肖平



摘 ?要:電氣故障是發電機組正常運行的重大隱患,及時檢出電氣故障具有重要意義。針對發電機組的電氣故障檢測問題,提出一種基于回聲狀態網絡的智能檢測方法,可以實現發電機組電氣故障的自動實時檢測。此方法中,將發電機組的常見10類故障作為輸入,進而納入回聲狀態網絡中進行學習和訓練,并根據網絡分析結果做出故障判斷。實驗過程中,通過多種傳感器配合人工巡檢采集各變量數據,通過多變量時間序列數據在回聲狀態網絡中的訓練和學習,形成故障檢測的最終結果。實驗結果表明,該文提出的智能檢測算法可以對發電機組的運行狀態進行自動實時的故障檢測。該文所提出的方法具有非人工、智能化、實時性的特點。
關鍵詞:發電機組;電氣故障;智能檢測;測試分析;回聲狀態網絡
中圖分類號:TM307.1 ? ? ?文獻標志碼:A ? ? ? ? ?文章編號:2095-2945(2024)18-0173-04
Abstract: Electrical fault is a major hidden danger to the normal operation of generator sets, so it is of great significance to detect electrical faults in time. Aiming at the problem of electrical fault detection of generator set, an intelligent detection method based on echo state network is proposed, which can realize automatic real-time detection of generator set electrical fault. In this method, 10 kinds of common faults of generator sets are taken as input, and then incorporated into the echo state network for learning and training, and the fault judgment is made according to the results of network analysis. In the course of the experiment, through a variety of sensors with manual inspection to collect variable data, and through the training and learning of multi-variable time series data in the echo state network, the final result of fault detection is formed. The experimental results show that the intelligent detection algorithm proposed in this paper can automatically and real-time detect the fault of the generator set. The method proposed in this paper is non-manual, intelligent and real-time.
Keywords: generator set; electrical fault; intelligent detection; test and analysis; echo state network
在各種形式的能源供給中,電能占有十分重要的地位。電能作為一種二次能源,是清潔型能源,并且可以為人們生產生活的各種用電器提供能源動力[1]。在電能供給體系中,發電站扮演著十分重要的角色。發電站內的發電機組通過持續工作,將電能源源不斷地輸送到電網,確保千家萬戶的電力設備可以正常使用。發電機組的構成形式復雜,并且因設備的不同而不同[2]。但是,其中最核心的部件都是變壓器。變壓器可以調整電能供給端到電能需求端的電壓差降,是發電機組工作的關鍵。……