李紫微 張津銘 于牧鑫 劉瀟鈺 沈海燕 季霞
[摘要]?幽門螺桿菌(Helicobacter?pylori,HP)定植于胃上皮黏膜后,可經(jīng)非萎縮性胃炎、慢性萎縮性胃炎、腸上皮化生和異型增生最終發(fā)展為胃癌,而巨噬細(xì)胞在此過程中發(fā)揮重要作用。HP中的多種毒性物質(zhì)可通過巨噬細(xì)胞表面受體、改變胃內(nèi)微環(huán)境、激活其他免疫細(xì)胞等多種途徑使巨噬細(xì)胞發(fā)生極化失衡,導(dǎo)致慢性炎癥和免疫抑制,從而促進(jìn)胃癌的發(fā)生。巨噬細(xì)胞在胃炎和胃癌中的作用使其成為個體化治療的新靶點(diǎn)。本文對巨噬細(xì)胞極化失衡在HP相關(guān)胃炎及胃癌中作用的研究進(jìn)展予以綜述。
[關(guān)鍵詞]?巨噬細(xì)胞;極化;幽門螺桿菌;胃炎;胃癌
[中圖分類號]?R735.2;R573.3??????[文獻(xiàn)標(biāo)識碼]?A??????[DOI]?10.3969/j.issn.1673-9701.2024.16.030
胃癌的發(fā)病率和死亡率均較高,居全球癌癥致死原因的第3位,占癌癥致死總數(shù)的7.7%[1]。慢性炎癥、免疫抑制與腫瘤的發(fā)生密切相關(guān)。幽門螺桿菌(Helicobacter?pylori,HP)定植于胃黏膜上皮后,產(chǎn)生細(xì)胞毒素相關(guān)基因A(cytotoxin-associated?gene?A,CagA)和空泡毒素A(vacuolating?cytotoxin?A,VacA)等物質(zhì),激活胃黏膜固有免疫,導(dǎo)致胃黏膜慢性炎癥[2]。巨噬細(xì)胞是固有免疫反應(yīng)的參與者,在腫瘤相關(guān)炎癥中發(fā)揮主導(dǎo)作用,巨噬細(xì)胞發(fā)揮作用的關(guān)鍵步驟之一是極化[3]。巨噬細(xì)胞極化是在變化的微環(huán)境中改變其表型,向M1型或M2型轉(zhuǎn)化,并發(fā)揮不同作用。M1型巨噬細(xì)胞具有抗腫瘤和殺滅微生物的功能,可引起組織損傷,抑制組織再生;M2型巨噬細(xì)胞可修復(fù)組織損傷;M1型和M2型巨噬細(xì)胞的動態(tài)平衡可確保機(jī)體的免疫功能適當(dāng),并避免組織損傷[4]。
HP誘導(dǎo)的巨噬細(xì)胞極化失衡在胃炎和胃癌中起重要作用。M1型巨噬細(xì)胞合成并分泌促炎細(xì)胞因子,產(chǎn)生炎癥反應(yīng),在非萎縮性胃炎(non-atrophic?gastritis,NAG)和慢性萎縮性胃炎(chronic?atrophic?gastritis,CAG)階段發(fā)揮主要作用[5];而M2型巨噬細(xì)胞通過合成并分泌免疫相關(guān)細(xì)胞因子促進(jìn)腫瘤進(jìn)展,在腸上皮化生(intestinal?metaplasia,IM)、異型增生(dysplasia,Dys)和胃癌階段發(fā)揮作用[6-7]。HP誘導(dǎo)巨噬細(xì)胞極化失衡在胃炎至胃癌動態(tài)變化中的作用機(jī)制仍未得到充分闡述。本文對HP誘導(dǎo)巨噬細(xì)胞極化的機(jī)制及兩種類型巨噬細(xì)胞在胃炎和胃癌進(jìn)展中的作用進(jìn)行綜述,旨在為胃炎和胃癌的臨床治療提供新思路。
1??HP誘導(dǎo)巨噬細(xì)胞極化失衡
1.1??HP誘導(dǎo)巨噬細(xì)胞向M1型極化
HP是Ⅰ類致癌因子,可誘導(dǎo)巨噬細(xì)胞極化失衡,在慢性胃炎向胃癌的發(fā)展過程中發(fā)揮重要作用。在HP感染胃黏膜早期,機(jī)體固有免疫系統(tǒng)被激活,趨化因子配體2、巨噬細(xì)胞集落刺激因子(macrophage?colony?stimulating?factor,MCSF)等趨化因子將巨噬細(xì)胞聚集至感染部位并產(chǎn)生多種效應(yīng)殺滅HP。但HP產(chǎn)生的多種毒性物質(zhì)可作用于巨噬細(xì)胞并改變其作用機(jī)制,導(dǎo)致感染持續(xù),形成慢性炎癥,經(jīng)NAG、CAG、IM和Dys,最終發(fā)展為胃癌。巨噬細(xì)胞與病原體在局部微環(huán)境中分泌的毒性物質(zhì)結(jié)合,產(chǎn)生促炎信號并通過級聯(lián)反應(yīng)使巨噬細(xì)胞向M1型分化;同時,巨噬細(xì)胞也可在MCSF、γ干擾素(interferon-γ,IFN-γ)等細(xì)胞因子刺激下向M1型分化。M1型巨噬細(xì)胞的生物標(biāo)志物有CD68、CD86和主要組織相容性復(fù)合體Ⅱ類共刺激分子[8]。概括而言,HP可通過以下途徑誘導(dǎo)巨噬細(xì)胞發(fā)生M1型極化。
巨噬細(xì)胞表面受體與HP產(chǎn)生的毒性物質(zhì)結(jié)合,通過多條信號通路使巨噬細(xì)胞向M1型極化。多項(xiàng)研究表明幽門螺桿菌中性粒細(xì)胞激活蛋白(Helicobacter?pylori?neutrophil-activating?protein,HP-NAP)、CagA、VacA可與Toll樣受體(toll-like?receptor,TLR)結(jié)合,激活核因子κB(nuclear?factor-κB,NF-κB)、信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄活化因子(signal?transducer?and?activator?of?transcription,STAT)1和STAT6信號通路[9-12];脂多糖與TLR4結(jié)合,激活炎癥小體NLRP3/胱天蛋白酶(cysteinyl?aspartate?specific?proteinase,caspase)-1信號通路[13-14];HP感染可降低微RNA(microRNA,miR)-4270的表達(dá),激活免疫受體CD300E,誘導(dǎo)巨噬細(xì)胞向M1型極化[15]。研究證實(shí)腫瘤壞死因子-α(tumor?necrosis?factor-α,TNF-α)還可通過激活表皮生長因子受體(epidermal?growth?factor?receptor,EGFR)信號通路促進(jìn)M1型巨噬細(xì)胞極化[16]。
另外,HP感染可導(dǎo)致炎癥因子增多,促進(jìn)氧化反應(yīng),導(dǎo)致活性氧(reactive?oxygen,ROS)水平升高,改變胃內(nèi)微環(huán)境,從而使M1型巨噬細(xì)胞占比升高。CagA由Ⅳ型分泌系統(tǒng)轉(zhuǎn)運(yùn)至胃黏膜上皮細(xì)胞,提高微環(huán)境中白細(xì)胞介素(interleukin,IL)-6、IL-8和IL-18的水平,介導(dǎo)巨噬細(xì)胞向M1型極化[17]。HP的持續(xù)感染可造成炎癥小體的慢性活化,經(jīng)多條信號通路發(fā)生M1型巨噬細(xì)胞極化,從而引發(fā)胃黏膜萎縮,如重組TNF-α誘導(dǎo)蛋白(TNF-α-inducing?protein,Tipα)可激活NF-κB/NLRP3/caspase-1信號通路[18];缺氧誘導(dǎo)因子-α、ROS可激活NLRP3/蛋白激酶B(protein?kinase?B,PKB,又稱Akt)/哺乳動物雷帕霉素靶蛋白(mammalian?target?of?rapamycin,mTOR)信號通路[8]。TLR4亦可通過激活NLRP3介導(dǎo)巨噬細(xì)胞的M1型極化,但具體機(jī)制有待探究。HP感染可激活胃黏膜細(xì)胞的氧化反應(yīng),使胃內(nèi)微環(huán)境中ROS增多,通過Akt/mTOR途徑促進(jìn)巨噬細(xì)胞的M1型極化[19]。HP還可通過酶類物質(zhì)改變局部微環(huán)境,如HP相關(guān)性胃炎中乙酰肝素酶的活化可通過p38絲裂原活化蛋白激酶(mitogen-activated?protein?kinase,MAPK)和NF-κB信號通路介導(dǎo)巨噬細(xì)胞向M1型極化[20-21]。HP通過分解尿素、中和胃酸促進(jìn)胃泌素的釋放,胃泌素可通過激活Hedgehog信號通路將巨噬細(xì)胞招募到感染部位并于此微環(huán)境中成熟極化[22]。HP可通過誘導(dǎo)其他免疫細(xì)胞的活化促進(jìn)巨噬細(xì)胞向M1型極化。HP感染還可增加微環(huán)境中巨噬細(xì)胞移動抑制因子(macrophage?migration?inhibitory?factor,MIF)的表達(dá),MIF促進(jìn)T細(xì)胞增殖進(jìn)而分泌TNF-α等細(xì)胞因子介導(dǎo)巨噬細(xì)胞向M1型極化[23];HP-NAP通過促進(jìn)輔助性T細(xì)胞1的免疫反應(yīng)促進(jìn)IL-6、IL-8和TNF-α表達(dá),形成巨噬細(xì)胞向M1型極化的微環(huán)境[12]。
1.2??HP誘導(dǎo)巨噬細(xì)胞向M2型極化
炎癥的持續(xù)進(jìn)展可加重胃黏膜損傷,使胃內(nèi)微環(huán)境發(fā)生改變而不適合HP定植。在這種情況下,HP與胃內(nèi)微環(huán)境共同作用促使巨噬細(xì)胞向M2型極化。M2型巨噬細(xì)胞可在輔助性T細(xì)胞2型細(xì)胞因子(IL-4、IL-5)的刺激下誘導(dǎo)分化。M2型巨噬細(xì)胞的生物標(biāo)志物有CD206、CD163共刺激分子及CD200R膜糖蛋白等。
HP及其毒性產(chǎn)物可與多種受體結(jié)合使巨噬細(xì)胞向M2型極化。CagA可與巨噬細(xì)胞表面的EGFR結(jié)合,激活NF-κB信號通路[24];尿素酶B(urease?B,UreB)可與TLR2結(jié)合使巨噬細(xì)胞由M1型向M2型轉(zhuǎn)化[25];脂多糖與TLR4結(jié)合可激活NF-κB和STAT3信號通路,并調(diào)節(jié)B細(xì)胞淋巴瘤2(B-cell?lymphoma?2,Bcl-2)的轉(zhuǎn)錄和表達(dá),介導(dǎo)巨噬細(xì)胞發(fā)生M2型極化[26];Tipα是HP特有的致癌因子,其可與胃黏膜上皮細(xì)胞表達(dá)的核仁素受體結(jié)合,并通過IL-6/?STAT3信號通路介導(dǎo)巨噬細(xì)胞發(fā)生M2型極化[27]。綜上,相同巨噬細(xì)胞受體與不同的HP毒性產(chǎn)物結(jié)合時可向不同方向極化。巨噬細(xì)胞的主要表型在胃炎至胃癌進(jìn)展過程中發(fā)生改變,HP在不同感染階段釋放的毒性產(chǎn)物是否也發(fā)生變化仍需進(jìn)一步研究。
胃內(nèi)微環(huán)境的變化也可促進(jìn)M2型巨噬細(xì)胞極化。前列腺素E2(prostaglandin?E2,PGE2)的表達(dá)水平與M2型巨噬細(xì)胞水平呈正相關(guān),并使M2型巨噬細(xì)胞高表達(dá)趨化因子配體2,進(jìn)一步誘導(dǎo)其他免疫細(xì)胞的聚集。HP-NAP使葡萄糖轉(zhuǎn)運(yùn)體的生成增加,通過多種酶的作用促進(jìn)微環(huán)境中乳酸和還原型煙酰胺腺嘌呤二核苷酸磷酸的產(chǎn)生,使巨噬細(xì)胞向M2型極化[28]。HP感染通過增強(qiáng)巨噬細(xì)胞內(nèi)蛋氨酸循環(huán)的活性上調(diào)蛋氨酸腺苷轉(zhuǎn)移酶的表達(dá)水平,使巨噬細(xì)胞中組蛋白發(fā)生甲基化并增加受體相互作用蛋白的表達(dá),從而介導(dǎo)巨噬細(xì)胞向M2型極化[29]。
2??巨噬細(xì)胞極化失衡在胃炎和胃癌中的作用
在胃炎至胃癌的進(jìn)展過程中,M1與M2型巨噬細(xì)胞的水平是動態(tài)變化的。在NAG和CAG階段,巨噬細(xì)胞向M1型極化,通過合成并分泌趨化因子和促炎因子導(dǎo)致炎癥慢性化;在炎癥和IM階段,巨噬細(xì)胞由M1型向M2型轉(zhuǎn)化,此時M1型與M2型巨噬細(xì)胞同時存在于胃內(nèi)微環(huán)境中;在Dys和胃癌階段,M2型巨噬細(xì)胞占據(jù)優(yōu)勢,通過合成并分泌免疫抑制相關(guān)因子,促進(jìn)腫瘤細(xì)胞的產(chǎn)生。
2.1??M1型巨噬細(xì)胞與NAG和萎縮性胃炎
M1型巨噬細(xì)胞可通過吞噬作用清除病原體,介導(dǎo)炎癥反應(yīng),保護(hù)宿主。巨噬細(xì)胞的過度聚集和炎癥反應(yīng)可對宿主造成不良影響,如傷口不愈合、組織無法再生等。胃黏膜感染初期形成急性胃炎,后進(jìn)展為慢性胃炎。在此過程中,M1型巨噬細(xì)胞極化顯著增強(qiáng),其產(chǎn)生并分泌大量炎癥性趨化因子和促炎細(xì)胞因子。
IL-1β與ROS對胃黏膜上皮細(xì)胞有損傷作用。M1型巨噬細(xì)胞可通過分泌NLRP3活化caspase-1,促進(jìn)IL-1β和ROS的分泌,造成細(xì)胞凋亡,加速胃黏膜萎縮[30]。IL-1β作為胃酸分泌的抑制劑,可引起胃黏膜萎縮,為IM和胃癌的發(fā)展提供條件。Shigematsu等[31]研究發(fā)現(xiàn),過表達(dá)IL-1β的轉(zhuǎn)基因小鼠中,CAG至胃癌的發(fā)展速度更快。IL-1β可通過多條信號通路導(dǎo)致胃黏膜上皮細(xì)胞DNA發(fā)生甲基化,從而導(dǎo)致胃癌。IL-1β還可通過激活NF-κB信號通路,釋放大量一氧化氮,從而造成DNA損傷[32]。IL-1β和TNF-α通過NF-κB途徑依賴方式促進(jìn)胃黏膜上皮細(xì)胞重組人E26轉(zhuǎn)錄因子1的表達(dá),導(dǎo)致慢性炎癥的發(fā)生[33]。ROS對胃黏膜上皮細(xì)胞有致癌作用[34]。
此外,M1型巨噬細(xì)胞分泌的TNF-α、外泌體miRNA等在炎癥過程中發(fā)揮重要作用,且與早期胃癌的發(fā)生密切相關(guān)。如IL-8、IL-18和TNF-α等可激活細(xì)胞外信號調(diào)節(jié)激酶(extracellular?signal-regulated?kinase,ERK)1/2造成胃黏膜上皮細(xì)胞損傷[35];IL-22可誘導(dǎo)產(chǎn)生與IFN-γ有關(guān)的T細(xì)胞反應(yīng),從而加劇胃部炎癥[36]。M1型巨噬細(xì)胞通過分泌miR-155促進(jìn)多種免疫細(xì)胞產(chǎn)生TNF-α、IL-23、IL-6,作用于胃黏膜上皮細(xì)胞導(dǎo)致胃黏膜萎縮[37]。
2.2??M2型巨噬細(xì)胞與IM、Dys和胃癌
在慢性胃炎早期,M1型巨噬細(xì)胞發(fā)揮主要作用,通過釋放炎癥細(xì)胞因子促進(jìn)炎癥反應(yīng),適量的炎癥細(xì)胞因子對宿主是有利的,但隨著M1型巨噬細(xì)胞的不斷增多,炎癥因子過度釋放會損害胃黏膜。此后,胃內(nèi)微環(huán)境中M2型巨噬細(xì)胞的比例增加,通過釋放抗炎因子修復(fù)過量的炎癥因子所致?lián)p傷。巨噬細(xì)胞的極化平衡可修復(fù)損傷,若極化失衡則導(dǎo)致疾病朝著胃癌方向進(jìn)展。在Dys、胃癌進(jìn)展過程中,M1型巨噬細(xì)胞的比例逐漸減少,胃內(nèi)炎癥反應(yīng)減弱,而M2型巨噬細(xì)胞的過度形成使胃黏膜上皮細(xì)胞損傷加重,從而導(dǎo)致胃癌的發(fā)生。
M2型巨噬細(xì)胞釋放的細(xì)胞因子可通過多條信號通路促進(jìn)胃癌的發(fā)生。Tipα可激活Wnt/β-連環(huán)蛋白信號通路,導(dǎo)致癌基因的異常表達(dá)[17]。IL-6可激活STAT3信號通路,促進(jìn)細(xì)胞分裂,導(dǎo)致胃癌細(xì)胞的增殖和遷移[38]。轉(zhuǎn)化生長因子-β(Transforming?growth?factor-β,TGF-β)可誘導(dǎo)神經(jīng)元再生相關(guān)蛋白的表達(dá),促進(jìn)上皮間質(zhì)轉(zhuǎn)化[39]。缺氧環(huán)境中產(chǎn)生的血管內(nèi)皮生長因子、血小板衍生生長因子、纖維母細(xì)胞生長因子等可通過MAPK和ERK等信號通路促進(jìn)胃癌的發(fā)生。此外,腫瘤細(xì)胞通過分泌人白細(xì)胞抗原復(fù)合體18、長鏈非編碼RNA介導(dǎo)巨噬細(xì)胞發(fā)生M2型極化,進(jìn)一步加快胃癌進(jìn)展[40]。
2.3??M2型巨噬細(xì)胞與進(jìn)展期胃癌
已有研究證明,胃癌微環(huán)境中M2型巨噬細(xì)胞的富集與胃癌的預(yù)后呈負(fù)相關(guān),主要原因是M2型巨噬細(xì)胞表達(dá)的IL-10、TGF-β、表皮生長因子等可促進(jìn)腫瘤細(xì)胞的增殖和存活,并促進(jìn)血管生成;M2型巨噬細(xì)胞的浸潤程度與胃癌細(xì)胞的增殖和轉(zhuǎn)移密切相關(guān)。
M2型巨噬細(xì)胞分泌的IL-10和TGF-β可通過NF-κB和STAT3信號通路調(diào)節(jié)相關(guān)基因的轉(zhuǎn)錄和表達(dá),如與細(xì)胞增殖和凋亡相關(guān)的Bcl-2[41]。基質(zhì)金屬蛋白酶(matrix?metalloproteinase,MMP)在細(xì)胞生長發(fā)育、疾病的病理破壞中發(fā)揮作用。M2型巨噬細(xì)胞表達(dá)殼多糖酶3樣蛋白1,通過IL-13Rα2的激活及ERK1/2和c-Jun氨基末端激酶的磷酸化促進(jìn)MMP的表達(dá),有利于胃癌細(xì)胞的轉(zhuǎn)移[42]。此外,血管內(nèi)皮生長因子、IL-10、雙調(diào)蛋白和MMP-1可直接或間接消耗CD8+T細(xì)胞,促進(jìn)腫瘤細(xì)胞的侵襲和增殖[43]。miR-487a可下調(diào)胃癌細(xì)胞中T細(xì)胞內(nèi)抗原-1的表達(dá),促進(jìn)胃癌細(xì)胞的擴(kuò)散和轉(zhuǎn)移[44]。
3??免疫治療和靶向治療
胃癌患者從化療和靶向治療中受益較少,其主要原因是腫瘤的轉(zhuǎn)移、復(fù)發(fā)和耐藥性等。
M1型巨噬細(xì)胞的復(fù)極化可用于胃癌的治療。在標(biāo)準(zhǔn)的一線化療中,氟嘧啶和鉑類藥物通過Wnt信號通路阻斷巨噬細(xì)胞中程序性死亡蛋白1的表達(dá),從而實(shí)現(xiàn)M1型巨噬細(xì)胞的復(fù)極化[45]。重樓皂苷Ⅱ和雷西莫特也可通過M1型巨噬細(xì)胞的復(fù)極化用于胃癌的局部免疫治療,但具體機(jī)制不明[46]。抑制M2型巨噬細(xì)胞可能是靶向治療胃癌的另一條途徑。高表達(dá)趨化因子配體12可促進(jìn)M2型巨噬細(xì)胞的遷移,曲尼司特可通過抑制腫瘤相關(guān)成纖維細(xì)胞釋放趨化因子配體12,從而抑制M2型巨噬細(xì)胞的遷移活性[47]。此外,M2型巨噬細(xì)胞的極化和聚集與集落刺激因子-1有關(guān),emactuzumab可通過結(jié)合集落刺激因子-1R抑制M2型巨噬細(xì)胞極化,用于胃癌的臨床治療[48]。
M2巨噬細(xì)胞與胃癌耐藥性密切相關(guān)。賴氨酰氧化酶與細(xì)胞外基質(zhì)重塑的胺氧化酶合成有關(guān),并參與腫瘤細(xì)胞的增殖、遷移、侵襲和轉(zhuǎn)移。賴氨酰氧化酶過度表達(dá)可激活Wnt和NF-κB信號通路,促進(jìn)M2型巨噬細(xì)胞極化,使胃癌細(xì)胞的免疫逃逸和耐藥性增強(qiáng),導(dǎo)致胃癌預(yù)后不佳[49]。CRNDE是一種RNA基因,參與細(xì)胞的增殖﹑遷移和侵襲,M2型巨噬細(xì)胞高表達(dá)CRNDE,通過張力蛋白同源物和磷酸酶泛素化,使胃癌對順鉑產(chǎn)生耐藥性[50]。M2型巨噬細(xì)胞分泌的miR-223與奧沙利鉑的耐藥相關(guān),但具體機(jī)制尚不明確[51]。因此,阻斷以上途徑可降低胃癌的耐藥性。萎縮性胃炎、IM屬于癌前狀態(tài),Dys屬于癌前病變,若在癌前病變階段進(jìn)行干預(yù),可有效降低胃癌的發(fā)病率。
在HP感染相關(guān)癌前狀態(tài)及癌前病變的治療中,根除HP可逆轉(zhuǎn)癌前病變。但部分研究認(rèn)為,HP根除對Correa進(jìn)程的阻斷存在“不可逆點(diǎn)”,即HP根除僅對某階段病變有逆轉(zhuǎn)效應(yīng),超過該階段則失去逆轉(zhuǎn)效應(yīng)。巨噬細(xì)胞在Correa進(jìn)程中具有重要作用,作用于巨噬細(xì)胞可治療癌前狀態(tài)和癌前病變。
4??小結(jié)
本文對HP誘導(dǎo)巨噬細(xì)胞向不同方向極化的機(jī)制進(jìn)行系統(tǒng)闡述,并討論不同極化類型巨噬細(xì)胞在NAG至胃癌發(fā)展中的重要作用。巨噬細(xì)胞極化失衡在胃癌發(fā)生發(fā)展中的重要作用使其成為HP感染相關(guān)癌前狀態(tài)、癌前病變及胃癌治療的新靶點(diǎn)。然而,巨噬細(xì)胞極化在NAG至胃癌發(fā)展中的具體機(jī)制并未得到充分研究和證實(shí),且多種藥物干預(yù)手段尚有待進(jìn)一步評估。因此,闡明HP誘導(dǎo)的巨噬細(xì)胞極化失衡,并干預(yù)其過程有可能降低胃癌的發(fā)病率,這需今后進(jìn)一步探索。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] AJANI?J?A,?DAMICO?T?A,?BENTREM?D?J,?et?al.?Gastric?cancer,?version?2.2022,?NCCN?clinical?practice?guidelines?in?oncology[J].?J?Natl?Compr?Canc?Netw,?2022,?20(2):?167–192.
[2] SALVATORI?S,?MARAFINI?I,?LAUDISI?F,?et?al.?Helicobacter?pylori?and?gastric?cancer:?Pathogenetic?mechanisms[J].?Int?J?Mol?Sci,?2023,?24(3):?2895.
[3] WANG?L?X,?ZHANG?S?X,?WU?H?J,?et?al.?M2b?macrophage?polarization?and?its?roles?in?diseases[J].?J?Leukoc?Biol,?2019,?106(2):345–358.
[4] LI?W,?ZHANG?X,?WU?F,?et?al.?Gastric?cancer-derived?mesenchymal?stromal?cells?trigger?M2?macrophage?polarization?that?promotes?metastasis?and?EMT?in?gastric?cancer[J].?Cell?Death?Dis,?2019,?10(12):?918.
[5] BECEIRO?S,?RADIN?J?N,?CHATUVEDI?R,?et?al.?TRPM2?ion?channels?regulate?macrophage?polarization?and?gastric?inflammation?during?Helicobacter?pylori?infection[J].?Mucosal?Immunol,?2017,?10(2):?493–507.
[6] PEEK?R?M,?FISKE?C,?WILSON?K?T.?Role?of?innate?immunity?in?Helicobacter?pylori-induced?gastric?malignancy[J].?Physiol?Rev,?2010,?90(3):?831–858.
[7] KRAKOWIAK?M?S,?NOTO?J?M,?PIAZUELO?M?B,?et?al.?Matrix?metalloproteinase?7?restrains?Helicobacter?pylori-?induced?gastric?inflammation?and?premalignant?lesions?in?the?stomach?by?altering?macrophage?polarization[J].?Oncogene,?2015,?34(14):?1865–1871.
[8] LU?Y,?RONG?J,?LAI?Y,?et?al.?The?degree?of?Helicobacter?pylori?infection?affects?the?state?of?macrophage?polarization?through?crosstalk?between?ROS?and?HIF-1α[J].?Oxid?Med?Cell?Longev,?2020,?2020:?5281795.
[9] IMAI?S,?OOKI?T,?MURATA-KAMIYA?N,?et?al.?Helicobacter?pylori?CagA?elicits?BRCAness?to?induce?genome?instability?that?may?underlie?bacterial?gastric?carcinogenesis[J].?Cell?Host?Microbe,?2021,?29(6):?941–958.
[10] YUAN?J,?LI?P,?TAO?J,?et?al.?H.?pylori?escape?host?immunoreaction?through?inhibiting?ILK?expression?by?VacA[J].?Cell?Mol?Immunol,?2009,?6(3):?191–197.
[11] OERTLI?M,?NOBEN?M,?ENGLER?D?B,?et?al.?Helicobacter?pylori?γ-glutamyl?transpeptidase?and?vacuolating?cytotoxin?promote?gastric?persistence?and?immune?tolerance[J].?Proc?Natl?Acad?Sci?USA,?2013,?110(8):?3047–3052.
[12] TSAI?C?C,?KUO?T?Y,?HONG?Z?W,?et?al.?Helicobacter?pylori?neutrophil-activating?protein?induces?release?of?histamine?and?interleukin-6?through?G?protein-mediated?MAPKs?and?PI3K/Akt?pathways?in?HMC-1?cells[J].?Virulence,?2015,?6(8):?755–765.
[13] JANG?A?R,?KANG?M?J,?SHIN?J?I,?et?al.?Unveiling?the?crucial?role?of?type?Ⅳ?secretion?system?and?motility?of?Helicobacter?pylori?in?IL-1β?production?via?NLRP3?inflammasome?activation?in?neutrophils[J].?Front?Immunol,?2020,?11:?1121.
[14] PACHATHUNDIKANDI?S?K,?BLASER?N,?BRUNS?H,?et?al.?Helicobacter?pylori?avoids?the?critical?activation?of?NLRP3?inflammasome-mediated?production?of?oncogenic?mature?IL-1β?in?human?immune?cells[J].?Cancers?(Basel),?2020,?12(4):?803.
[15] PAGLIARI?M,?MUNARI?F,?TOFFOLETTO?M,?et?al.?Helicobacter?pylori?affects?the?antigen?presentation?activity?of?macrophages?modulating?the?expression?of?the?immune?receptor?CD300E?through?miR-4270[J].?Front?Immunol,?2017,?8:?1288.
[16] HARDBOWER?D?M,?SINGH?K,?ASIM?M,?et?al.?EGFR?regulates?macrophage?activation?and?function?in?bacterial?infection[J].?J?Clin?Invest,?2016,?126(9):?3296–3312.
[17] SKOOG?E?C,?MARTIN?M?E,?BARROZO?R?M,?et?al.?Maintenance?of?type?Ⅳ?secretion?function?during?Helicobacter?pylori?infection?in?mice[J].?mBio,?2020,?11(6):?e03147–20.
[18] WATANABE?T,?TAKAHASHI?A,?SUZUKI?K,?et?al.?Epithelial-mesenchymal?transition?in?human?gastric?cancer?cell?lines?induced?by?TNF-α-inducing?protein?of?Helicobacter?pylori[J].?Int?J?Cancer,?2014,?134(10):?2373–2382.
[19] LIN?T?Y,?LAN?W?H,?CHIU?Y?F,?et?al.?Statins'?regulation?of?the?virulence?factors?of?Helicobacter?pylori?and?the?production?of?ROS?may?inhibit?the?development?of?gastric?cancer[J].?Antioxidants?(Basel),?2021,?10(8):?1293.
[20] TANG?L,?TANG?B,?LEI?Y,?et?al.?Helicobacter?pylori-?induced?heparanase?promotes?H.?pylori?colonization?and?gastritis[J].?Front?Immunol,?2021,?12:?675747.
[21] GOBERT?A?P,?FINLEY?J?L,?LATOUR?Y?L,?et?al.?Hypusination?orchestrates?the?antimicrobial?response?of?macrophages[J].?Cell?Rep,?2020,?33(11):?108510.
[22] CHAKRABARTI?J,?DUA-AWEREH?M,?SCHUMACHER?M,?et?al.?Sonic?Hedgehog?acts?as?a?macrophage?chemoattractant?during?regeneration?of?the?gastric?epithelium[J].?NPJ?Regen?Med,?2022,?7(1):?3.
[23] YOON?K,?KIM?N,?PARK?Y,?et?al.?Correlation?between?macrophage?migration?inhibitory?factor?and?autophagy?in?Helicobacter?pylori-associated?gastric?carcinogenesis[J].?PLoS?One,?2019,?14(2):?e0211736.
[24] HARDBOWER?D?M,?COBURN?L?A,?ASIM?M,?et?al.?EGFR-mediated?macrophage?activation?promotes?colitis-?associated?tumorigenesis[J].?Oncogene,?2017,?36(27):?3807–3819.
[25] LIAN?D?W,?XU?Y?F,?DENG?Q?H,?et?al.?Effect?of?patchouli?alcohol?on?macrophage?mediated?Helicobacter?pylori?digestion?based?on?intracellular?urease?inhibition[J].?Phytomedicine,?2019,?65:?153097.
[26] ITO?N,?TSUJIMOTO?H,?UENO?H,?et?al.?Helicobacter?pylori-mediated?immunity?and?signaling?transduction?in?gastric?cancer[J].?J?Clin?Med,?2020,?9(11):?3699.
[27] SUGANUMA?M,?WATANABE?T,?SUEOKA?E,?et?al.?Role?of?TNF-α-inducing?protein?secreted?by?Helicobacter?pylori?as?a?tumor?promoter?in?gastric?cancer?and?emerging?preventive?strategies[J].?Toxins?(Basel),?2021,?13(3):?181.
[28] FU?H?W.?Helicobacter?pylori?neutrophil-activating?protein:?From?molecular?pathogenesis?to?clinical?applications[J].?World?J?Gastroenterol,?2014,?20(18):?5294–5301.
[29] ZHANG?Y,?YANG?H,?ZHAO?J,?et?al.?Activation?of?MAT2A-RIP1?signaling?axis?reprograms?monocytes?in?gastric?cancer[J].?J?Immunother?Cancer,?2021,?9(10):?e001364.
[30] KIM?W,?KIM?S?J.?Heat?shock?factor?1?as?a?prognostic?and?diagnostic?biomarker?of?gastric?cancer[J].?Biomedicines,?2021,?9(6):?586.
[31] SHIGEMATSU?Y,?NIWA?T,?REHNBERG?E,?et?al.?Interleukin-1β?induced?by?Helicobacter?pylori?infection?enhances?mouse?gastric?carcinogenesis[J].?Cancer?Lett,?2013,?340(1):?141–147.
[32] TAKESHIMA?H,?NIWA?T,?YAMASHITA?S,?et?al.?TET?repression?and?increased?DNMT?activity?synergistically?induce?aberrant?DNA?methylation[J].?J?Clin?Invest,?2020,?130(10):?5370–5379.
[33] TENG?Y,?CANG?B,?MAO?F,?et?al.?Expression?of?ETS1?in?gastric?epithelial?cells?positively?regulate?inflammatory?response?in?Helicobacter?pylori-associated?gastritis[J].?Cell?Death?Dis,?2020,?11(7):?498.
[34] SONG?H,?YANG?B,?LI?Y,?et?al.?Focus?on?the?mechanisms?and?functions?of?pyroptosis,?inflammasomes,?and?inflammatory?caspases?in?infectious?diseases[J].?Oxid?Med?Cell?Longev,?2022,?2022:?2501279.
[35] ZHANG?J,?HOU?L,?LIANG?R,?et?al.?Correction?to:?CircDLST?promotes?the?tumorigenesis?and?metastasis?of?gastric?cancer?by?sponging?miR-502-5p?and?activating?the?NRAS/MEK1/ERK1/2?signaling[J].?Mol?Cancer,?2020,?19(1):?125.
[36] KONG?H,?YOU?N,?CHEN?H,?et?al.?Helicobacter?pylori-?induced?adrenomedullin?modulates?IFN-γ-producing?T-cell?responses?and?contributes?to?gastritis[J].?Cell?Death?Dis,?2020,?11(3):?189.
[37] WANG?J,?DENG?Z,?WANG?Z,?et?al.?MicroRNA-155?in?exosomes?secreted?from?Helicobacter?pylori?infection?macrophages?immunomodulates?inflammatory?response[J].?Am?J?Transl?Res,?2016,?8(9):?3700–3709.
[38] MING?S,?YIN?H,?LI?X,?et?al.?GITR?promotes?the?polarization?of?tfh-like?cells?in?Helicobacter?pylori-?positive?gastritis[J].?Front?Immunol,?2021,?12:?736269.
[39] LIU?Y?J,?ZENG?S?H,?HU?Y?D,?et?al.?Overexpression?of?NREP?promotes?migration?and?invasion?in?gastric?cancer?through?facilitating?epithelial-mesenchymal?transition[J].?Front?Cell?Dev?Biol,?2021,?9:?746194.
[40] XIN?L,?WU?Y,?LIU?C,?et?al.?Exosome-mediated?transfer?of?lncRNA?HCG18?promotes?M2?macrophage?polarization?in?gastric?cancer[J].?Mol?Immunol,?2021,?140:?196–205.
[41] DAWSON?R?E,?DESWAERTE?V,?WEST?A?C,?et?al.?STAT3-mediated?upregulation?of?the?AIM2?DNA?sensor?links?innate?immunity?with?cell?migration?to?promote?epithelial?tumourigenesis[J].?Gut,?2022,?71(8):?1515–1531.
[42] CHEN?Y,?ZHANG?S,?WANG?Q,?et?al.?Tumor-recruited?M2?macrophages?promote?gastric?and?breast?cancer?metastasis?via?M2?macrophage-secreted?CHI3L1?protein[J].?J?Hematol?Oncol,?2017,?10(1):?36.
[43] LIU?Q,?YANG?C,?WANG?S,?et?al.?Wnt5a-induced?M2?polarization?of?tumor-associated?macrophages?via?IL-10?promotes?colorectal?cancer?progression[J].?Cell?Commun?Signal,?2020,?18(1):?51.
[44] YANG?X,?CAI?S,?SHU?Y,?et?al.?Exosomal?miR-487a?derived?from?M2?macrophage?promotes?the?progression?of?gastric?cancer[J].?Cell?Cycle,?2021,?20(4):?434–444.
[45] KIM?R,?AN?M,?LEE?H,?et?al.?Early?tumor-immune?microenvironmental?remodeling?and?response?to?first-line?fluoropyrimidine?and?platinum?chemotherapy?in?advanced?gastric?cancer[J].?Cancer?Discov,?2022,?12(4):?984–1001.
[46] YANG?Y,?YANG?Y,?CHEN?M,?et?al.?Injectable?shear-thinning?polylysine?hydrogels?for?localized?immunotherapy?of?gastric?cancer?through?repolarization?of?tumor-associated?macrophages[J].?Biomater?Sci,?2021,?9(19):?6597–6608.
[47] NAKAMURA?Y,?KINOSHITA?J,?YAMAGUCHI?T,?et?al.?Crosstalk?between?cancer-associated?fibroblasts?and?immune?cells?in?peritoneal?metastasis:?Inhibition?in?the?migration?of?M2?macrophages?and?mast?cells?by?Tranilast[J].?Gastric?Cancer,?2022,?25(3):?515–536.
[48] GOMEZ-ROCA?C?A,?ITALIANO?A,?LE?TOURNEAU?C,?et?al.?Phase?Ⅰ?study?of?emactuzumab?single?agent?or?in?combination?with?paclitaxel?in?patients?with?advanced/?metastatic?solid?tumors?reveals?depletion?of?immunosuppressive?M2-like?macrophages[J].?Ann?Oncol,?2019,?30(8):?1381–1392.
[49] NAI?A,?ZENG?H,?WU?Q,?et?al.?LncRNA/miR-29c-?mediated?high?expression?of?lox?can?influence?the?immune?status?and?chemosensitivity?and?can?forecast?the?poor?prognosis?of?gastric?cancer[J].?Front?Cell?Dev?Biol,?2021,?9:?760470.
[50] XIN?L,?ZHOU?L?Q,?LIU?C,?et?al.?Transfer?of?lncRNA?CRNDE?in?TAM-derived?exosomes?is?linked?with?cisplatin?resistance?in?gastric?cancer[J].?EMBO?Rep,?2021,?22(12):?e52124.
[51] JIN?X,?QIU?X,?HUANG?Y,?et?al.?MiR-223-3p?carried?by?cancer-associated?fibroblast?microvesicles?targets?SORBS1?to?modulate?the?progression?of?gastric?cancer[J].?Cancer?Cell?Int,?2022,?22(1):?96.
(收稿日期:2023–12–13)
(修回日期:2024–05–18)