胞的體外分離、培養、鑒定和成脂誘導分化的方法。本研究采集3只健康的1日齡銀王鴿皮下脂肪組織,利用I型膠原酶進行消化以分離脂肪前體細胞,在脂肪前體細胞常規分離法基礎上進行分離方法改良,對獲得的脂肪前體細胞進行原代和傳代培養,并觀察細胞形態,通過免疫熒光鑒定特異性標記DLK1,確認脂肪前體細胞。通過在培養基中添加胰島素和油酸鈉進行成脂誘導分化,使用BODIPY493/503染色觀察細胞中的脂滴分布情況,通過甘油三酯測定試劑盒檢測細胞中甘油三酯的含量,采用實時熒光定量PCR和Western blot技術檢測脂肪前體細胞成脂分化過程中分化相關基因的表達。研究結果表明,鴿脂肪前體細胞呈梭形,改良分離法比常規分離法能夠獲得更多的脂肪前體細胞;與37 ℃相比,在41 ℃培養溫度下,獲得的脂肪前體細胞數目顯著增加(Plt;0.001)。免疫熒光結果表明,DLK1表達為陽性,說明獲得的是脂肪前體細胞。BODIPY493/503染色結果顯示,分化6 d的細胞中產生大量的脂滴。且隨著分化時間的增加,細胞中甘油三酯的相對含量也顯著增加(Plt;0.01)。qPCR結果顯示,在添加誘導劑2 d時,PPARγ、SCD、DGAT2、PLIN2、FASN、AFABP、LPL基因的表達量顯著上調(Plt;0.05),之后隨分化時間的增加表達逐漸上調;SREBF1基因在分化2 d時表達量顯著上調(Plt;0.05),之后表達量不變;ACACA基因在分化2 d時,表達量顯著增加(Plt;0.05),在分化4 d時表達量達到高峰。Western blot結果表明,在分化2 d時,PPARγ、LPL和PLIN2的表達量顯著上調(Plt;0.05),之后隨著分化時間的延長,表達量進一步升高。綜上所述,本研究改良了脂肪前體細胞常規分離法,成功分離獲得鴿脂肪前體細胞,且篩選出最適培養溫度。獲得的鴿脂肪前體細胞經胰島素和油酸鈉誘導后能高效地分化為成熟的脂肪細胞。本研究為鴿脂肪代謝分子調控機制的研究提供了良好的細胞模型,同時也為鴿生物培育肉的制備提供種子細胞和技術指導。
關鍵詞: 鴿;脂肪前體細胞;成脂分化;成熟脂肪細胞;細胞培育肉
中圖分類號:S836.2
文獻標志碼:A
文章編號:0366-6964(2024)08-3482-11
收稿日期:2024-01-29
基金項目:國家重點研發計劃項目(2021YFC2101404);中國工程院戰略研究與咨詢項目(2023-XZ-79)
作者簡介:梁小娟(1989-),女,河南開封人,博士,高級工程師,主要從事動物遺傳育種與繁殖研究,E-mail: xyskylxj8907@163.com
通信作者:王守偉,主要從事細胞培育肉研究,E-mail:cmrcwsw@126.com
Isolation, Culture and Adipogenic Differentiation of Pigeon Preadipocytes
LIANG" Xiaojuan, LI" Yushuang, FU" Zhou, TANG" Duo, LI" Yingying, WANG" Shouwei*
(China Meat Food Research Center, Beijing Institute of Food Science, Beijing 100068," China)
Abstract: The aim of this study was to establish methods for the isolation, culture, identification and adipogenic differentiation of pigeon preadipocytes in vitro. Subcutaneous adipose tissue was collected from 3 healthy 1-day-old silver king pigeons. Pigeon preadipocytes were isolated by type I collagenase digestion. The isolation method was improved based on the conventional isolation method of preadipocytes. Primary and passage cultures were performed, and cell morphology was observed. The preadipocytes were identified by immunofluorescence staining using specific marker DLK1. Adipogenic differentiation was induced by adding insulin and sodium oleate to the culture medium. The distribution of lipid droplets in the cells was indicated by staining with BODIPY493/503. The triglyceride content in the cells were measured by the triglyceride assay kit. Quantitative real-time PCR (qPCR) and Western blot were used to detect the expression of adipogenic-related genes during preadipocytes differentiation. The results showed that the pigeon preadipocytes displayed spindle-shape. The modified isolation method yielded more preadipocytes compared to the conventional isolation method. Compared with 37 ℃, the number of preadipocytes was significantly increased at 41 ℃ (Plt;0.001). Immunofluorescence staining confirmed positive DLK1 expression, indicating the obtained cells were indeed preadipocytes. The results of BODIPY493/503 staining revealed abundant lipid droplets in cells after 6 days of differentiation. The relative triglyceride content in the cells was significantly increased with differentiation time (Plt;0.01). The qPCR data indicated that the expression of PPARγ, SCD, DGAT2, PLIN2, FASN, AFABP, and LPL genes was significantly upregulated after 2 days of adipogenic induction (Plt;0.05), and continued to increase with longer differentiation time. The expression of SREBF1 gene was significantly up-regulated after 2 days of differentiation (Plt;0.05), and remained unchanged thereafter. The expression of ACACA gene was significantly increased after 2 days of differentiation (Plt;0.05), and reached its peak after 4 days of differentiation. The Western blot results showed that the relative expression of PPARγ, LPL and PLIN2 were significantly up-regulated after 2 days of differentiation (Plt;0.05), and then further increased with the prolongation of differentiation time. In conclusion, this study successfully modified the conventional isolation method to isolate pigeon preadipocytes and screened the optimal culture temperature. The obtained pigeon preadipocytes were efficiently differentiated into mature adipocytes after induction with insulin and sodium oleate. This study provides a good cell model for investigating the molecular regulation mechanism of fat metabolism of pigeon, and also provided seed cells and technical guidance for the preparation of pigeon cell cultured meat.
Key words: pigeon; preadipocytes; adipogenic differentiation; mature adipocytes; cell cultured meat
*Corresponding author: WANG Shouwei, E-mail:cmrcwsw@126.com
禽類的脂肪組織在機體能量代謝中發揮著重要作用。首先,脂肪是重要能量來源,可以提供飛行和保暖等方面的能量需求。其次,脂肪還能維持機體正常的生理功能,對鳥類的繁殖和生存具有重要作用。脂肪前體細胞的體外增殖與分化為研究動物脂肪代謝提供了材料,細胞的體外增殖與分化需要細胞內源因子和外源因子的共同作用。哺乳動物細胞的成脂分化方法通常采用的是“雞尾酒法”,即胰島素(insulin,INS)、地塞米松(dexamethasone,DEX)和3-異丁基-1-甲基黃嘌呤(3-isobutyl-1-methylxanthine,IBMX)的混合物[1],但僅雞尾酒法卻不能誘導禽類的脂肪前體細胞成脂分化。基礎培養基中僅添加雞血清可以誘導雞脂肪前體細胞的分化,除此之外,培養基中添加外源脂肪酸也可誘導雞脂肪前體細胞的成脂分化。
隨著組織工程的發展,細胞培育肉是近幾年研究熱門的一種替代蛋白,可以補充動物蛋白質生產的方法,以滿足人們對肉類食品的需求,并盡量減少不必要的動物犧牲[2-5]。細胞培育肉的制備是從動物身上獲取干細胞,經過體外增殖分化、結合3D打印技術塑型而成的一種肉類產品[6-8]。動物種子細胞是制備細胞培育肉的基礎,常用的種子細胞是骨骼肌衛星細胞和脂肪前體細胞[9-11]。脂肪含量直接影響動物肉品質,因此,脂肪前體細胞成脂分化在細胞培育肉的制備過程中至關重要[12]。研究人員通過不斷優化分離方法,已分離出雞[13-15]、鴨[16-17]、鵝[18]、豬[19]、牛[20]、羊[21]等不同物種的脂肪前體細胞,并通過在培養基中添加誘導因子進行體外成脂分化。然而,到目前為止,關于鴿的脂肪前體細胞分離培養和分化的研究尚未見相關報道。
本研究改良了常規的脂肪前體細胞提取方法,成功分離培養了鴿脂肪前體細胞,并通過在培養基中添加油酸鈉和胰島素進行了體外成脂誘導分化,將鴿脂肪前體細胞高效分化為成熟脂肪細胞。本研究試驗為解析鴿脂肪代謝機制的研究提供基礎材料,亦為鴿細胞培育肉的制備提供技術指導。
1 材料與方法
1.1 材料
1.1.1 試驗動物
3只健康的1日齡銀王鴿購自北京霍書林養鴿場。
1.1.2 主要儀器設備
生物安全柜(海爾,HR1360-IIA2);恒溫培養箱(海爾,HCP258);倒置熒光顯微鏡(尼康,Ti2-U);EVOSTM XL Core 配置細胞成像儀(賽默飛,AMEX1100);激光共聚焦高內涵細胞成像儀(賽默飛,CellInsight CX7);細胞計數儀(賽默飛,AMQAX1000);高速冷凍離心機(京醫眾,GTR16-1);化學發光儀(天能,Tanon5200)等。
1.1.3 主要化學試劑
DMEM培養基、紅細胞裂解液、0.25%胰酶、FITC標記的鬼筆環肽、DAPI(solarbio);胎牛血清、I型膠原酶(gibco);蛋白酶抑制劑、預染蛋白marker(epizyme);RIPA裂解液、ECL發光液(meilunbio);BODIPY493/503(glpbio);DLK1一抗(proteintech,10636-1-AP);PPARγ一抗(proteintech,16643-1-AP);LPL一抗(proteintech,28602-1-AP);PLIN2一抗(proteintech,15294-1-AP);ACTB一抗(proteintech,66009-1-lg);HPR標記山羊抗兔二抗(abclonal,AS014);HPR標記山羊抗小鼠二抗(abclonal,AS003);ABflo 647標記山羊抗兔二抗(abclonal,AS060);胰島素(macgene,CC101)、油酸鈉(sigma,O7501);RNA提取試劑盒(Promega);cDNA合成試劑盒、SYBR試劑(novoprotein);TAG測定試劑盒(applygen)。
1.2 方法
1.2.1 鴿脂肪前體細胞的分離培養
在無菌條件下取出鴿皮下脂肪組織,用75%酒精漂洗1次,然后用PBS漂洗3次。將脂肪組織轉移至離心管,用眼科剪將其剪成1 mm3左右的小塊。然后,向離心管中加入4倍體積的I型膠原酶工作液(2 mg·mL-1),將裝有組織小塊和膠原酶的離心管放置于37 ℃培養箱中消化,每隔10 min將離心管上下顛倒混勻,消化30~60 min,肉眼觀察不到明顯的組織塊為止。然后,將消化液分為2組:(A)常規分離法:向組織消化液中加入等體積的含20% FBS的DMEM培養基(完全培養基)終止消化。將混合液經100 μm孔徑的細胞篩過濾,然后,1 000 r·min-1離心5 min,棄上清,加紅細胞裂解液,室溫放置5 min,1 000 r·min-1離心5 min,最后加入完全培養基吹打細胞沉淀進行重懸,將重懸液鋪至10 cm培養皿中。(B)改良分離法:向組織消化液中加入8倍體積的完全培養基終止消化。將混合液經100 μm孔徑的細胞篩過濾,然后將濾液直接鋪至10 cm細胞培養皿中。將上述兩組培養皿置于37 ℃,5% CO2培養箱中進行培養,48 h后更換新的完全培養基,之后每2 d換一次新鮮培養基。
1.2.2 鴿脂肪前體細胞的最適培養溫度的篩選
將改良分離法獲得的脂肪前體細胞長滿之后傳代,分2組:(a):取106個細胞接種至10 cm培養皿,置于含5% CO2的37 ℃恒溫培養箱中進行培養;(b):取106個細胞接種至10 cm培養皿,置于含5% CO2的41 ℃恒溫培養箱中進行培養,每組3個重復,2 d后,顯微鏡下觀察細胞的生長密度,并將兩組細胞消化后進行計數。
1.2.3 鴿脂肪前體細胞的免疫熒光鑒定
將鴿脂肪前體細胞接種至24孔培養板,置于5% CO2,41 ℃的培養箱中培養;次日,去除培養基,PBS洗1次,加入4% PFA固定液,室溫固定10~30 min。用0.1% Triton X-100進行細胞通透,室溫處理10~20 min,PBS洗滌后加入0.2% BSA室溫封閉45~60 min,去掉封閉液,直接加入DLK1一抗(1∶100稀釋),放置4 ℃,孵育過夜,PBS洗3次,加入HPRABflo647標記山羊抗兔二抗(1∶100稀釋),室溫孵育1 h,PBS洗3次,加入FITC標記的鬼筆環肽(100 nmol·L-1),室溫避光孵育30 min,PBS洗3次,加入DAPI染液(2 μg·mL-1)室溫避光孵育5 min,PBS洗3次,然后使用高內涵細胞成像儀拍照。
1.2.4 鴿脂肪前體細胞的成脂誘導分化
將鴿脂肪前體細胞培養在含20% FBS的DMEM完全培養基中,置于5% CO2,41 ℃的培養箱中培養,每2 d更換新的完全培養基,觀察細胞形態和生長情況。待細胞匯合度達到90%左右進行成脂誘導分化,棄掉完全培養基,加入41 ℃預熱的成脂誘導分化培養基(DMEM+10%FBS+5 μg·mL-1 胰島素+150 μmol·L-1油酸鈉),繼續置于5% CO2,41 ℃的培養箱中培養,之后每2 d更換新的成脂誘導分化培養基。
1.2.5 鴿脂肪細胞BODIPY 493/503染色
棄掉培養基,用PBS洗1次;加入4% PFA固定液,室溫固定15~30 min;PBS洗3次;加入5 μmol·L-1 BODIPY 493/503和2 μg·mL-1 DAPI染液分別對脂滴和細胞核進行避光染色10~15 min,PBS洗3次,然后使用倒置熒光顯微鏡觀察并拍照。
1.2.6 細胞甘油三酯(triglyceride, TAG)含量測定 ""收集分化0、2、4和6 d的鴿脂肪細胞,利用TAG測定試劑盒對分化4個時期的脂肪細胞進行TAG含量測定。將分化0 d的TAG含量校準為1,計算不同時期TAG的相對含量。
1.2.7 細胞總RNA抽提及cDNA制備
使用RNA提取試劑盒提取細胞總RNA。反轉錄總體系為20 μL:2×NovoScript plus 1 st Strand cDNA Synthesis SuperMix 10 μL,RNA模板0.5 μg,gDNA Purge 1 μL,用RNA-free ddH2O補充體積至20 μL,并吹打混勻。反應程序為50 ℃ 15 min,85 ℃ 5 s。將cDNA放置-20 ℃保存。
1.2.8 Quantitative real-time-PCR(qPCR) "使用NCBI網頁的pick primer在線網站設計引物,具體引物信息見表1,18S作為內參基因。cDNA母液稀釋10倍后用于qPCR。qPCR反應采用近岸蛋白公司的SYBR熒光定量試劑盒進行。反應體系為:2×NovoStart SYBR qPCR SuperMix Plus 10 μL,上、下游引物各0.5 μL,cDNA 2.0 μL,RNA-free ddH2O 7 μL。反應程序:95 ℃預變性 1 min;95℃ 變性 20 s,60 ℃退火 20 s,72 ℃延伸 30 s,共40個循環。
1.2.9 細胞總蛋白提取及Western blot
棄去培養基,用預冷的PBS洗2次,加入含蛋白酶抑制劑的RIPA裂解液,冰浴5~10 min,用細胞刮刀刮取細胞,用移液槍進行反復吹打,然后收集細胞裂解物至離心管,4 ℃,12 000 r·min-1離心10 min后取上清,上清液即細胞蛋白。將蛋白變性后上樣于SDS-PAGE凝膠,電泳100 V 15 min,150 V 45 min。電泳結束后將蛋白轉印至PVDF膜,使用5%脫脂牛奶室溫封閉1 h。加入一抗(1∶2 500稀釋),放置4 ℃ 孵育過夜,1×TBST洗3次,加入二抗(1∶5 000稀釋),室溫孵育1 h,1×TBST洗3次。使用ECL化學發光液進行PVDF膜顯色,將膜置于化學發光儀中拍照并保存。
1.2.10 數據分析
熒光定量數據采用2-ΔΔCt法進行處理分析。使用ImageJ分析Western blot蛋白條帶灰度值。使用GraphPad Prism Version 8 統計軟件進行 t 檢驗分析。結果用“平均值±標準誤”表示。以Plt;0.05為差異顯著性判斷標準,*. Plt;0.05,**. Plt;0.01,***. Plt;0.001。
2 結" 果
2.1 鴿脂肪前體細胞的分離培養
在本研究中,使用I型膠原酶進行組織消化分離脂肪前體細胞,并且對常規分離法進行了改良。將常規分離法和改良分離法獲得的脂肪前體細胞分別接種至細胞培養皿進行原代培養。48 h后,在顯微鏡下觀察細胞生長情況,結果如圖1所示,大部分細胞貼壁生長,貼壁的細胞即脂肪前體細胞,這些細胞呈不規則的梭形。常規分離法獲得的細胞數量較少(圖1A),而改良分離法獲得的細胞數量明顯增多,且細胞生長狀態良好(圖1B)。
2.2 鴿脂肪前體細胞最適培養溫度的篩選
在體外,細胞培養的溫度對于細胞的增殖非常關鍵。由于禽類的體溫相比哺乳動物的體溫偏高,且在本課題組前期研究中發現鴿骨骼肌衛星細胞的最適培養溫度為41 ℃(專利申請號:CN202010700601.9),因此,本研究探索了鴿子脂肪前體細胞培養的最適培養溫度。本研究將鴿脂肪前體細胞消化接種細胞培養板后分成兩組:(a)組:放置37 ℃,5% CO2培養箱中培養;(b)組:放置41 ℃,5% CO2培養箱中培養,培養2 d后,在顯微鏡下觀察細胞生長密度并拍照。然后,將兩組細胞分別消化后進行計數。結果如圖2所示,41 ℃培養條件下,獲得的細胞數量比37 ℃顯著增多(Plt;0.001)。說明41 ℃更適合鴿脂肪前體細胞的培養。
2.3 鴿脂肪前體細胞的免疫熒光鑒定
本研究將鴿脂肪前體細胞接種至24孔培養板,并使用特異性標記前脂肪細胞因子-1(delta like non-canonical Notch ligand 1,DLK1)抗體進行細胞免疫熒光染色以鑒定脂肪前體細胞,同時使用FITC標記的鬼筆環肽對細胞骨架進行染色。結果如圖3所示,幾乎所有細胞均為DLK1陽性細胞,說明分離的細胞的確是鴿脂肪前體細胞。因此,可以進行后續試驗。
2.4 鴿脂肪前體細胞的成脂誘導分化
本研究通過在培養基中添加胰島素和油酸鈉對鴿脂肪前體細胞進行成脂誘導分化。BODIPY493/503是一種常見的用于脂質標記的綠色熒光染料,能夠對細胞中的中性脂滴染色[22],且靈敏度高。因此,本研究使用BODIPY493/503對分化0和6 d的鴿脂肪細胞進行了染色。染色結果如圖4所示,分化0 d的細胞中沒有綠色信號,而分化6 d的細胞中有大量綠色信號,即細胞中合成了許多小脂滴,說明在培養基中添加胰島素和油酸鈉能成功地將鴿脂肪前體細胞誘導分化為成熟的脂肪細胞。
2.5 鴿脂肪細胞TAG含量測定
本研究收集分化0、2、4和6 d 的鴿脂肪細胞,使用TAG測定試劑盒測定細胞中TAG含量,將分化0 d細胞的TAG含量校準為1,計算不同時期TAG的相對含量。結果如圖5所示,TAG的相對含量隨著分化時間的增加而逐漸顯著增加(Plt;0.01),這進一步說明脂肪前體細胞成功的被誘導分化為成熟的脂肪細胞,表明分離的脂肪前體細胞具有分化潛能,且胰島素和油酸鈉聯用的成脂分化方法是有效的。
2.6 鴿脂肪細胞分化不同時期相關基因的表達
本研究收集了分化0、2、4和6 d的鴿脂肪細胞,提取細胞總RNA和蛋白。利用qPCR技術檢測成脂分化過程中分化相關基因在mRNA水平的表達。結果如圖6A所示,過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor γ,PPARγ)、硬脂酰輔酶A去飽和酶(stearoyl-CoA desaturase,SCD)、二脂酰甘油酰基轉移酶2(diacylglycerol O-acyltransferase 2,DGAT2)、脂肪分化相關蛋白(perilipin 2,PLIN2)、脂肪酸合成酶(fatty acid synthase,FASN)、脂肪細胞型脂肪酸結合蛋白(adipocyte fatty acid-binding protein,AFABP)和脂蛋白脂肪酶(lipoprotein lipase,LPL)在添加成脂誘導分化培養基2 d時表達量均顯著上調(Plt;0.05),之后隨著分化時間的增加,表達量逐漸上調。固醇調節元件結合轉錄因子1(sterol regulatory element binding transcription factor 1,SREBF1)在分化2 d時表達量顯著上調(Plt;0.05),之后表達量不變未發生顯著變化,乙酰輔酶A羧化酶α(acetyl-CoA carboxylase alpha,ACACA)在分化2 d時,表達量顯著增加(Plt;0.05),在分化4 d時表達量達到高峰。此外,通過Western blot技術檢測LPL、PPARγ、PLIN2的表達。結果如圖6B所示,分化標記蛋白LPL、PPARγ、PLIN2在添加誘導劑2 d時表達量均顯著上調(Plt;0.05),之后隨著分化時間的增加表達量逐漸增加。以上結果從分子水平進一步說明了脂肪前體細胞分化為成熟的脂肪細胞,同時也揭示了分化相關基因在鴿脂肪前體細胞分化過程中的表達規律。
3 討 論
脂肪含量直接影響動物的肉品質和經濟價值。利用脂肪前體細胞的體外成脂分化研究脂肪發育的機理尤為重要。細胞培育肉是一種利用細胞培養技術來生產肉制品的方法,不需要傳統畜牧業的過程[23],細胞培養肉常用種子細胞是骨骼肌衛星細胞和脂肪前體細胞。而脂肪含量是影響肉類食品的口感和風味的重要因素[24],因此,脂肪前體細胞的獲得、體外高效增殖與分化對于細胞培育肉的制備非常關鍵。
目前,關于禽類脂肪細胞分化研究最多的物種是雞[25-28],其次是鴨[29-30]和鵝[18]。原代雞胚胎成纖維細胞(chicken embryonic fibroblasts,CEF)可作為研究禽類脂肪形成的潛在細胞模型[25-26],由于原代細胞經過多次傳代之后會失去成脂分化的能力,因此雞胚胎成纖維細胞DF-1細胞系成為禽類脂肪形成的新細胞模型[31-34]。雞的永生化脂肪前體細胞系ICP1(immortalized chicken preadipocyte 1)和ICP2(immortalized chicken preadipocyte 2)也是研究雞脂肪代謝的體外研究模型[35-37]。而對于鴿的脂肪細胞分化的研究尚未見相關報道。
已報道的脂肪前體細胞主要是來源于腹部皮下脂肪和肌間脂肪[28,38],皮下脂肪前體細胞比肌間脂肪前體細胞能夠積累更多的脂滴[18,39],因此,對于脂肪生物培育肉的制備,選用皮下脂肪前體細胞作為種子細胞更合適。禽類原代脂肪前體細胞的獲得主要使用Ⅰ型膠原酶消化[18,27,40],其次是Ⅱ型膠原酶[26,39]消化,也有研究者將膠原酶Ⅰ和Ⅱ聯用分離肌間脂肪前體細胞[18]。Ⅰ型膠原酶用來分離皮下脂肪的工作濃度目前報道的有1 mg·mL-1[40]、2 mg·mL-1[27]、0.2 U·μL-1[18]、500 U·mL-1[41],Ⅱ型膠原酶主要用來分離肌間脂肪前體細胞,使用濃度為1 mg·mL-1[39]或3.2 mg·mL-1[26]。Ⅰ型膠原酶和Ⅱ型膠原酶的消化溫度均為37 ℃。本研究分離的是鴿皮下脂肪細胞,因此,選用了Ⅰ型膠原酶,濃度為2 mg·mL-1。
常規的分離脂肪前體細胞的步驟包括剪碎、膠原酶消化、終止消化、過濾、離心、去除紅細胞及離心后重懸鋪細胞培養皿/板。步驟非常繁瑣,容易污染,且細胞會因離心受到機械損傷。本研究中,改良后的分離方法簡化了操作步驟,存在多種優點,包括:1)無需使用離心機設備,避免了離心造成的細胞損傷;2)無需去除紅細胞,通過后續換液去除紅細胞,減少操作步驟,減少污染的可能性;3)無需去除膠原酶溶液,減少操作步驟,減少污染,同時充分利用了培養基,避免了培養基的浪費;4)一些成熟脂肪細胞通過去分化成為脂肪前體細胞,增加了脂肪前體細胞的數目。
目前報道的關于雞[39]、鴨[42]和鵝[18]的脂肪細胞培養溫度均是37 ℃,考慮到禽類的體溫比較高,本課題組在前期對鴿骨骼肌衛星細胞的培養研究時發現41 ℃適合鴿細胞培養(專利申請號:CN202010700601.9)。因此,本研究探索了37 ℃和41 ℃對鴿脂肪前體細胞增殖的影響,發現41 ℃更有利于鴿脂肪前體細胞的生長。
禽類的脂肪合成主要是在肝臟進行,所以禽類脂肪細胞分化方法也與哺乳動物脂肪前體細胞的成脂分化方法有很大差異。油酸或油酸鈉是常用的禽類脂肪細胞成脂分化誘導試劑[43]。基礎培養基中僅添加雞血清可以促進DF-1、CEF、鵪鶉胚胎成纖維細胞(quail embryonic fibroblasts,QEF)、鴨胚胎成纖維細胞(duck embryonic fibroblasts,DEF)、火雞胚胎成纖維細胞(turkey embryonic fibroblasts,TEF)的成脂分化,且呈劑量依賴性,而基礎培養基中僅添加含胎牛血清(fetal bovine serum,FBS)并不能促進細胞產生脂滴[25,31,44]。在添加雞血清的基礎上添加油酸、亞油酸和胰島素或/和全反式維甲酸促使細胞中的脂滴明顯增多,即促進分化[26,31]。也有研究表明,在基礎培養基中添加雞血清的基礎上添加胰島素、DEX、肝素和NPY也能促進脂肪細胞分化[41]。在不添加任何血清的情況下,在培養基中僅添加胰島素、轉鐵蛋白和外源脂肪酸也能使雞的脂肪源血管基質部分細胞(stromal-vascular cells,SVCs)成脂分化[45]。雞尾酒法(INS、DEX和IBMX)聯合油酸一起使用可以用于雞和鴨脂肪細胞分化[27,30],在雞尾酒法基礎上添加油酸和羅格列酮可以誘導鴨和鵝脂肪細胞的成脂分化[18,29,40]。本研究借鑒已報道的成脂分化方法,使用添加有胰島素和油酸鈉的含10% FBS的DMEM培養基進行成脂誘導分化,分化6 d的脂肪細胞中有大量的小脂滴。脂滴的主要成分是TAG,在本研究中,鴿脂肪細胞中的TAG相對含量隨著分化時間的增加逐步增加,分化相關基因也在誘導分化后顯著上調,說明胰島素和油酸鈉可以用于鴿脂肪前體細胞的成脂誘導分化。
4 結 論
本研究成功建立了鴿脂肪前體細胞分離培養體系及成脂誘導分化方法,可為深入研究鴿脂肪前體細胞增殖與分化分子機制及脂肪沉積提供良好試驗材料,同時為細胞培育肉的制備提供種子細胞和技術指導。
參考文獻(References):
[1] ZHAO X Y,HU H M,WANG C,et al.A comparison of methods for effective differentiation of the frozen-thawed 3T3-L1 cells[J].Anal Biochem,2019,568:57-64.
[2] BRYANT C J.Culture,meat,and cultured meat[J].J Anim Sci,2020,98(8):skaa172.
[3] CHEN L,GUTTIERES D,KOENIGSBERG A,et al.Large-scale cultured meat production:trends,challenges and promising biomanufacturing technologies[J].Biomaterials,2022,280:121274.
[4] DUTTA S D,GANGULY K,JEONG M S,et al.Bioengineered lab-grown meat-like constructs through 3D bioprinting of antioxidative protein hydrolysates[J].ACS Appl Mater Interfaces,2022,14(30):34513-34526.
[5] SINGH A,KUMAR V,SINGH S K,et al.Recent advances in bioengineered scaffold for in vitro meat production[J].Cell Tissue Res,2023,391(2):235-247.
[6] SEAH J S H,SINGH S,TAN L P,et al.Scaffolds for the manufacture of cultured meat[J].Crit Rev Biotechnol,2022,42(2):311-323.
[7] SUGII S,WONG C Y Q,LWIN A K O,et al.Alternative fat:redefining adipocytes for biomanufacturing cultivated meat[J].Trends Biotechnol,2023,41(5):686-700.
[8] JARA T C,PARK K,VAHMANI P,et al.Stem cell-based strategies and challenges for production of cultivated meat[J].Nat Food,2023,4(10):841-853.
[9] SHAIKH S,LEE E,AHMAD K,et al.Cell types used for cultured meat production and the importance of myokines[J]. Foods,2021,10(10):2318.
[10] LI C H,YANG I H,KE C J,et al.The production of fat-containing cultured meat by stacking aligned muscle layers and adipose Layers formed from gelatin-soymilk scaffold[J].Front Bioeng Biotechnol,2022,10:875069.
[11] BOMKAMP C,MUSGROVE L,MARQUES D M C,et al.Differentiation and maturation of muscle and fat cells in cultivated seafood:lessons from developmental biology[J].Mar Biotechnol (NY),2023,25(1):1-29.
[12] MEHTA F,THEUNISSEN R,POST M J.Adipogenesis from bovine precursors[J].RNNING S B.Myogenesis.New York: Humana,2019:111-125.Methods Mol Biol, 2019,1889:111-125.
[13] CUI T T,HUANG J X,SUN Y N,et al.KLF2 inhibits chicken preadipocyte differentiation at least in part via directly repressing PPARγ transcript variant 1 expression[J].Front Cell Dev Biol,2021,9:627102.
[14] 陳 蘭,張 濤,丁 浩,等.Kruppel樣因子15對和盈黑雞前體脂肪細胞增殖分化的影響[J].畜牧獸醫學報,2022,53(7): 2118-2129.
CHEN L,ZHANG T,DING H,et al.Effects of Krüppel-like factor 15 gene on proliferation and differentiation of preadipocytes of heying black chickens[J].Acta Veterinaria et Zootechnica Sinica,2022,53(7):2118-2129.(in Chinese)
[15] 王東雪,賀月華,王春秀,等.TIMP3對雞前脂肪細胞增殖與分化的影響[J].中國畜牧雜志,2024,60(4):154-160.
WANG D X,HE Y H,WANG C X,et al.Effects of TIMP3 on proliferation and differentiation of chicken preadipocytes[J].Chinese Journal of Animal Science,2024,60(4):154-160.(in Chinese)
[16] WANG Z,YIN Z T,ZHANG F,et al.Dynamics of transcriptome changes during subcutaneous preadipocyte differentiation in ducks[J].BMC Genomics,2019,20(1):688.
[17] 尚圓圓,張小輝,戶運奇,等.肌肉組織液對番鴨脂肪細胞增殖分化和脂質沉積的影響[J].中國家禽,2023,45(12):16-20.
SHANG Y Y,ZHANG X H,HU Y Q,et al.Effect of muscle tissue fluid on proliferation,differentiation and lipid deposition of muscovy duck adipocytes[J].China Poultry,2023,45(12):16-20.(in Chinese)
[18] HUO W R,WENG K Q,GU T T,et al.Identification and characterization of the adipogenesis in intramuscular and subcutaneous adipocytes of the goose (Anser cygnoides)[J].Anim Biotechnol,2022,33(6):1181-1189.
[19] 史明月,張雪蓮,楊曉奮,等.NR1H3基因調控豬前體脂肪細胞分化的研究[J].畜牧獸醫學報,2022,53(7):2094-2103.
SHI M Y,ZHANG X L,YANG X F,et al.Study on NR1H3 gene regulating differentiation of porcine preadipocyte[J].Acta Veterinaria et Zootechnica Sinica,2022,53(7):2094-2103.(in Chinese)
[20] 王 森,師俊華,王之盛,等.牦牛不同部位前體脂肪細胞分離鑒定及分化關鍵基因表達研究[J].畜牧獸醫學報,2022,53(3):755-765.
WANG S,SHI J H,WANG Z S,et al.Isolation and identification of preadipocytes from different parts of yak and expression of key genes for differentiation[J].Acta Veterinaria et Zootechnica Sinica,2022,53(3):755-765.(in Chinese)
[21] 張寒月,趙 丹,梁 煜,等.miR-150靶向AOC3調控綿羊前體脂肪細胞分化的研究[J].畜牧獸醫學報,2023,54(8):3262-3274.
ZHANG H Y,ZHAO D,LIANG Y,et al.miR-150 Regulates ovine preadipocyte differentiation by targeting AOC3[J].Acta Veterinaria et Zootechnica Sinica,2023,54(8):3262-3274.(in Chinese)
[22] QIU B,SIMON M C.BODIPY 493/503 staining of neutral lipid droplets for microscopy and quantification by flow cytometry[J].Bio Protoc,2016,6(17):e1912.
[23] YAP W S,CHOUDHURY D,SUNTORNNOND R.Towards biomanufacturing of cultured meat[J].Trends Biotechnol,2023, 41(3):292-294.
[24] LIU P P,SONG W J,BASSEY A P,et al.Preparation and quality evaluation of cultured fat[J].J Agric Food Chem,2023, 71(9):4113-4122.
[25] KIM D H,LEE J,SUH Y,et al.Adipogenic and myogenic potentials of chicken embryonic fibroblasts in vitro:combination of fatty acids and insulin induces adipogenesis[J].Lipids,2020,55(2):163-171.
[26] KIM D H,LEE J,SUH Y,et al.Research note:all-trans retinoic acids induce adipogenic differentiation of chicken embryonic fibroblasts and preadipocytes[J].Poult Sci,2020,99(12):7142-7146.
[27] LI G X,CHEN Y,JIN W J,et al.Effects of miR-125b-5p on preadipocyte proliferation and differentiation in chicken[J].Mol Biol Rep,2021,48(1):491-502.
[28] SUN G R,ZHANG M,SUN J W,et al.Krüppel-like factor KLF9 inhibits chicken intramuscular preadipocyte differentiation[J].Br Poult Sci,2019,60(6):790-797.
[29] WANG L D,HU X D,WANG S S,et al.MicroRNA analysis reveals the role of miR-214 in duck adipocyte differentiation[J].Anim Biosci,2022,35(9):1327-1339.
[30] PAN Z Y,LI X W,WU D S,et al.The duck RXRA gene promotes adipogenesis and correlates with feed efficiency[J].Animals (Basel),2023,13(4):680.
[31] LEE J,KIM D H,SUH Y,et al.Research note:potential usage of DF-1 cell line as a new cell model for avian adipogenesis[J].Poult Sci,2021,100(5):101057.
[32] SUN Y H,ZHAI G Y,LI R,et al.RXRα positively regulates expression of the chicken PLIN1 gene in a PPARγ-independent manner and promotes adipogenesis[J].Front Cell Dev Biol,2020,8:349.
[33] SUN Y N,XU H,LI J W,et al.Genome-wide survey identifies TNNI2 as a target of KLF7 that inhibits chicken adipogenesis via downregulating FABP4[J].Biochim Biophys Acta Gene Regul Mech,2023,1866(1):194899.
[34] ZHANG X Y,CHENG B H,MA Y Y,et al.Genome-wide survey and functional analysis reveal TCF21 promotes chicken preadipocyte differentiation by directly upregulating HTR2A[J].Biochem Biophys Res Commun,2022,587:131-138.
[35] WANG W,ZHANG T M,WU C Y,et al.Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR[J].PLoS One,2017,12(5):e0177348.
[36] LI X Q,SUN D D,WANG Z,et al.Transcriptional regulatory mechanism of NR2F2 and ZNF423 in avian preadipocyte differentiation[J].Gene,2023,897:148106.
[37] ZHANG J,CAI B L,MA M T,et al.ALDH1A1 inhibits chicken preadipocytes′ proliferation and differentiation via the PPARγ pathway in vitro and invivo[J].Int J Mol Sci,2020,21(9):3150.
[38] ZHANG M,MA X F,ZHAI Y H,et al.Comprehensive transcriptome analysis of lncRNAs reveals the role of lncAD in chicken intramuscular and abdominal adipogenesis[J].J Agric Food Chem,2020,68(11):3678-3688.
[39] ZHANG M,LI F,MA X F,et al.Identification of differentially expressed genes and pathways between intramuscular and abdominal fat-derived preadipocyte differentiation of chickens in vitro[J].BMC Genomics,2019,20(1):743.
[40] WANG L D,LIANG W S,WANG S S,et al.Circular RNA expression profiling reveals that circ-PLXNA1 functions in duck adipocyte differentiation[J].PLoS One,2020,15(7):e0236069.
[41] SHIPP S L,CLINE M A,GILBERT E R.Promotion of adipogenesis by neuropeptide Y during the later stages of chicken preadipocyte differentiation[J].Physiol Rep,2016,4(21):e13006.
[42] HE J,TIAN Y,LI J J,et al.Expression pattern of adipocyte fatty acid-binding protein gene in different tissues and its regulation of genes related to adipocyte differentiation in duck[J].Poult Sci,2012,91(9):2270-2274.
[43] SHANG Z C,GUO L,WANG N,et al.Oleate promotes differentiation of chicken primary preadipocytes in vitro[J].Biosci Rep,2014,34(1):e00093.
[44] KIM D H,LEE J,SUH Y,et al.Research note:adipogenic differentiation of embryonic fibroblasts of chicken,turkey,duck,and quail in vitro by medium containing chicken serum alone[J].Poult Sci,2021,100(8):101277.
[45] MATSUBARA Y,ENDO T,KANO K.Fatty acids but not dexamethasone are essential inducers for chick adipocyte differentiation in vitro[J].Comp Biochem Physiol A Mol Integr Physiol,2008,151(4):511-518.
(編輯 郭云雁)