


摘要:細(xì)胞運(yùn)動(dòng)與多種細(xì)胞行為及疾病發(fā)生治療等息息相關(guān),通過實(shí)時(shí)細(xì)胞追蹤和分析可為揭示細(xì)胞行為以及細(xì)胞運(yùn)動(dòng)的規(guī)律、以及疾病發(fā)生機(jī)制等提供實(shí)驗(yàn)依據(jù)。當(dāng)前細(xì)胞追蹤的常規(guī)實(shí)驗(yàn)方法多是從群體層面上對(duì)細(xì)胞遷移進(jìn)行間接分析,無法追蹤遷移過程中單個(gè)細(xì)胞的形態(tài)學(xué)以及運(yùn)動(dòng)動(dòng)力學(xué)等參數(shù)的變化,尤其對(duì)于無熒光標(biāo)記活細(xì)胞,常規(guī)明場(chǎng)或相差圖像的追蹤分析,存在圖像中背景與細(xì)胞間的對(duì)比度低、細(xì)胞邊界不連續(xù)等問題,難以實(shí)現(xiàn)細(xì)胞形態(tài)的準(zhǔn)確識(shí)別和分辨以及自動(dòng)追蹤分析。高內(nèi)涵細(xì)胞成像系統(tǒng)設(shè)備結(jié)合了活細(xì)胞成像模塊和多參數(shù)的高內(nèi)涵分析軟件,可實(shí)現(xiàn)無標(biāo)記活細(xì)胞快速成像以及自動(dòng)分割識(shí)別和追蹤分析。本文總結(jié)了高內(nèi)涵成像系統(tǒng)的無標(biāo)記細(xì)胞分析模塊在體外細(xì)胞運(yùn)動(dòng)追蹤實(shí)驗(yàn)中的應(yīng)用。
關(guān)鍵詞:高內(nèi)涵成像分析;無標(biāo)記活細(xì)胞;細(xì)胞追蹤
中圖分類號(hào):Q334" " " " " " " " " " " " " " " " "文獻(xiàn)標(biāo)識(shí)碼:A" " " " " " " " " " " " " " " " " "DOI:10.3969/j.issn.1006-1959.2024.10.001
文章編號(hào):1006-1959(2024)10-0001-05
Motion Tracking Analysis of High-content Non-fluorescent Labelling in Living Cells
LI Juan,ZHANG Xuan-hong,GUAN Yuan-jun,LIANG Cui-sha,WU Jue-heng
(Zhongshan School of Medicine,Sun Yat-sen University,Guangzhou 510080,Guangdong,China)
Abstract:Cell movement is closely related to a variety of cell behaviors and disease treatment. Real-time cell tracking and analysis can provide experimental basis for revealing cell behavior, cell movement rules, and disease mechanism. At present, the conventional experimental methods of cell tracking are mostly indirect analysis of cell migration from the group level, which cannot track the changes of parameters such as morphology and motion dynamics of single cells during migration. Especially for non-fluorescent labelling in living cells, the tracking analysis of conventional bright field or phase difference images has problems such as low contrast between the background and cells in the image and discontinuous cell boundaries. It is difficult to achieve accurate identification and resolution of cell morphology and automatic tracking analysis. The high-content imaging system equipment combines the live cell imaging module and multi-parameter high-content analysis software, which can realize fast imaging of unlabeled live cells and automatic segmentation, recognition and tracking analysis. This paper summarizes the application of the label-free cell analysis module of the high-content imaging system in in vitro cell movement tracking experiments.
Key words:High-content imaging analysis;Label-free living cells;Cell tracking
細(xì)胞運(yùn)動(dòng)(cell movement)是一種基本的細(xì)胞行為,是發(fā)育[1,2]、組織維持[3]、免疫[4,5]和組織再生[6,7],以及病理等多種生理過程的基礎(chǔ)[8-10]。因此,實(shí)現(xiàn)對(duì)細(xì)胞運(yùn)動(dòng)行為的實(shí)時(shí)監(jiān)測(cè)和分析,有利于了解其作用機(jī)理,協(xié)助藥物開發(fā)和疾病治療。傳統(tǒng)體外細(xì)胞運(yùn)動(dòng)檢測(cè)方法包括劃痕、Transwell培養(yǎng)小室、趨化載玻片等實(shí)驗(yàn)。借助顯微鏡時(shí)間序列成像和和軟件分析,通過區(qū)分和跟蹤細(xì)胞,提取位置和形態(tài)等信息[11,12]。無熒光標(biāo)記的活細(xì)胞追蹤一般采用相差(phase contrast)成像模式,能更清晰地顯示細(xì)胞形態(tài)。然而,相差圖像因細(xì)胞與背景對(duì)比度低,目前的分析軟件難以實(shí)現(xiàn)細(xì)胞的準(zhǔn)確識(shí)別和分割[13]。因此,許多相關(guān)細(xì)胞追蹤實(shí)驗(yàn)仍依賴于手動(dòng)跟蹤。高內(nèi)涵成像系統(tǒng)(high content imaging system)結(jié)合顯微成像及多參數(shù)定量圖像分析技術(shù),可實(shí)現(xiàn)單細(xì)胞水平上的客觀多參數(shù)采集和數(shù)據(jù)分析。在細(xì)胞活性、細(xì)胞周期、毒性檢測(cè)等方面應(yīng)用廣泛[14-16],其數(shù)字相差成像(digital phase contrast, DPC)模塊通過明場(chǎng)圖像構(gòu)建數(shù)字相差圖像,顯著改善信噪比,實(shí)現(xiàn)無熒光標(biāo)記細(xì)胞的自動(dòng)準(zhǔn)確識(shí)別和追蹤,可分析得到實(shí)時(shí)追蹤的細(xì)胞數(shù)、面積以及熒光信號(hào)強(qiáng)度變化、紋理參數(shù)、細(xì)胞動(dòng)力學(xué)特征等多種數(shù)據(jù)結(jié)果,降低了實(shí)驗(yàn)復(fù)雜性和成本。本文將介紹高內(nèi)涵成像系統(tǒng)的數(shù)字相差成像模塊在無熒光標(biāo)記細(xì)胞的運(yùn)動(dòng)追蹤分析中的應(yīng)用,旨在為細(xì)胞遷移等相關(guān)研究提供一種高效的實(shí)驗(yàn)方法與技術(shù)手段。
1無熒光標(biāo)記細(xì)胞追蹤常用實(shí)驗(yàn)方法存在的問題
目前劃痕、Transwell培養(yǎng)小室、趨化載玻片等實(shí)驗(yàn)方法應(yīng)用廣泛,但在成像通量、數(shù)據(jù)客觀性,實(shí)時(shí)精確追蹤,自動(dòng)定量分析等方面存在不足。
1.1實(shí)驗(yàn)可重復(fù)性較差、采樣率低
劃痕實(shí)驗(yàn)成本低,操作簡(jiǎn)單。但很難保證劃痕的大小和寬度一致,影響實(shí)驗(yàn)結(jié)果的可重復(fù)性和一致性。另外,劃痕還可能會(huì)影響劃痕邊界周圍細(xì)胞的活性和運(yùn)動(dòng)潛能,脫落的部分細(xì)胞可能會(huì)造成劃痕愈合的假象。其次,常規(guī)活細(xì)胞成像系統(tǒng)受限于相機(jī)成像速度,即使具備大圖拼接成像功能,也較難同時(shí)采集所有劃痕區(qū)域的圖像,一般會(huì)挑選較好的局部區(qū)域成像和追蹤,存在人為偏差。此外,超過24 h的監(jiān)測(cè)不能排除細(xì)胞增殖對(duì)劃痕愈合的影響。
1.2無法考量運(yùn)動(dòng)速度
Transwell實(shí)驗(yàn)是檢測(cè)懸浮細(xì)胞運(yùn)動(dòng)能力的經(jīng)典方法,對(duì)于細(xì)胞的運(yùn)動(dòng)和遷移能力的評(píng)價(jià)主要依賴于對(duì)轉(zhuǎn)移至底膜外側(cè)細(xì)胞的甲紫染色和計(jì)數(shù)。該方法只適用于終點(diǎn)檢測(cè),難以實(shí)時(shí)檢測(cè)細(xì)胞的運(yùn)動(dòng)變化。無法考察細(xì)胞的運(yùn)動(dòng)速度。
1.3無法自動(dòng)識(shí)別分析
常規(guī)明場(chǎng)或相差圖像存在圖像中背景與細(xì)胞間的對(duì)比度低、細(xì)胞邊界不連續(xù)、以及環(huán)細(xì)胞偽影等問題,難以實(shí)現(xiàn)細(xì)胞自動(dòng)分割識(shí)別和追蹤分析。活細(xì)胞追蹤通常采用熒光染色或熒光標(biāo)記法,過程繁瑣,且存在熒光通道串色,以及熒光成像時(shí)的光毒性等問題。
1.4手動(dòng)分析流程復(fù)雜、單細(xì)胞檢測(cè)通量低
劃痕實(shí)驗(yàn)手動(dòng)分析一般只能從群體層面上對(duì)細(xì)胞遷移進(jìn)行間接融合度分析,無法觀察和分析每個(gè)細(xì)胞在遷移中的速度、軌跡,以及形態(tài)變化等;無法追蹤細(xì)胞是否增殖、細(xì)胞增殖對(duì)劃痕愈合的影響,以及劃痕前緣的細(xì)胞與其他細(xì)胞在遷移過程中的區(qū)別等等問題。手動(dòng)單個(gè)細(xì)胞追蹤分析流程復(fù)雜,通量低,工作量大、耗時(shí)且存在誤差。
2高內(nèi)涵細(xì)胞運(yùn)動(dòng)追蹤實(shí)驗(yàn)成像方法
不同于細(xì)胞染色方法,基于圖像方式的細(xì)胞運(yùn)動(dòng)分析方式是近年來發(fā)展起來的技術(shù),該方法無需染色,通過軟件算法對(duì)無標(biāo)記活細(xì)胞的時(shí)間序列圖像精細(xì)分割,分離圈選細(xì)胞,對(duì)細(xì)胞進(jìn)行定位,實(shí)現(xiàn)細(xì)胞實(shí)時(shí)追蹤[17]。高內(nèi)涵細(xì)胞成像系統(tǒng)設(shè)備結(jié)合了活細(xì)胞工作站、硬件轉(zhuǎn)盤式共聚焦成像模塊和多參數(shù)的高內(nèi)涵分析軟件,可實(shí)現(xiàn)無標(biāo)記活細(xì)胞快速成像以及基于圖像方式的自動(dòng)分割分析[18],在無標(biāo)記活細(xì)胞追蹤實(shí)驗(yàn)中應(yīng)用廣泛。其保留了活細(xì)胞工作站的優(yōu)點(diǎn),同時(shí)實(shí)現(xiàn)了高通量的實(shí)時(shí)檢測(cè),對(duì)單個(gè)細(xì)胞和細(xì)胞群落的運(yùn)動(dòng)均可進(jìn)行分析,借助于多重分析模塊,可對(duì)細(xì)胞運(yùn)動(dòng)時(shí)形態(tài)與微結(jié)構(gòu)的變化的實(shí)時(shí)追蹤觀察,在活細(xì)胞狀態(tài)下對(duì)細(xì)胞運(yùn)動(dòng)的相關(guān)信息進(jìn)行直觀而詳盡的分析。
2.1高內(nèi)涵無標(biāo)記活細(xì)胞趨化實(shí)驗(yàn)分析
以趨化因子分析為例,使用搭載活細(xì)胞控件的高內(nèi)涵成像分析系統(tǒng)(PE Operetta CLS)監(jiān)測(cè)了500 nmol/L細(xì)胞松弛素D對(duì)HT-1080纖維肉瘤細(xì)胞遷移的影響。加入化合物后,微孔板放入預(yù)熱的Operetta系統(tǒng)上,孵育30 min。使用10×物鏡采集數(shù)字相襯圖像(圖1A),細(xì)胞識(shí)別(圖1B)。成像時(shí)間間隔6 min,總檢測(cè)和成像時(shí)長(zhǎng)2.5 h。使用配套的Harmony軟件的追蹤模塊進(jìn)行細(xì)胞的動(dòng)力學(xué)特性和軌跡特性分析。對(duì)照組和處理組分別通過軟件圈選細(xì)胞和自動(dòng)追蹤運(yùn)動(dòng)軌跡(圖1C、圖1D),對(duì)當(dāng)前速度,均方位移,根據(jù)每孔細(xì)胞的平均值作圖(圖1E、圖F),并根據(jù)當(dāng)前位置坐標(biāo)追蹤單個(gè)細(xì)胞的實(shí)時(shí)軌跡(圖1G)。通過對(duì)細(xì)胞進(jìn)行圈選分割和追蹤分析,可計(jì)算時(shí)間相關(guān)的動(dòng)力學(xué)特性變化數(shù)據(jù)如當(dāng)前速度、當(dāng)前位置坐標(biāo)等。除了每個(gè)時(shí)間點(diǎn)的參數(shù),還可以計(jì)算整個(gè)追蹤軌跡的參數(shù),如平均累計(jì)距離(accumulated distance)、平均位移(displacement)和平均速度(average speed)(表1)。分析數(shù)據(jù)顯示,細(xì)胞松弛素D明顯影響細(xì)胞的運(yùn)動(dòng)遷移能力。
2.2高內(nèi)涵自動(dòng)追蹤分析和常規(guī)手動(dòng)分析的比較
對(duì)于無標(biāo)記活細(xì)胞,常規(guī)明場(chǎng)或相差圖像難以實(shí)現(xiàn)細(xì)胞自動(dòng)識(shí)別和追蹤分析,常使用手動(dòng)追蹤方法分析,如結(jié)合使用Image J圖像處理軟件和ibidi公司的用于分析趨化或遷移數(shù)據(jù)的免費(fèi)軟件ibidi chemotaxis and migration tool進(jìn)行手動(dòng)追蹤。為比較高內(nèi)涵活細(xì)胞追蹤分析和常規(guī)手動(dòng)分析,同樣使用500 nmol/L細(xì)胞松弛素D處理HT-1080纖維肉瘤細(xì)胞。導(dǎo)入采集的時(shí)間序列圖像到Image J軟件中,通過手動(dòng)模式記錄細(xì)胞軌跡:選擇1個(gè)細(xì)胞,點(diǎn)擊細(xì)胞中心點(diǎn),會(huì)顯示初始位置坐標(biāo),之后手動(dòng)點(diǎn)擊選取每張時(shí)間序列圖像中的細(xì)胞中心點(diǎn),會(huì)產(chǎn)生該細(xì)胞隨時(shí)間變化的坐標(biāo)信息。按同樣的流程,兩組均統(tǒng)計(jì)50個(gè)細(xì)胞的軌跡,保存軌跡坐標(biāo)值表格。再將數(shù)據(jù)導(dǎo)入ibidi chemotaxis and migration tool中進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析和畫圖。分析可得到兩組細(xì)胞追蹤軌跡的平均累計(jì)距離、平均位移和平均速度(表2),以及兩組追蹤的細(xì)胞在每個(gè)時(shí)間點(diǎn)的位置坐標(biāo)參數(shù),并根據(jù)每個(gè)細(xì)胞的實(shí)時(shí)位置坐標(biāo)繪制追蹤軌跡圖。
手動(dòng)追蹤分析方法也可得到每條軌跡的累計(jì)距離、平均位移和速度參數(shù),但無法直觀獲得每孔所有細(xì)胞群體和時(shí)間相關(guān)的動(dòng)力學(xué)特性變化如當(dāng)前速度等參數(shù),以繪制速度隨時(shí)間變化的曲線。也不能得到評(píng)價(jià)趨化運(yùn)動(dòng)的均方位移的定量數(shù)據(jù),只能通過追蹤的累計(jì)距離圖定性比較(圖2)。更無法獲得每個(gè)時(shí)間點(diǎn)的單個(gè)細(xì)胞的面積、圓度等形態(tài)學(xué)特性變化,細(xì)胞的熒光強(qiáng)度變化等信息。雖然兩種分析方法得到的數(shù)據(jù)數(shù)量級(jí)相當(dāng),但相對(duì)于自動(dòng)追蹤分析,手動(dòng)追蹤存在分析通量低、工作量大以及手動(dòng)點(diǎn)選細(xì)胞中心點(diǎn)造成的誤差等問題。
3高內(nèi)涵無標(biāo)記活細(xì)胞追蹤方法的優(yōu)勢(shì)
相對(duì)于傳統(tǒng)細(xì)胞運(yùn)動(dòng)檢測(cè)方法,高內(nèi)涵成像系統(tǒng)可實(shí)時(shí)無標(biāo)記的單細(xì)胞以及細(xì)胞群體的高速低毒性成像。自動(dòng)追蹤分析功能在分析便捷度、分析通量、數(shù)據(jù)精準(zhǔn)度以及參數(shù)種類方面都具有明顯的優(yōu)勢(shì)。
3.1成像速度快,光毒性小
采用轉(zhuǎn)盤式多點(diǎn)同步掃描方式,采集速度快,降低了對(duì)樣品的光漂白和光損傷。數(shù)字相位成像使用紅光LED透射光源,光毒性低。可快速實(shí)現(xiàn)整孔或整板成像,采樣量大,所有樣品的成像分析條件完全相同,可很好地消除人為偏差,定量統(tǒng)計(jì)結(jié)果更客觀。
3.2高信噪比數(shù)字相差成像
數(shù)字相差景深包圍成像,使用在不同Z平面采集的兩幅明場(chǎng)圖像構(gòu)建數(shù)字相位圖像。重建基于數(shù)學(xué)算法,該算法考慮了試樣折射率變化引起的光強(qiáng)分布變化率。生成的數(shù)字相位圖像與具有高信噪比的熒光標(biāo)記細(xì)胞的形態(tài)圖像性質(zhì)相當(dāng),適合單個(gè)細(xì)胞圖像分割。且已有相關(guān)實(shí)驗(yàn)證明,數(shù)字相襯圖像上的單細(xì)胞檢測(cè)是可靠的,與基于熒光圖像的分割進(jìn)行比較時(shí),顯示出相似的結(jié)果。
3.3自動(dòng)圖像分割分析
細(xì)胞分割(cell segmentation)是生物圖像分析中很重要的一步。也是細(xì)胞追蹤的第一步,分割結(jié)果的好壞直接決定了細(xì)胞追蹤的準(zhǔn)確度。在控制細(xì)胞密度的前提下,無需“劃痕”處理,結(jié)合搭載的圖像分析軟件,高內(nèi)涵成像系統(tǒng)可實(shí)現(xiàn)圖像自動(dòng)分割識(shí)別。即可對(duì)細(xì)胞的運(yùn)動(dòng)學(xué)和分裂代次等參數(shù)進(jìn)行分析,對(duì)感興趣的細(xì)胞群進(jìn)行移動(dòng)距離、速度、分裂、方向位移、分裂代次等多參數(shù)分析,從而對(duì)比不同處理組細(xì)胞的變化情況。
4討論
明場(chǎng)圖像由于背景的整體強(qiáng)度與細(xì)胞的強(qiáng)度大致相同,對(duì)于高度融合的單層、非常薄的樣品或超薄的細(xì)胞區(qū)域,明場(chǎng)圖像信噪比低,使得結(jié)構(gòu)難以可視化[19]。雖然通過對(duì)明場(chǎng)圖像進(jìn)行簡(jiǎn)單的欠焦可以提高圖像對(duì)比度,然而使用這種方法的形態(tài)學(xué)細(xì)節(jié),尤其是細(xì)胞的較薄區(qū)域的形態(tài)學(xué)信息,可能會(huì)丟失。此外通過欠焦提高對(duì)比度的明場(chǎng)圖像用于單細(xì)胞分割效果仍然不佳。
高內(nèi)涵數(shù)字相差圖像采用基于明場(chǎng)圖像的計(jì)算方法來生成,算法根據(jù)兩個(gè)明場(chǎng)圖像之間光強(qiáng)分布的變化率,顯著提高信噪比,實(shí)現(xiàn)類似熒光圖像的分割和圈選效果[20]。取代細(xì)胞質(zhì)染色進(jìn)行細(xì)胞分割,為其他感興趣的標(biāo)記釋放一個(gè)熒光通道。降低了實(shí)驗(yàn)復(fù)雜性和成本。自動(dòng)模塊化的分析可直觀快捷得到多種細(xì)胞水平參數(shù),如數(shù)量、面積、圓度、形態(tài)變化、信號(hào)強(qiáng)度以及紋理參數(shù)、細(xì)胞動(dòng)力學(xué)特征等。此外,因?yàn)槊鲌?chǎng)圖像采集使用光毒性低的紅色LED光源,結(jié)合紋理識(shí)別和機(jī)器自學(xué)習(xí)等功能,除了運(yùn)動(dòng)追蹤分析,還適用于細(xì)胞增殖[21]、細(xì)胞表型分類[22]、化合物對(duì)細(xì)胞的毒性檢測(cè)[23,24]、菌落生長(zhǎng)和分化[25]、腫瘤類器官藥物反應(yīng)[26]、輻射誘導(dǎo)的細(xì)胞損傷表型分析[27]、斑馬魚胚胎發(fā)育[28]等多種檢測(cè)和應(yīng)用。
雖然高內(nèi)涵成像分析系統(tǒng)在無標(biāo)記活細(xì)胞成像分析中應(yīng)用廣泛,且具有居多優(yōu)點(diǎn)。但在樣品準(zhǔn)備和耗材選擇等方面需注意,對(duì)于活細(xì)胞運(yùn)動(dòng)追蹤,種板密度非常重要,細(xì)胞密度較高時(shí),細(xì)胞黏連或成團(tuán),將影響自動(dòng)分割識(shí)別的準(zhǔn)確度。其次,自動(dòng)高通量成像對(duì)于微孔板質(zhì)量要求較高,孔板底部厚度不均易導(dǎo)致部分視野失焦,DPC數(shù)字相差成像效果不佳,影響后續(xù)細(xì)胞的分割圈選識(shí)別準(zhǔn)確度。另外,由于DPC圖像是基于明場(chǎng)圖像構(gòu)建,曝光設(shè)置應(yīng)針對(duì)相機(jī)動(dòng)態(tài)范圍內(nèi)的亮場(chǎng)強(qiáng)度合理設(shè)置,明場(chǎng)圖像的過度曝光以及光強(qiáng)不足將導(dǎo)致全黑圖像或非常暗的DPC圖像。此外,由于光學(xué)現(xiàn)象,使用5×物鏡生成的DPC圖像的質(zhì)量(對(duì)比度)與耗材類型相關(guān)。一般來說,384孔板的對(duì)比度較好,96孔板次之,而載玻片上的細(xì)胞對(duì)比度最差。除耗材影響,對(duì)于需低倍整孔成像的實(shí)驗(yàn),可靠的數(shù)字相差圖像重建,需注意圖像不能包含任何微孔板孔邊界。相位重建算法不補(bǔ)償邊界效應(yīng)。
參考文獻(xiàn):
[1]Yamada KM,Sixt M.Mechanisms of 3D cell migration[J].Nat Rev Mol Cell Biol,2019,20(12):738-752.
[2]Schumacher L.Collective Cell Migration in Development[J].Adv Exp Med Biol,2019,1146:105-116.
[3]SenGupta S,Parent CA,Bear JE.The principles of directed cell migration[J].Nat Rev Mol Cell Biol,2021,22(8):529-547.
[4]Worbs T,Hammerschmidt SI,F(xiàn)?觟rster R.Dendritic cell migration in health and disease[J].Nat Rev Immunol,2017,17(1):30-48.
[5]Liu J,Zhang X,Cheng Y,et al.Dendritic cell migration in inflammation and immunity[J].Cell Mol Immunol,2021,18(11):2461-2471.
[6]Torres P,Castro M,Reyes M,et al.Histatins,wound healing,and cell migration[J].Oral Dis,2018,24(7):1150-1160.
[7]Fu X,Liu G,Halim A,et al.Mesenchymal Stem Cell Migration and Tissue Repair[J].Cells,2019,8(8):784.
[8]Paul CD,Mistriotis P,Konstantopoulos K.Cancer cell motility: lessons from migration in confined spaces[J].Nat Rev Cancer,2017,17(2):131-140.
[9]Kohli K,Pillarisetty VG,Kim TS.Key chemokines direct migration of immune cells in solid tumors[J].Cancer Gene Ther,2022,29(1):10-21.
[10]Perrin J,Capitao M,Mougin-Degraef M,et al.Cell Tracking in Cancer Immunotherapy[J].Front Med (Lausanne),2020,7:34.
[11]Piltti KM,Cummings BJ,Carta K,et al.Live-cell time-lapse imaging and single-cell tracking of in vitro cultured neural stem cells - Tools for analyzing dynamics of cell cycle, migration, and lineage selection[J].Methods,2018,133:81-90.
[12]Gómez-Villafuertes R,Paniagua-Herranz L,Gascon S,et al.Live Imaging Followed by Single Cell Tracking to Monitor Cell Biology and the Lineage Progression of Multiple Neural Populations[J].J Vis Exp,2017(130):56291.
[13]Jaccard N,Szita N,Griffin LD.Segmentation of phase contrast microscopy images based on multi-scale local Basic Image Features histograms[J].Comput Methods Biomech Biomed Eng Imaging Vis,2017,5(5):359-367.
[14]Circu ML,Dykes SS,Carroll J,et al.A Novel High Content Imaging-Based Screen Identifies the Anti-Helminthic Niclosamide as an Inhibitor of Lysosome Anterograde Trafficking and Prostate Cancer Cell Invasion[J].PLoS One,2016,11(1):e0146931.
[15]Booij TH,Price LS,Danen EHJ.3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis[J].SLAS Discov,2019,24(6):615-627.
[16]Li S,Xia M.Review of high-content screening applications in toxicology[J].Arch Toxicol,2019,93(12):3387-3396.
[17]Boukari F,Makrogiannis S.Automated Cell Tracking Using Motion Prediction-Based Matching and Event Handling[J].IEEE/ACM Trans Comput Biol Bioinform,2020,17(3):959-971.
[18]Selinummi J,Ruusuvuori P,Podolsky,et al.Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images[J].PLoS One,2009,4(10):e749.
[19]Tsai HF,Joanna G,Tyler FWS,et al.Usiigaci:Instance-aware cell tracking in stain-free phase contrastmicroscopy enabled by machine learning[J].Softwarex,2019,9:230-237.
[20]Ali R,Gooding M,Christlieb M,et al.Advanced phase-based segmentation of multiple cells from brightfield microscopy images[C]//IEEE International Symposium on Biomedical Imaging: from Nano to Macro.IEEE,2008.
[21]Fan M,Ma X,Wang F,et al.MicroRNA-30b-5p functions as a metastasis suppressor in colorectal cancer by targeting Rap1b[J].Cancer Lett,2020,477:144-156.
[22]Adiga U,Taylor D,Bell B,et al.Automated analysis and classification of infected macrophages using bright-field amplitude contrast data[J].J Biomol Screen,2012,17(3):401-408.
[23]Marescotti D,Gonzalez Suarez I,Acali S,et al.High Content Screening Analysis to Evaluate the Toxicological Effects of Harmful and Potentially Harmful Constituents (HPHC)[J].J Vis Exp,2016(111):53987.
[24]Cross-Zamirski JO,Mouchet E,Williams G,et al.Label-free prediction of cell painting from brightfield images[J].Sci Rep,2022,12(1):10001
[25]O'Duibhir E,Paris J,Lawson H,et al.Machine Learning Enables Live Label-Free Phenotypic Screening in Three Dimensions[J].Assay Drug Dev Technol,2018,16(1):51-63.
[26]Spiller ER,Ung N,Kim S,et al.Imaging-Based Machine Learning Analysis of Patient-Derived Tumor Organoid Drug Response[J].Front Oncol,2021,11:771173.
[27]Wen KK,Roy S,Grumbach IM,et al.A “Failed” Assay Development for the Discovery of Rescuing Small Molecules from the Radiation Damage[J].SLAS Discov,2021,26(10):1315-1325.
[28]Lin S,Zhao Y,Xia T,et al.High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles[J].ACS Nano,2011,5(9):7284-7295.
收稿日期:2023-05-23;修回日期:2023-07-03
編輯/肖婷婷