999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

一類具有乘性噪聲的時(shí)滯隨機(jī)演化方程的隨機(jī)中心流形的存在性與光滑性

2024-06-23 17:44:43楊娟龔佳鑫吳隆鈺舒級(jí)

楊娟 龔佳鑫 吳隆鈺 舒級(jí)

摘要:研究一類具有乘性噪聲的時(shí)滯隨機(jī)演化方程的隨機(jī)中心流形的存在性與光滑性.由于時(shí)滯的影響,首先對(duì)帶時(shí)滯的非線性項(xiàng)進(jìn)行轉(zhuǎn)化并處理由時(shí)滯影響產(chǎn)生的系數(shù),從而得到中心流形的存在性,然后利用Lyapunov-Perron方法證明方程的中心流形的光滑性.

關(guān)鍵詞:時(shí)滯隨機(jī)演化方程; 隨機(jī)中心流形; 乘性噪聲; 存在性; 光滑性

中圖分類號(hào):O175.29? 文獻(xiàn)標(biāo)志碼:A? 文章編號(hào):1001-8395(2024)05-0696-12

doi:10.3969/j.issn.1001-8395.2024.05.016

本文研究如下一類具有乘性噪聲的時(shí)滯隨機(jī)演化方程的中心流形的存在性與光滑性:

dv(t)dt=Av(t)+H(v(t))+F(v(t-ρ))+v(t),(1)

其中,A是可分的實(shí)Hilbert空間X上的一簇自伴、稠定、具有緊預(yù)解集的線性算子,H(v(t))是從X到X的一簇Lipschitz連續(xù)項(xiàng),F(xiàn)(v(t-ρ))是由X到X的一簇帶時(shí)滯的非線性項(xiàng),ρ是一個(gè)正常數(shù),v(t)是乘性噪聲,符號(hào)代表方程(1)在Stratonovich積分意義下成立.

本文主要證明方程(1)中心流形的存在性與光滑性.運(yùn)用Lyapunov-Perron方法證明中心流形的存在性與光滑性,在時(shí)滯的影響下,需要對(duì)帶有時(shí)滯的非線性項(xiàng)進(jìn)行轉(zhuǎn)化處理,確定新的譜間隙條件,從而得到具有乘性噪聲的時(shí)滯隨機(jī)演化方程的中心流形的存在性與光滑性.

不變流形在描述和理解非線性動(dòng)力系統(tǒng)的動(dòng)力學(xué)行為方面具有重要意義,并且時(shí)滯偏微分方程、隨機(jī)偏微分方程在物理、力學(xué)、生物等相關(guān)領(lǐng)域受到人們的廣泛關(guān)注,而實(shí)際問(wèn)題中時(shí)滯因素與隨機(jī)因素往往會(huì)同時(shí)出現(xiàn).不變流形理論最先由Hadamard[1]和Lyapunov[2]以及Perron[3]分別用2種方法提出,這2種方法也為后期以及現(xiàn)代研究不變流形奠定了良好基礎(chǔ).

不變流形在數(shù)學(xué)理論中也有許多豐碩的成果,Carr[4]擴(kuò)展了對(duì)有限維確定動(dòng)力系統(tǒng)的不變流形的存在性以及分岔特征的研究,如文獻(xiàn)[5-12]將不變流形的研究拓展到了無(wú)窮維隨機(jī)動(dòng)力系統(tǒng).Chow和Lu[13-14]以及Duan等[15-16]利用Hadamard方法與Lyapunov-Perron方法探索了在無(wú)窮維動(dòng)力系統(tǒng)上的不變流形的存在性與光滑性.隨著對(duì)不變流形的研究,文獻(xiàn)[17-26]拓展了對(duì)帶有加性噪聲或乘性噪聲的隨機(jī)偏微分方程的研究.此外,文獻(xiàn)[27-31]也探究了時(shí)滯或延遲反應(yīng)擴(kuò)散方程的相關(guān)性質(zhì).Shi[32]研究了在不同相空間中具有乘性噪聲的隨機(jī)偏微分方程的中心流形的光滑收斂性.

本文將采用文獻(xiàn)[32]的框架和研究方法,研究具有乘性噪聲的時(shí)滯隨機(jī)演化方程的中心流形.

1 預(yù)備知識(shí)

本節(jié)參考文獻(xiàn)[16,33-34]給出隨機(jī)動(dòng)力系統(tǒng)與隨機(jī)不變流形的基本知識(shí),以及方程中每個(gè)算子的相關(guān)性質(zhì).

1.1 隨機(jī)動(dòng)力系統(tǒng)

設(shè)(Ω,F(xiàn),P)是概率空間,X是具有范數(shù)‖·‖的可分Hilbert空間.用B(R),B(R+),B(X)分別表示R,R+,X的Borel集簇.

定義 1.1

如果(Ω,F(xiàn),P,(θt)t∈R)滿足:

(i) 映射θ:RΩ→Ω是(B(R)F,F(xiàn))-可測(cè)的;

(ii) θ0=idΩ是Ω上的恒等算子,對(duì)所有t,s∈R,θt+s=θtθs;

(iii) 對(duì)所有t∈R,θtP=P;

則(Ω,F(xiàn),P,(θt)t∈R)被稱為度量動(dòng)力系統(tǒng).

定義 1.2

如果一個(gè)映射φ:R+×Ω×X→X,(t,ω,x)MT ExtraaA@φ(t,ω,x)滿足:

(i) φ是(B(R+)FB(X),B(X))-可測(cè)的;

(ii) 映射φ(t,ω)=φ(t,ω,·):X→X在θt上形成一個(gè)余環(huán):

φ(0,ω)=idX, ω∈Ω,φ(s+t,ω)=φ(t,θsω)φ(s,ω),s,t∈R+, ω∈Ω;

則φ被稱為度量動(dòng)力系統(tǒng)(Ω,F(xiàn),P,(θt)t∈R)上的一個(gè)隨機(jī)動(dòng)力系統(tǒng).若φ是隨機(jī)動(dòng)力系統(tǒng)并且對(duì)每個(gè)(t,ω)∈R+×Ω,映射

φ(t,ω):X→X, xMT ExtraaA@φ(t,ω)x

是Ck的,則φ被稱為一個(gè)Ck光滑隨機(jī)動(dòng)力系統(tǒng).

1.2 隨機(jī)不變流形

如果非空閉集M(ω)X,ω∈Ω上的多值函數(shù)M=(M(ω))ω∈Ω滿足

ωMT ExtraaA@infy∈Ω‖x-y‖

是對(duì)每個(gè)x∈X的隨機(jī)變量,則M(ω)被稱為隨機(jī)集.若M(ω)是流形,則稱M是隨機(jī)流形;若M(ω)對(duì)每個(gè)ω是Ck光滑流形,則稱M是Ck隨機(jī)流形.

定義 1.3

若對(duì)于隨機(jī)動(dòng)力系統(tǒng)滿足

(t,ω,M(ω))M(θtω), t≥0,則稱M是隨機(jī)流形.

1.3 Hilbert空間X上的無(wú)界線性算子A

設(shè)A是Hilbert空間X上的一簇線性算子,并且滿足:

(i) A是稠定線性算子,并且在X上生成一個(gè)解析半群;

(ii) A是自伴的且具有緊預(yù)解集,

則σ(A)僅由多重有限的特征值{λn}∞n=1組成

λ1≥λ2≥…≥λn≥…→-∞,

其對(duì)應(yīng)的特征向量{φn}∞n=1構(gòu)成空間X的一組標(biāo)準(zhǔn)正交基.

將譜σ(A)寫(xiě)成

σ(A)=σu(A)∪σc(A)∪σs(A),

其中

σu(A):={λ∈σ(A)|λ≥λm},σc(A):={λ∈σ(A)|λm+l-1≤λ≤λm+1},σs(A):={λ∈σ(A)|λ≤λm+l}.

假設(shè)λm>0,λm+l<0以及σc(A)≠.用Xu、Xc、Xs分別表示σu、σc、σs對(duì)應(yīng)的特征空間,則有

X=XuXcXs,

對(duì)應(yīng)投影算子Pu:X→Xu,Pc:X→Xc,Ps:X→Xs.

由A生成的線性半群eAt有如下性質(zhì).

引理 1.4

對(duì)每個(gè)0<α

‖eAtPu‖L(X,X)≤eλmt, t≤0,‖eAtPc‖L(X,X)≤eα|t|, t∈R,‖eAtPs‖L(X,X)≤eλm+lt, t≥0.

1.4 非線性算子H與F

考慮非線性算子H:X→X,F(xiàn):X→X.假設(shè)H和F是全局Lipschitz連續(xù)并且一致Lipschitz有界,即

L1=supx≠y,x,y∈X‖H(x)-H(y)‖X‖x-y‖X<∞,(2)

L2=supx≠y,x,y∈X‖F(xiàn)(x)-F(y)‖X‖x-y‖X<∞,(3)

假設(shè)H(0)=0,F(xiàn)(0)=0.

為了研究Ck范數(shù)下中心流形的光滑性,進(jìn)一步假設(shè)H、F從X到X是Ck的,其中整數(shù)k≥1,即H、F是Ck可微的并且每階導(dǎo)數(shù)DiH、DiF是一致有界的,且導(dǎo)數(shù)一致連續(xù)的,Li(X,X)是從X到X的所有i階有界線性算子的空間.

設(shè)C([-ρ,0],X)是從[-ρ,0]到X的所有連續(xù)函數(shù)的空間,其中ρ>0,且有范數(shù)

‖φ‖C([-ρ,0],X)=sup-ρ≤s≤0{‖φ(s)‖X:s∈[-ρ,0],φ∈C([-ρ,0],X)}.

為了簡(jiǎn)潔,用Cρ表示C([-ρ,0],X).

2 中心流形的存在性

本節(jié)證明以下方程的隨機(jī)中心流形存在:

dv(t)dt=Av(t)+H(v(t))+F(v(t-ρ))+v(t),(4)

其中,A、H(v(t))、F(v(t-ρ))在前面已給出,W(t)是一維標(biāo)準(zhǔn)Wiener過(guò)程,表示一般的白噪聲,v(t)是Stratonovich微分.但是,由參考文獻(xiàn)[35]的第七章可知,不變流形存在性理論通常應(yīng)用于It方程.隨機(jī)演化方程(4)的等價(jià)It方程為

dv(t)=Av(t)dt+(H(v(t))+F(v(t-ρ)))dt+v(t)2dt+v(t)d.(5)

為了研究由方程(4)的解生成的隨機(jī)動(dòng)力系統(tǒng),考慮一維線性隨機(jī)微分方程

dz+zdt=dW,(6)

這個(gè)方程的解被稱為Ornstein-Uhlenbeck過(guò)程,并且滿足以下性質(zhì).

引理 2.1[16] 上述過(guò)程具有以下性質(zhì):

(i) 存在全測(cè)度{θt}t∈R不變集

Ω1∈B(C0(R,R)),其具有次線性增長(zhǎng)

limt→±∞|ω(t)||t|=0, ω∈Ω1,

在P-測(cè)度1下.

(ii) 對(duì)于ω∈Ω1的隨機(jī)變量

z(ω)=-∫0-∞eτω(τ)dτ

存在并生成了方程(6)的唯一穩(wěn)態(tài)解,表示為

Ω1×R瘙綍(ω,t)→z(θtω)=-∫0-∞eτθtω(τ)dτ=-∫0-∞eτω(τ+t)dτ+ω(t),

且映射t→z(θtω)是連續(xù)的.

(iii) 特別地,有

limt→±∞|z(θtω)||t|=0, ω∈Ω1.

(iv) 除此之外,有

limt→±∞1t∫t0z(θτω)dτ=0, ω∈Ω1.

對(duì)余下部分,限制θt在全測(cè)度不變集Ω1上,而不是Ω上,定義對(duì)應(yīng)的概率空間(Ω1,F(xiàn),P),但依舊表示為(Ω,F(xiàn),P).

接下來(lái),研究方程(4)的解定義一個(gè)隨機(jī)動(dòng)力系統(tǒng),為了證明這一點(diǎn),考慮如下隨機(jī)偏微分方程

du(t)dt=Au(t)+z(θtω)u(t)+e-z(θtω)H(ez(θtω)u(t))+e-z(θtω)F(ez(θt-ρω)u(t-ρ)),(7)

初值條件為

u(s)=x(s), s∈[-ρ,0],(8)

其中x(s)∈Cρ.與原始隨機(jī)微分方程相比,此方程未出現(xiàn)隨機(jī)積分.通過(guò)解的存在唯一性定理,該方程對(duì)每個(gè)ω∈Ω都有唯一解,則解映射

(t,ω,x)MT ExtraaA@u(t,ω,x)

生成一個(gè)隨機(jī)動(dòng)力系統(tǒng),即u是

B(R+)FB(Cρ)可測(cè),且生成余環(huán):

u(0,ω,x)=x, ω∈Ω,u(t+s,ω,x)=u(t,θsω,·)u(s,ω,x),s,t∈R+, ω∈Ω, x∈Cρ.

對(duì)每個(gè)x∈Cρ,ω∈Ω,引入下列隨機(jī)變換

T(ω,x)=e-z(ω)x.

顯然,對(duì)固定的ω∈Ω,其逆變換是

T-1(ω,x)=ez(ω)x.

下面這個(gè)命題給出了原始隨機(jī)方程(4)的解生成一個(gè)隨機(jī)動(dòng)力系統(tǒng).

命題 2.2

假設(shè)u是方程(7)解生成的一個(gè)隨機(jī)動(dòng)力系統(tǒng),則

(t,ω,x)MT ExtraaA@T-1(θtω,·)u(t,ω,T(ω,x))=:v(t,ω,x)(9)

是一個(gè)隨機(jī)動(dòng)力系統(tǒng).對(duì)于任意x∈Cρ,這個(gè)過(guò)程是方程(4)的一個(gè)解并生成一個(gè)隨機(jī)動(dòng)力系統(tǒng).

證明

這個(gè)證明過(guò)程與文獻(xiàn)[32]相似,所以此處省略.

注意到,譜σ(A)僅由特征值{λn}∞n=1組成,且有

λ1≥λ2≥…≥λn≥…→-∞.

設(shè)0<α

Cη={φ:C(R,X)|supt∈Re-η|t|-∫t0z(θrω)dr‖φ(t)‖X<∞},

且具有范數(shù)

‖φ‖Cη=supt∈Re-η|t|-∫t0z(θrω)dr‖φ(t)‖X.

設(shè)L是一個(gè)正常數(shù)且滿足

L1+NL2≤L<∞,(10)

其中N=max{Nu,Nc,Ns},這些系數(shù)將在后文中具體給出.為了保證中心流形的存在性和Ck光滑性,假設(shè)

L(1η-α+1λm-η+1-λm+l-η)<1,(11)

譜間隙條件kη

L(1iη-α+1λm-iη+1-λm+l-iη)<1,1≤i≤k.(12)

為了研究中心流形的Ck光滑性,還需要選擇κ>0,使得有

L(1i(η±κ)-α+1λm-i(η±κ)+1-λm+l-i(η±κ))<1, 1≤i≤k.(13)

現(xiàn)在考慮方程(7)的隨機(jī)不變流形.設(shè)

Mc(ω)={x|u(·,ω,x)∈Cη},

當(dāng)它是流形時(shí),則Mc(ω)被稱為中心流形.顯然,0∈Mc(ω),它是非空的且是不變的.

以下引理表明Mc(ω)中的點(diǎn)可以由一個(gè)積分方程所確定.

引理 2.3

對(duì)于x∈Mc(ω)當(dāng)且僅當(dāng)存在一個(gè)初值為u(0)=x的函數(shù)u(·)∈Cη,且滿足

u(t)=eAt+∫t0z(θrω)drξ+∫t0eA(t-s)+∫tsz(θrω)drPc[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds,(14)

其中ξ=Pcx.

證明

設(shè)τ,t∈R,x∈Mc(ω),因?yàn)閷?duì)所有t∈R方程的解u(t;x,ω)存在,則有

u(t;x,ω)=eA(t-τ)+∫tτz(θrω)dru(τ;x,ω)+∫tτeA(t-s)+∫tsz(θrω)dr

[e-z(θsω)H(ez(θsω)u(s;x,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;x,ω))]ds.(15)

取τ=0,用投影算子Pc作用于方程(15),得到

Pcu(t;x,ω)=eAt+∫t0z(θrω)drPcx+∫t0eA(t-s)+∫tsz(θrω)drPc

[e-z(θsω)H(ez(θsω)u(s;x,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;x,ω))]ds.(16)

用投影算子Pu作用于方程(15)有

Puu(t;x,ω)=eA(t-τ)+∫tτz(θrω)drPuu(τ;x,ω)+∫tτeA(t-s)+∫tsz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s;x,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;x,ω))]ds.(17)

由引理1.4,當(dāng)τ>max{t,0}時(shí),且τ→+∞,可得

‖eA(t-τ)+∫tτz(θrω)drPuu(τ;x,ω)‖X

≤eλm(t-τ)+∫tτz(θrω)dr+η|τ|+∫τ0z(θrω)dr‖u(·;x,ω)‖Cη≤

eλmt+∫t0z(θrω)dr+(η-λm)τ‖u(·;x,ω)‖Cη→0.

當(dāng)τ→+∞時(shí),對(duì)方程(17)取極限,有

Puu(t;x,ω)=∫t+∞eA(t-s)+∫tsz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s;x,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;x,ω))]ds.(18)

類似地,得到

Psu(t;x,ω)=∫t-∞eA(t-s)+∫tsz(θrω)drPs[e-z(θsω)H(ez(θsω)u(s;x,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;x,ω))]ds.(19)

綜合(16)、(18)以及(19)式,得到方程(14).由簡(jiǎn)單計(jì)算可以得到逆向結(jié)論.

接下來(lái)證明方程(7)的中心流形的存在性.

定理 2.4

假設(shè)(11)式成立,則有:

(i) 對(duì)每個(gè)ξ∈Xc,方程(14)有唯一解

u(·;ξ,ω)∈Cη±κ,且滿足

‖u(·;ξ,ω)-u(·;,ω)‖Cη≤(1-L(1η-α+1λm-η+1-λm+l-η))-1‖ξ-‖Xc;

(ii) Mc(ω)能由Lipschitz映射

hc(·,ω):Xc→XuXs的圖表示,即

Mc(ω)={ξ+hc(ξ,ω)|ξ∈Xc},(20)

其中

hc(ξ,ω)=Puu(0;ξ,ω)+Psu(0;ξ,ω),hc(0,ω)=0.

證明

首先證明(i),即證明當(dāng)ξ∈Xc時(shí),方程(14)在Cη上有唯一解u=u(·;ξ,ω),且滿足Lipschitz連續(xù).用Qc(u;ξ,ω)表示方程(14)的右邊.通過(guò)引理1.4和(10)式,得到

e-η|t|-∫t0z(θrω)dr‖Qc(u;ξ,ω)‖Xc≤‖e-η|t|+Atξ‖Xc+‖∫t0e-η|t|+A(t-s)+∫0sz(θrω)drPc[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds‖Xc+‖∫t+∞e-η|t|+A(t-s)+∫0sz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds‖Xc+‖∫t-∞e-η|t|+A(t-s)+∫0sz(θrω)drPs[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds‖Xc≤‖e-η|t|+Atξ‖Xc+{‖∫t0e-η|t|+α|t-s|+∫0sz(θrω)dre-z(θsω)H(ez(θsω)u(s))ds‖Xc+‖∫t-ρ-ρe-η|t|+α|t-s-ρ|+∫0s+ρz(θrω)dr×e-z(θs+ρω)F(ez(θsω)u(s))ds‖Xc}+{‖∫t+∞e-η|t|+λm(t-s)+∫0sz(θrω)dre-z(θsω)H(ez(θsω)u(s))ds‖Xc+‖∫t-ρ+∞e-η|t|+λm(t-s-ρ)+∫0s+ρz(θrω)dr×e-z(θs+ρω)F(ez(θsω)u(s))ds‖Xc}+{‖∫t-∞e-η|t|+λm+l(t-s)+∫0sz(θrω)dr×e-z(θsω)H(ez(θsω)u(s))ds‖Xc+‖∫t-ρ-∞e-η|t|+λm(t-s-ρ)+∫0s+ρz(θrω)dr×e-z(θs+ρω)F(ez(θsω)u(s))ds‖Xc}≤‖ξ‖Xc+{1η-αL1‖u(·)‖Cη+1η-αL2Nc‖u(·)‖Cη}+{1λm-ηL1‖u(·)‖Cη+1λm-ηL2Nu‖u(·)‖Cη}+{1-λm+l-ηL1‖u(·)‖Cη+1-λm+l-ηL2Ns‖u(·)‖Cη}≤‖ξ‖Xc+L(1η-α+1λm-η+1-λm+l-η)‖u(·)‖Cη,

其中

Nc=sups∈R 2e2ηρe∫ss+ρz(θrω)dre-z(θs+ρω)ez(θsω),Nu=sups∈R 2e2λmρe∫ss+ρz(θrω)dre-z(θs+ρω)ez(θsω),Ns=sups∈R 2e-2λm+lρe∫ss+ρz(θrω)dre-z(θs+ρω)ez(θsω).

這意味著映射Qc(u;ξ,ω)是從Cη到自身的.

接著,證明解是唯一的.對(duì)u,∈Cη,有

‖Qc(u;ξ,ω)-Qc(;ξ,ω)‖Cη≤supt∈Re-η|t|-∫t0z(θrω)dr{‖∫t0eA(t-s)+∫tsz(θrω)drPc×[e-z(θsω)H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))-e-z(θsω)F(ez(θs-ρω)(s-ρ))]ds‖Xc+‖∫t+∞eA(t-s)+∫tsz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))-e-z(θsω)F(ez(θs-ρω)(s-ρ))]ds‖Xc+‖∫t-∞eA(t-s)+∫tsz(θrω)drPs[e-z(θsω)H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))-e-z(θsω)F(ez(θs-ρω)(s-ρ))]ds‖Xc}≤{‖∫t0e-η|t|+α|t-s|+∫0sz(θrω)dr[e-z(θsω)H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))]ds‖Xc+‖∫t-ρ-ρe-η|t|+α|t-s-ρ|+∫0s+ρz(θrω)dr×[e-z(θs+ρω)F(ez(θsω)u(s))-e-z(θs+ρω)F(ez(θsω)(s))]ds‖Xc}+{‖∫t+∞e-η|t|+λm(t-s)+∫0sz(θrω)dr[e-z(θsω)×H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))]ds‖Xc+‖∫t-ρ+∞e-η|t|+λm(t-s-ρ)+∫0s+ρz(θrω)dr×[e-z(θs+ρω)F(ez(θsω)u(s))-e-z(θs+ρω)F(ez(θsω)(s))]ds‖Xc}+{‖∫t-∞e-η|t|+λm+l(t-s)+∫0sz(θrω)dr[e-z(θsω)×H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))]ds‖Xc+‖∫t-ρ-∞e-η|t|+λm(t-s-ρ)+∫0s+ρz(θrω)dr×[e-z(θs+ρω)F(ez(θsω)u(s))-e-z(θs+ρω)F(ez(θsω)(s))]ds‖Xc}≤L(1η-α+1λm-η+1-λm+l-η)‖u(·)-(·)‖Cη.

由(11)式可得Qc(·;ξ,ω)是關(guān)于(ξ,ω)一致收縮的.根據(jù)壓縮映射原理,對(duì)每個(gè)ξ∈Xc,Qc(·;ξ,ω)都有唯一不動(dòng)點(diǎn)u(·;ξ,ω)∈Cη.

類似地,對(duì)所有ξ,∈Xc,有

‖u(t;ξ,ω)-u(t;,ω)‖Cη≤‖ξ-‖Xc+L(1η-α+1λm-η+1-λm+l-η)‖u(·;ξ,ω)-u(·;,ω)‖Cη.

因此

‖u(t;ξ,ω)-u(t;,ω)‖Cη≤(1-L(1η-α+1λm-η+1-λm+l-η))-1‖ξ-‖Xc.(21)

此外,因?yàn)閡(·;ξ,ω)可以是壓縮映射Qc從0開(kāi)始迭代的ω-向極限,并且將一個(gè)F-可測(cè)函數(shù)映射到一個(gè)可測(cè)函數(shù),所以u(píng)(·;ξ,ω)關(guān)于ω是F-可測(cè)的.另一方面,因?yàn)閡(·;ξ,ω)關(guān)于ξ是Lipschitz連續(xù)的,所以u(píng)(·;ξ,ω)關(guān)于(ξ,ω)是可測(cè)的.

下面證明(ii).設(shè)

hc(ξ,ω)=Puu(0;ξ,ω)+Psu(0;ξ,ω),

則有

hc(ξ,ω)=∫0+∞e-As+∫0sz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds+∫0-∞e-As+∫0sz(θrω)drPs[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds,

且hc(0,ω)=0.

運(yùn)用引理1.4和(10)式,對(duì)每個(gè)ξ,∈Xc,有

‖hc(ξ,ω)-hc(,ω)‖Xc≤(1λm-η+1-λm+l-η)×L1-L(1η-α+1λm-η+1-λm+l-η)‖ξ-‖Xc,

而且hc關(guān)于(ξ,ω)是可測(cè)的.

根據(jù)引理2.3和hc(ξ,ω)的定義,得到

Mc(ω)={ξ+hc(ξ,ω)|ξ∈Xc}.

現(xiàn)在證明Mc(ω)是隨機(jī)集,即對(duì)任意x∈Cρ,有

ωMT ExtraaA@infy∈X|x-(Pcy+hc(Pcy,ω))|(22)

是可測(cè)的.令是可分空間X的可數(shù)稠密集,則(22)式的右邊等價(jià)于

infy∈|x-(Pcy+hc(Pcy,ω))|,

這說(shuō)明hc(·,ω)是連續(xù)的.由于對(duì)任意y∈Rn,ωMT ExtraaA@hc(Pcy,ω)是可測(cè)的,所以(22)式中下確界的任意表達(dá)式都是可測(cè)的.

3 中心流形的光滑性

下面證明中心流形的光滑性,運(yùn)用歸納法和導(dǎo)數(shù)定義,首先證明方程解是一階可微的,其次證明一階導(dǎo)數(shù)存在且連續(xù),最后證明k階導(dǎo)數(shù)存在且連續(xù).

定理 3.1

假設(shè)H和F關(guān)于u是Ck的,譜間隙條件kη

證明

歸納法證明.首先,當(dāng)k=1時(shí),根據(jù)(11)式,存在一個(gè)較小的數(shù)κ>0,使得α<η-2κ,且滿足對(duì)所有0≤δ≤2κ,有

L(1(η-δ)-α+1λm-(η-δ)+1-λm+l-(η-δ))<1.

因?yàn)镃η-δCη,對(duì)任意0≤δ≤2κ,Qc(·;ξ,ω)在Cη-δ中也是一致壓縮的,所以

u(·;ξ,ω)∈Cη-δ.令

S=eAt+∫t0z(θrω)dr,

對(duì)∈Xc,有

Tv=∫t0eA(t-s)+∫tsz(θrω)drPcDu×[e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]vds+∫t+∞eA(t-s)+∫tsz(θrω)drPuDu×[e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]vds+∫t-∞eA(t-s)+∫tsz(θrω)drPsDu×[e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]vds,

其中v∈Cη-κ.顯然地,S是從X到Cη-κ的有界線性算子.類似于Qc的證明,可知T是一個(gè)由Cη-κ到自身的有界線性算子,且有

‖T‖≤L(1(η-κ)-α+1λm-(η-κ)+1-λm+l-(η-κ))<1,

這說(shuō)明id-T在Cη-κ上是可逆的.對(duì)ξ,∈Xc,令

I=∫t0eA(t-s)+∫tsz(θrω)drPc{[e-z(θsω)H(ez(θsω)u(s;ξ,ω))-e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω))-e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))(u(s;ξ,ω)-u(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(u(s-ρ;ξ,ω)-u(s-ρ;,ω))]}ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu{[e-z(θsω)H(ez(θsω)u(s;ξ,ω))-e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω))-e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))(u(s;ξ,ω)-u(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(u(s-ρ;ξ,ω)-u(s-ρ;,ω))]}ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs{[e-z(θsω)H(ez(θsω)u(s;ξ,ω))-e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω))-e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))×(u(s;ξ,ω)-u(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(u(s-ρ;ξ,ω)-u(s-ρ;,ω))]}ds.

斷言稱,當(dāng)ξ→時(shí),‖I‖Cη-κ=(‖ξ-‖Xc).根據(jù)斷言可得

u(·;ξ,ω)-u(·;,ω)-T(u(s;ξ,ω)-u(s;,ω))=S(ξ-)+I=S(ξ-)+(‖ξ-‖Xc),

等價(jià)于

u(·;ξ,ω)-u(·;,ω)=(id-T)-1S(ξ-)+(‖ξ-‖Xc),

即知u(·;ξ,ω)關(guān)于ξ是可微的.

下面證明上述斷言是成立的.令

B=[e-z(θsω)H(ez(θsω)u(s;ξ,ω))-e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω))-e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))×(u(s;ξ,ω)-u(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(u(s-ρ;ξ,ω)-u(s-ρ;,ω))].

對(duì)I的第一個(gè)積分項(xiàng),設(shè)Z1是一個(gè)足夠大的正數(shù),當(dāng)t≥Z1時(shí),令

I11=e-(η-κ)|t|-∫t0z(θrω)dr‖∫Z10eA(t-s)+∫tsz(θrω)drPcBds‖X,I12=e-(η-κ)|t|-∫t0z(θrω)dr‖∫tZ1eA(t-s)+∫tsz(θrω)drPcBds‖X;

當(dāng)t≤-Z1時(shí),令

I13=e-(η-κ)|t|-∫t0z(θrω)dr‖∫-Z10eA(t-s)+∫tsz(θrω)drPcBds‖X,I14=e-(η-κ)|t|-∫t0z(θrω)dr‖∫t-Z1eA(t-s)+∫tsz(θrω)drPcBds‖X;

當(dāng)-Z1≤t≤Z1時(shí),令

I15=e-(η-κ)|t|-∫t0z(θrω)dr‖∫Z1-Z1eA(t-s)+∫tsz(θrω)drPcBds‖X.

對(duì)于I的第二項(xiàng)積分,設(shè)Z2是一個(gè)足夠大的正常數(shù),當(dāng)t≥Z2時(shí),令

I21=e-(η-κ)|t|-∫t0z(θrω)dr‖∫t+∞eA(t-s)+∫tsz(θrω)drPuBds‖X;

當(dāng)-Z2≤t≤Z2時(shí),令

I22=e-(η-κ)|t|-∫t0z(θrω)dr‖∫Z2+∞eA(t-s)+∫tsz(θrω)drPuBds‖X,I23=e-(η-κ)|t|-∫t0z(θrω)dr‖∫tZ2eA(t-s)+∫tsz(θrω)drPuBds‖X;

當(dāng)t≤-Z2時(shí),令

I24=e-(η-κ)|t|-∫t0z(θrω)dr‖∫Z2+∞eA(t-s)+∫tsz(θrω)drPuBds‖X,I25=e-(η-κ)|t|-∫t0z(θrω)dr‖∫-Z2Z2eA(t-s)+∫tsz(θrω)drPuBds‖X,I26=e-(η-κ)|t|-∫t0z(θrω)dr‖∫t-Z2eA(t-s)+∫tsz(θrω)drPuBds‖X.

對(duì)于I的第三項(xiàng)積分,設(shè)Z3是一個(gè)足夠大的正常數(shù),當(dāng)t≥Z3時(shí),令

I31=e-(η-κ)|t|-∫t0z(θrω)dr‖∫-Z3-∞eA(t-s)+∫tsz(θrω)drPsBds‖X,I32=e-(η-κ)|t|-∫t0z(θrω)dr‖∫Z3-Z3eA(t-s)+∫tsz(θrω)drPsBds‖X,I33=e-(η-κ)|t|-∫t0z(θrω)dr‖∫tZ3eA(t-s)+∫tsz(θrω)drPsBds‖X;

當(dāng)-Z3≤t≤Z3時(shí),令

I34=e-(η-κ)|t|-∫t0z(θrω)dr‖∫-Z3-∞eA(t-s)+∫tsz(θrω)drPsBds‖X,I35=e-(η-κ)|t|-∫t0z(θrω)dr‖∫t-Z3eA(t-s)+∫tsz(θrω)drPsBds‖X;

當(dāng)t≤-Z3時(shí),令

I36=e-(η-κ)|t|-∫t0z(θrω)dr‖∫t-∞eA(t-s)+∫tsz(θrω)drPsBds‖X.

對(duì)于I11,取固定的Z1,有

I11=e-(η-κ)|t|-∫t0z(θrω)dr×‖∫Z10eA(t-s)+∫tsz(θrω)drPc{[e-z(θsω)H(ez(θsω)u(s;ξ,ω))-e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω))-e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))(u(s;ξ,ω)-u(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(u(s-ρ;ξ,ω)-u(s-ρ;,ω))]}ds‖X≤|∫Z10e-(η-κ)|t|+α|t-s|+(η-κ)|s|×{∫10|Du(e-z(θsω)H(ez(θsω)(τu(s;ξ,ω)+(1-τ)u(s;,ω))))-Du(e-z(θsω)H(ez(θsω)))(u(s;ξ,ω))|dτ}ds|×‖u(·;ξ,ω)-u(·;,ω)‖Cη-κ+|∫Z1-ρ-ρe-(η-κ)|t|+α|t-s-ρ|+(η-κ)|s|+∫ss+ρz(θrω)dr×{∫10|Du(e-z(θs+ρω)F(ez(θsω)(τu(s;ξ,ω)+(1-τ)u(s;,ω))))-Du(e-z(θs+ρω)F(ez(θsω)))(u(s;ξ,ω))|dτ}ds|×‖u(·;ξ,ω)-u(·;,ω)‖Cη-κ≤|∫Z10e-αs+(η-κ)s×{∫10|Du(e-z(θsω)H(ez(θsω)(τu(s;ξ,ω)+(1-τ)u(s;,ω))))-Du(e-z(θsω)H(ez(θsω)))(u(s;ξ,ω))|dτ}ds|×(1-L(1(η-κ)-α+1λm-(η-κ)+1-λm+l-(η-κ)))-1‖ξ-‖Xc+|∫Z1-ρ-ρe-αs-αρ+(η-κ)s+∫ss+ρz(θrω)dr×{∫10|Du(e-z(θs+ρω)F(ez(θsω)(τu(s;ξ,ω)+(1-τ)u(s;,ω))))-Du(e-z(θs+ρω)F(ez(θsω)))(u(s;ξ,ω))|dτ}ds|×(1-L(1(η-κ)-α+1λm-(η-κ)+1-λm+l-(η-κ)))-1‖ξ-‖Xc.

由[0,Z1],[-ρ,Z1-ρ]是緊閉區(qū)間,以及積分關(guān)于(s;ξ)的連續(xù)性知,存在β1>0,使得當(dāng)

‖ξ-‖Xc≤β1時(shí),有

supt≥Z1? I11≤114ζ‖ξ-‖Xc.

根據(jù)引理1.4,(2)、(3)、(10)以及(21)式,可得

I12≤2|∫tZ1e-(η-κ)|t|+α|t-s|+(η-κ)|s|e-κ|s|L1ds|‖u(·;ξ,ω)-u(·;,ω)‖Cη-2κ+2|∫t-ρZ1-ρe-(η-κ)|t|+α|t-s-ρ|+(η-κ)|s|e-κ|s|+∫ss+ρz(θrω)dre-z(θs+ρω)L2ez(θsω)ds|‖u(·;ξ,ω)-u(·;,ω)‖Cη-2κ≤2Le-κ(Z1-ρ)(η-κ-α)[1-L(1(η-2κ)-α+1λm-(η-2κ)+1-λm+l-(η-2κ))]‖ξ-‖Xc,

對(duì)任意ζ>0,存在Z1足夠大時(shí),使得

2Le-κ(Z1-ρ)(η-κ-α)[1-L(1(η-2κ)-α+1λm-(η-2κ)+1-λm+l-(η-2κ))]≤114ζ,

則有

supt≥Z1I12≤114ζ‖ξ-‖Xc.

以上幾項(xiàng)均可分成這2種情況,則當(dāng)‖ξ-‖Xc≤β1時(shí),有

supt≥Z1{I11+I12}+supt≤-Z1{I13+I14}+sup-Z1≤t≤Z1I15≤37ζ‖ξ-‖Xc.

類似地,通過(guò)選擇足夠大的Z2、Z3,以及充分小的β2>0,使得當(dāng)‖ξ-‖Xc≤β2時(shí),有

supt≥Z2I21+sup-Z2≤t≤Z2{I22+I23}+supt≤-Z2{I24+I25+I26}≤27ζ‖ξ-‖Xc,

以及

supt≥Z3{I31+I32+I33}+sup-Z3≤t≤Z3{I34+I35}+supt≤-Z3I36≤27ζ‖ξ-‖Xc.

令=min{β1,β2},使得當(dāng)‖ξ-‖Xc≤時(shí),則得到

‖I‖Cη-κ≤ζ‖ξ-‖Xc.

因此,當(dāng)ξ→時(shí),‖I‖Cη-κ=(‖ξ-‖Xc),即知u(·;ξ,ω)關(guān)于ξ是可微的,且導(dǎo)數(shù)滿足Dξu(t;ξ,ω)∈L(Xc,Cη-κ)以及

Dξu(t;ξ,ω)=eAt+∫t0z(θrω)dr+∫t0eA(t-s)+∫tsz(θrω)drPc[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]ds.

對(duì)于ξ,∈Xc,有

Dξu(t;ξ,ω)-Dξu(t;,ω)=∫t0eA(t-s)+∫tsz(θrω)drPc{[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))Dξu(s;,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×Dξu(s-ρ;,ω)]}ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu{[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))Dξu(s;,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×Dξu(s-ρ;,ω)]}ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs{[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))Dξu(s;,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×Dξu(s-ρ;,ω)]}ds=∫t0eA(t-s)+∫tsz(θrω)drPc×[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))×(Dξu(s;ξ,ω)-Dξu(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(Dξu(s-ρ;ξ,ω)-Dξu(s-ρ;,ω))]ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu×[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))×(Dξu(s;ξ,ω)-Dξu(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(Dξu(s-ρ;ξ,ω)-Dξu(s-ρ;,ω))]ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs×[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))×(Dξu(s;ξ,ω)-Dξu(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(Dξu(s-ρ;ξ,ω)-Dξu(s-ρ;,ω))]ds+,

其中

=∫t0eA(t-s)+∫tsz(θrω)drPc×{[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))-Du(e-z(θsω)H(ez(θsω)u(s;,ω)))]Dξu(s;,ω)+[Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))-Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))]×Dξu(s;,ω)}ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu×{[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))-Du(e-z(θsω)H(ez(θsω)u(s;,ω)))]Dξu(s;,ω)+[Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))-Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))]×Dξu(s;,ω)}ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs×{[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))-Du(e-z(θsω)H(ez(θsω)u(s;,ω)))]Dξu(s;,ω)+[Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))-Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))]×Dξu(s;,ω)}ds,

則有

‖Dξu(t;ξ,ω)-Dξu(t;,ω)‖L(Xc,Cη)≤‖‖L(Xc,Cη)1-L(1(η-κ)-α+1λm-(η-κ)+1-λm+l-(η-κ)).

利用上述斷言類似地證明,可得當(dāng)ξ→時(shí),

‖‖L(Xc,Cη)=(1),

則Dξu(·;ξ,ω)從Xc到L(Xc,Cη)是連續(xù)的.因此,u(·;·,ω)從Xc到Cη是C1的.

其次,由歸納假設(shè)可知,u從Xc到C(k-1)η是Ck-1的,且(k-1)階導(dǎo)數(shù)Dk-1ξu(t;ξ,ω)滿足

Dk-1ξu(t;ξ,ω)=∫t0eA(t-s)+∫tsz(θrω)drPc[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dk-1ξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dk-1ξu(s-ρ;ξ,ω)]ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dk-1ξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dk-1ξu(s-ρ;ξ,ω)]ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dk-1ξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dk-1ξu(s-ρ;ξ,ω)]ds+∫t0eA(t-s)+∫tsz(θrω)drPc[Rk-1(s;ξ,ω)+k-1(s-ρ;ξ,ω)]ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu[Rk-1(s;ξ,ω)+k-1(s-ρ;ξ,ω)]ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs[Rk-1(s;ξ,ω)+k-1(s-ρ;ξ,ω)]ds,

其中

Rk-1(s;ξ,ω)=∑k-3i=0k-2 iDk-2-iξ×Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))Di+1ξu(s;ξ,ω),k-1(s-ρ;ξ,ω)=∑k-3i=0k-2 iDk-2-iξDu(e-z(θsω)F(ez(θs-ρω)×u(s-ρ;ξ,ω)))Di+1ξu(s-ρ;ξ,ω).

最后,證明k階成立,根據(jù)歸納假設(shè)知,當(dāng)i=1,2,…,k-1時(shí),Diξu∈Ciη成立.由于H、F是Ck的,則

Rk-1(s;ξ,ω),k-1(s-ρ;ξ,ω)∈Lk-1(Xc,C(k-1)η)

且關(guān)于ξ是C1的,其中Lk-1(Xc,C(k-1)η)是從Xc到C(k-1)η的所有(k-1)階有界線性算子的空間.又因?yàn)樽V間隙條件成立,即對(duì)任意1≤i≤k,α

L(1iη-α+1λm-iη+1-λm+l-iη)<1.

利用證明k=1時(shí)的方法,可知Dk-1ξu(·;·,ω)從Xc到Lk(Xc,Ckη)是C1的.

參考文獻(xiàn)

[1] HADAMARD J. Sur literation et les solutions asymptotiques des equations differentielles[J]. Bulletin de la Société Mathématique de France,1901,29:224-228.

[2] LYAPUNOV A. Problème géneral de la stabilité du mouvement[M]. Ewing: Princeton University Press,1947.

[3] PERRON O. ber stabilitt und asymptotisches verhalten der integrale von differentialgleichungs systemen[J]. Mathematische Zeitschrift,1929,29(1):129-160.

[4] CARR J. Application of centre manifold theory[M]. Berlin: Springer-Verlag,1981.

[5] BATES P, LU K, ZENG C. Persistence of overflowing manifolds for semiflow[J]. Communications on Pure and Applied Mathematics,1999,52(8):983-1046.

[6] BATES P, LU K, ZENG C. Existence and persistence of invariant manifolds for semiflows in Banach space[J]. Memoirs of the American Mathematical Society,1998,135(645):1-132.

[7] BATES P, LU K, ZENG C. Invariant foliations near normally hyperbolic invariant manifolds for semiflows[J]. Trans Amer Math Soc,2000,352:4641-4676.

[8] BATES P, LU K, ZENG C. Approximately invariant manifolds and global dynamics of spike states[J]. Inventiones Mathematicae,2008,174(2):355-433.

[9] CHUESHOV I, GIRYA T. Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems[J]. Sbornik: Mathematics,1995,186(1):29-45.

[10] DA PRATO G, DEBUSSCHE A. Construction of stochastic inertial manifolds using backward integration[J]. Stochastics and Stochastic Reports,1996,59(3/4):305-324.

[11] HENRY D. Geometric theory of semilinear parabolic equations[M]. Berlin: Springer-Verlag,1981.

[12] VANDERBAUWHEDE A, VAN GILS S A. Center manifolds and contractions on a scale of Banach spaces[J]. Journal of Functional Analysis,1987,72(2):209-224.

[13] CHOW S N, LU K N. Ck centre unstable manifolds[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics,1988,108(3/4):303-320.

[14] CHOW S N, LU K N. Invariant manifolds for flows in Banach spaces[J]. Journal of Differential Equations,1988,74(2):285-317.

[15] DUAN J Q, LU K N, SCHMALFUSS B. Invariant manifolds for stochastic partial differential equations[J]. The Annals of Probability,2003,31(4):2109-2135.

[16] DUAN J Q, LU K N, SCHMALFUSS B. Smooth stable and unstable manifolds for stochastic evolutionary equations[J]. Journal of Dynamics and Differential Equations,2004,16(4):949-972.

[17] BENSOUSSAN A, FLANDOLI F. Stochastic inertial manifold[J]. Stochastics and Stochastic Reports,1995,53(1/2):13-39.

[18] CARABALLO T, CHUESHOV I, LANGA J A. Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations[J]. Nonlinearity,2005,18(2):747-767.

[19] CARABALLO T, DUANY J, LU K N, et al. Invariant manifolds for random and stochastic partial differential equations[J]. Advanced Nonlinear Studies,2010,10(1):23-52.

[20] LU K N, SCHMALFU? B. Invariant manifolds for stochastic wave equations[J]. Journal of Differential Equations,2007,236(2):460-492.

[21] LU K N, SCHMALFU B. Invariant foliations for stochastic partial differential equations[J]. Stochastics and Dynamics,2008,8(3):505-518.

[22] MOHAMMED S E A, SCHEUTZOW M K R. The stable manifold theorem for stochastic differential equations[J]. The Annals of Probability,1999,27(2):615-652.

[23] MOHAMMED S E A, ZHANG T S, ZHAO H Z. The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations[J]. Memoirs of the American Mathematical Society,2008,196(917):1-47.

[24] SCHMALFUSS B. A random fixed point theorem and the random graph transformation[J]. Journal of Mathematical Analysis and Applications,1998,225(1):91-113.

[25] SANTAMARA E. Distance of attractors of evolutionary equations[D]. Madrid: Universidad Complutense de Madrid,2014.

[26] VARCHON N. Domain perturbation and invariant manifolds[J]. Journal of Evolution Equations,2012,12(3):547-569.

[27] LI D S, SHI L. Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-Landau equations with time-varying delays in the delay[J]. Journal of Difference Equations and Applications,2018,24(6):872-897.

[28] LI D S, LU K N, WANG B X, et al. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains[J]. Discrete & Continuous Dynamical Systems Series-A,2019,39(7):3717-3747.

[29] LI D S, SHI L, ZHAO J. Regular random attractors for non-autonomous stochastic evolution equations with time-varying delays on thin domains[J]. Journal of Mathematical Physics,2020,61(11):112702.

[30] SHI L, WANG R H, LU K N, et al. Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains[J]. Journal of Differential Equations,2019,267(7):4373-4409.

[31] SHI L, LI X L. Limiting behavior of non-autonomous stochastic reaction-diffusion equations on unbounded thin domains[J]. Journal of Mathematical Physics,2019,60(8):082702.

[32] SHI L. Smooth convergence of random center manifolds for SPDEs in varying phase spaces[J]. Journal of Differential Equations,2020,269(3):1963-2011.

[33] ARNOLD L. Random dynamical system[M]. Berlin: Springer-Verlag,1998.

[34] ARRIETA J, SANTAMARA E. Estimates on the distance of inertial manifolds[J]. Discrete & Continuous Dynamical Systems Series-A,2014,34(10):3921-3944.

[35] DA PRATO G, ZABCZYK J. Stochastic equations in infinite dimension[M]. Berlin: Springer-Verlag,1992.

The Existence and Smoothness of Random Center Manifolds for a Class of Delay Stochastic Evolutionary Equations with Multiplicative Noise

YANG Juan1,2, GONG Jiaxin1,2, WU Longyu1,2, SHU Ji1,2

(1. School of Mathematical Science, Sichuan Normal University, Chengdu 610066, Sichuan;

2. V.C. & V.R. Key Lab, Sichuan Normal University, Chengdu 610066, Sichuan)

Abstract:We study the existence and smoothness of random center manifolds for a class of delay stochastic evolutionary equations with multiplicative noise. Due to the effect of delay, we first transform the nonlinear terms with delay and deal with the coefficients generated by the effect of delay, thus the existence of center manifolds is obtained. Then, we use the Lyapunov-Perron method to investigate the smoothness of center manifolds for the equations with delay.

Keywords:delay stochastic evolutionary equations; random center manifolds; multiplicative noise; existence; smoothness2020 MSC:37L25; 60H15

(編輯 余 毅)

Invariant foliations of overflowing manifolds for semiflows in Banach space[J]. Bifurcation Theory and Its Numerical Analysis,1999:1-12.

基金項(xiàng)目:國(guó)家自然科學(xué)基金(12326414)和四川省科技廳應(yīng)用基礎(chǔ)計(jì)劃項(xiàng)目(2016JY0204)

*通信作者簡(jiǎn)介:舒 級(jí)(1976—),男,教授,博士,主要從事隨機(jī)動(dòng)力系統(tǒng)和偏微分方程的研究,E-mail:shuji2008@hotmail.com

引用格式:楊娟,龔佳鑫,吳隆鈺,等. 一類具有乘性噪聲的時(shí)滯隨機(jī)演化方程的隨機(jī)中心流形的存在性與光滑性[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,47(5):696-707.

主站蜘蛛池模板: 国产精品白浆无码流出在线看| 亚洲小视频网站| 特级毛片免费视频| 国产一级毛片在线| 国产精品网址在线观看你懂的| 国产屁屁影院| 五月婷婷亚洲综合| 日韩av在线直播| 丁香五月亚洲综合在线| 欧美区在线播放| 久久人妻系列无码一区| 久久精品aⅴ无码中文字幕| 亚洲国产亚综合在线区| 亚洲综合极品香蕉久久网| 无码精品国产VA在线观看DVD| 青草91视频免费观看| 熟妇丰满人妻av无码区| 成人日韩视频| 99久久精品免费看国产免费软件 | 久久精品欧美一区二区| 亚洲成人网在线播放| 亚洲av无码牛牛影视在线二区| 三级视频中文字幕| 亚洲最大看欧美片网站地址| 999国产精品| 亚洲中文久久精品无玛| 欧美成一级| 国产日韩久久久久无码精品| 激情乱人伦| 亚洲第一国产综合| 亚洲视频a| 无码精油按摩潮喷在线播放| 国产99在线观看| 在线观看免费AV网| 亚洲热线99精品视频| 丁香婷婷激情综合激情| 国产内射一区亚洲| 午夜成人在线视频| 欧美中日韩在线| 在线观看91香蕉国产免费| 亚洲一区网站| 在线观看91香蕉国产免费| 亚洲人成成无码网WWW| 亚洲美女一区二区三区| 无码福利日韩神码福利片| 国产精品流白浆在线观看| 免费毛片全部不收费的| 亚洲精品国产自在现线最新| 精品1区2区3区| 欧美高清国产| 久久性妇女精品免费| 免费日韩在线视频| 免费在线成人网| 重口调教一区二区视频| 欧日韩在线不卡视频| 日本手机在线视频| 在线国产91| 无码专区在线观看| 91成人在线免费视频| 中文无码毛片又爽又刺激| 国产91丝袜在线播放动漫 | 国产成人永久免费视频| 国产夜色视频| 精品视频第一页| 九色最新网址| 国产白丝av| 亚洲视频四区| 日本人真淫视频一区二区三区| 日韩不卡免费视频| 操国产美女| 亚洲一区波多野结衣二区三区| 成人免费视频一区| 日韩在线观看网站| 一本一本大道香蕉久在线播放| 992tv国产人成在线观看| 国产美女丝袜高潮| 伊人久热这里只有精品视频99| 久久先锋资源| 草草影院国产第一页| 香蕉伊思人视频| 国产视频一区二区在线观看| 91精品国产91欠久久久久|