999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

棉花抗黃萎病生理生化機制研究進展

2024-06-08 00:00:00張燁婧陳捷胤李冉戴小楓
植物保護 2024年2期
關鍵詞:植物

棉花是我國的重要經濟作物,是關系我國國計民生的支柱性產業,是影響世界大宗農產品及下游紡織品貿易格局的戰略性產業。由大麗輪枝菌Verticillium"dahliae引起的棉花黃萎病是棉花生產上的頭號病害,嚴重影響棉花產量與質量。黃萎病菌侵染過程中會激發棉花植株產生一系列防御反應,如組織結構抗性變化、植物激素信號通路響應及抗病相關基因表達等。目前,已從棉花中挖掘出大量響應黃萎病菌的基因,闡明了這些抗性相關基因通過調控生理生化反應而發揮抗病功能的機制。本文從活性氧、防御酶、次生代謝產物和植物激素4個方面綜述了棉花抗性相關生理生化作用機制,總結了棉花抗性相關生理生化反應的調控網絡,為深入了解棉花抗黃萎病機制、選育抗病品種提供理論依據。

關鍵詞

棉花;"黃萎病;"抗病機制;"生理生化反應

中圖分類號:

S"435.621

文獻標識碼:"A

DOI:"10.16688/j.zwbh.2023097

Recent"advances"in"physiological"and"biochemical"mechanisms"of"cotton"resistance"to"Verticillium"wilt

ZHANG"Yejing1,"CHEN"Jieyin1,2,"LI"Ran1,2*,"DAI"Xiaofeng1,2*

(1."Institute"of"Plant"Protection,"Chinese"Academy"of"Agricultural"Sciences,"State"Key"Laboratory"for"Biology"of"Plant"

Diseases"and"Insect"Pests,"Beijing"100193,"China;"2."Western"Agricultural"Research"Center,"Chinese"Academy"

of"Agricultural"Sciences,"Changji"831100,"China)

Abstract

Cotton"is"the"most"important"cash"crop"in"China,"playing"a"vital"role"not"only"in"national"revenue"and"people’s"income"but"also"in"the"healthy"development"of"the"national"textile"industry"and"textile"exports."Verticillium"wilt"caused"by"Verticillium"dahliae"is"the"most"notorious"disease"in"cotton"production,"which"significantly"reduces"the"yield"and"quality"of"cotton."It"is"widely"acknowledged"that"V.dahliae"infections"could"activate"a"series"of"defense"responses"in"cotton"plant,"including"structural"resistance"alterations,"plant"hormone"signal"transduction,"and"the"induction"of"defenserelated"genes."Currently,"many"genes"involved"in"the"cotton"Verticillium"wilt"resistance"have"been"identified,"and"their"individual"mechanisms"of"physiological"and"biochemical"regulation"have"been"demonstrated."In"this"review,"we"summarized"the"characteristics"and"mechanisms"of"physiological"and"biochemical"resistance"to"cotton"Verticillium"wilt,"including"reactive"oxygen"species,"defense"enzymes,"secondary"metabolites,"and"plant"hormones."Furthermore,"we"conceptualized"the"regulatory"network"governing"physiological"and"biochemical"resistance"to"cotton"Verticillium"wilt,"which"will"provide"a"theoretical"basis"for"further"understanding"the"mechanisms"of"Verticillium"wilt"resistance"and"for"improving"resistance"breeding"in"cotton.

Key"words

cotton;"Verticillium"wilt;"resistance"mechanism;"physiological"and"biochemical"response

棉花是我國的重要經濟作物,是關系我國國計民生的支柱性產業、影響世界大宗農產品及下游紡織品貿易格局的戰略性產業。棉花病蟲害是棉花生產的關鍵制約因素,一般年份棉花病蟲害造成的產量損失達15%~20%,嚴重年份可達30%~50%[1]。棉花病害種類繁多,全世界約有120種,而我國約有40種。其中由大麗輪枝菌Verticillium"dahliae"Kleb.引起的黃萎病(Verticillium"wilt)是棉花生產上的頭號病害,嚴重影響棉花的產量和質量,對棉花生產及其延伸產業造成嚴重損失[2]。黃萎病防治已成為棉花安全生產的重大挑戰與科技難題。然而,由于大麗輪枝菌定殖維管束,農藥通常無法到達這一組織導致防效不佳;休眠結構—微菌核長期在土壤中存活(可存活14年),限制了輪作、套作等防控措施效果;生物防治、土壤熏蒸消毒等技術成本高,難以應用于規模化種植作物[3]。因此,抗性遺傳改良和抗性利用成為棉花黃萎病防治最主要的途徑,棉花抗黃萎病資源鑒定、新材料創制、抗黃萎病新品種選育與推廣應用,一直是棉花黃萎病綜合防治的主要任務,并取得了系列重要進展。如2007年,我國選育出首個通過國審的抗黃萎病、對枯萎病免疫和高抗棉鈴蟲的棉花新品種—‘中植棉2號’[4],至今仍是棉花品種審定區域生產試驗的對照品種,其推廣應用和衍生的抗性品種為有效控制棉花黃萎病提供了重要支撐。隨著現代分子生物技術的發展,科研工作者開始致力于棉花抗性遺傳模式解析,抗病基因挖掘和抗性遺傳改良工作,基本證實了棉花對黃萎病的抗性為多基因抗性遺傳模式[56],鑒定出一批棉花抗黃萎病相關基因并揭示了抗性機制[78],并嘗試應用于抗黃萎病轉基因遺傳改良[9]。可以預期,棉花抗性基因挖掘與抗性遺傳改良將在不遠的將來實現應用,并在棉花黃萎病防控中發揮重要作用。

針對棉花抗黃萎病性遺傳改良工作,已鑒定出了一批棉花抗黃萎病相關基因,如棉花細胞壁相關激酶(wallassociated"kinase)GhWAK7A[10],富含半胱氨酸重復蛋白(cysrich"repeat"protein)CRR及幾丁質酶(chitinase)Chi28[11]等,并解析了茉莉酸信號傳導,植物抗毒素合成等多個棉花抗黃萎病分子機制,這些重要的研究結果已被系統地梳理和闡述[78]。然而,這些抗病基因如何發揮抗黃萎病功能,即如何通過“物化形式”(如植物抗毒素、活性氧等)表現抗性及其抗黃萎病作用機制尚未得到系統闡述。為此,本文從棉花黃萎病抗性相關生理生化特征角度,總結棉花抗黃萎病基因如何調控活性氧、防御酶、次生代謝產物、激素等生理生化變化,實現棉花對黃萎病的抗性,為全面理解棉花抗黃萎病機制(抗黃萎病遺傳模式—抗黃萎病基因鑒定—抗黃萎病分子機制—抗黃萎病生理生化反應)提供理論依據,最終為棉花抗性遺傳改良提供理論和技術支撐。

1"棉花黃萎病

1.1"棉花黃萎病及其癥狀

1914年,Carpenter在美國首先發現了棉花黃萎病,此后該病害很快向世界各主要產棉國(澳大利亞、印度、烏茲別克斯坦等)傳播,成為危害棉花最嚴重的病害。1935年我國首次在由美國引進的‘斯字棉4B’棉種上發現了黃萎病菌,當時在河南安陽、河北正定、山東高密、山西運城/臨汾、陜西涇陽/三原等地種植的棉花上均有黃萎病發生,隨后快速蔓延至幾乎所有主產棉省,造成嚴重危害[12]。如20世紀90年代,黃萎病連續暴發,在我國黃河流域、長江流域和西北內陸棉區大面積流行,1993年流行面積高達267萬hm2[13]。

棉花黃萎病一般在蕾期或花鈴期發生危害,根據葉片的癥狀特征可以分為黃色斑駁型、落葉型、急性萎蔫型等。黃色斑駁型最為常見,發病初期病株葉片最先表現癥狀并自下而上擴展,病葉邊緣失水變軟,萎蔫下垂;稍嚴重時病葉邊緣向下卷曲,葉脈間產生淡黃色不規則的病斑,而靠近主脈處葉肉仍然保持綠色,呈現“褐色掌狀斑駁”或俗稱“西瓜皮狀斑駁”;落葉型發病初期與黃色斑駁型癥狀類似,葉脈間葉肉褪綠,但發病速度較黃色斑駁型快,3~5"d內整株葉片失水變成黃白色,葉片變薄、變軟,很容易脫落;急性萎蔫型主要是在棉花鈴期,盛夏久旱后遇暴雨或大水漫灌時,植株葉片呈水燙狀,繼而突然萎垂,隨即脫落成光稈,整株枯死[12,14]。土壤中的微菌核,遇到適宜的溫度、濕度,特別是在寄主植物根系分泌物的誘導下即可萌發,菌絲在有限距離內(0~300"μm)向植物根系靠攏并接觸根系,進而從根毛或傷口處侵入根系;隨后穿過內皮層,進入維管束組織并產生分生孢子,分生孢子萌發產生菌絲,并在導管內大量擴展或者侵染與維管束相鄰的薄壁細胞并向上擴展[14]。一般認為,從大麗輪枝菌菌絲接觸根系組織開始,24"h即可侵入皮層,2~4"d即可進入導管并定殖,5~7"d在導管內完成擴展,10"d即可擴展到地上組織[1516]。

1.2"黃萎病病原菌及其致病機制

棉花黃萎病的病原菌為大麗輪枝菌Verticillium"dahliae"Kleb.和黃萎輪枝孢Verticillium"alboatrum"Reinke"amp;"Berthold,屬于真菌界Fungi子囊菌門Ascomycota糞殼菌綱Sordariomycetes肉座菌亞綱Hypocreomycetidae小叢殼目Glomerellales輪枝菌屬Verticillium[17]。大麗輪枝菌的典型特征包括分生孢子梗為輪枝狀,可形成微菌核、黑化菌絲等休眠結構,無厚垣孢子[1819];定殖于營養貧乏的維管束組織中[14];寄主范圍廣(600多種寄主植物)且只侵染雙子葉植物[12];一般認為是嚴格的無性繁殖真菌,在土壤中能存活14年以上,能耐80℃高溫和-30℃低溫[2023];能分泌“毒素”(效應子、細胞壁降解酶、糖蛋白、高分子量脂多糖蛋白復合體等)引起寄主植物葉片萎蔫黃化[24];存在無性系、營養親和群、生理小種、生理型等多元化的種群結構[18]。

大麗輪枝菌的致病機制極其復雜,截至目前已鑒定出上百個與大麗輪枝菌重要生物學特性相關的功能基因,并發現這些功能基因與致病性密切相關。如參與侵染結構(附著枝、侵染釘等)發育、分泌結構形成、維管束適應、“毒素”致萎、種群分化、微菌核/黑色素形成等的相關基因,均不同程度在大麗輪枝菌侵染寄主中發揮作用[25]。其中“毒素”因參與突破寄主物理屏障、操控寄主免疫反應等過程被廣泛研究和報道,鑒定出了一批“毒素”致萎組分并揭示為害分子機制[26]。如糖苷水解酶VdEG1通過降解植物細胞壁組分并同時操控寄主免疫反應參與大麗輪枝菌致病過程[27];小分子量富含半胱氨酸蛋白VdSCP41直接與植物鈣調素結合蛋白家族CBP60g和SARD1結合,抑制植物免疫相關基因ICS1(isochorismate"synthase"1)和FMO1(flavincontaining"monooxygenases)表達[28]。此外,許多轉錄因子也被證明具有致病功能,如大麗輪枝菌VdFTF1通過調控植物細胞壁降解酶,在病原侵染和維管束定殖過程中發揮作用[29];VdSge1影響大麗輪枝菌的徑向生長和分生孢子的形成,正調控下游效應蛋白的表達,影響大麗輪枝菌對寄主的致病力[30]。

1.3"棉花抗黃萎病機制

大麗輪枝菌的侵染會激發棉花抗性相關基因的表達,從而激活一系列物理、化學和分子反應,進而提高寄主抗病性以阻止病原菌的侵染[78]。目前,在棉花對大麗輪枝菌的抗性研究方面已鑒定出許多棉花抗黃萎病基因,這些基因編碼蛋白激酶、病程相關蛋白(pathogenesisrelated"protein,"PR)等,增強了棉花的組織結構抗性和生理生化抗性。組織結構抗性表現為在病原菌侵染部位會加快合成木質素和萜類化合物,一定程度上阻止病原菌的侵染和擴展[31],如漆酶GhLac1通過增加木質化增強棉花對大麗輪枝菌的抗性[32]。生理生化抗性包括合成植物抗毒素、蛋白酶等生化物質。植物抗毒素包括單寧、棉酚等多種化合物,如肉桂醇脫氫酶GbCAD1通過積累棉酚正向調節棉花對大麗輪枝菌的抗性反應[33];植物體內的蛋白酶可以調節抗氧化劑合成、抗分解、促進細胞壁合成等生物學過程而加強植物抗性,如類萌發素蛋白GhABP19通過調控超氧化物歧化酶(superoxide"dismutase,"SOD)活性影響過氧化氫(hydrogen"peroxide,"H2O2)產生,調控棉花對大麗輪枝菌的抗性反應[34]。此外還有一系列病原菌誘發的抗性反應,如表達防衛基因、誘導系統獲得性抗性、積累活性氧及激活激素信號途徑等[35]。

2"棉花抗黃萎病基因及其生理生化調控

通常認為,植物通過兩方面來抵抗病原微生物的侵染,一方面是機械障礙,阻止病原菌的擴展,稱為組織結構抗性;另一方面是植物體內發生一系列生理生化變化,對病原物產生毒害作用或者調節自身的生理生化動態平衡,從而抑制病原微生物的侵染,稱為生理生化抗性[36]。無論何種抗性,其本質是病原物促發寄主植物的抗性相關基因表達,并最終“物化”為生理生化變化來實現對病原菌的抗性。因此,植物通過調控抗性相關基因表達來產生各種各樣與植物抗病性有關的生理生化物質[37]。植物與抗病性相關的生理生化物質可以概括為四類[3850]:第1類與活性氧相關,如H2O2、一氧化氮(nitric"oxide,"NO)、琥珀酸脫氫酶(succinate"dehydrogenase,"SDH)等;第2類是植物防御酶,如SOD、過氧化物酶(peroxidase,"POD)、過氧化氫酶(catalase,"CAT)、多酚氧化酶(polyphenol"oxidase,"PPO)、丙二醛(malondialdehyde,"MDA)等;第3類是次生代謝產物,如棉酚(gossypol)、單寧(tannins)、木質素(lignin)等;第4類是植物激素,如水楊酸(salicylic"acid,"SA)、茉莉酸(jasmonic"acid,"JA)、乙烯(ethylene,"ET)等(表1)。

如上所述,棉花受到大麗輪枝菌侵染后,會誘導一系列防衛基因,包括激酶、轉錄因子、合成酶類等基因的表達,進而促發一系列防御反應、引起抗性相關的生理生化物質的種類和含量發生改變從而發揮抗性作用,實現寄主棉花對病原菌的抗性。

2.1"活性氧

活性氧(ROS)是細胞代謝的天然副產物[51]。ROS介導的防御主要表現為氧化爆發,ROS在細胞壁穿透部位、質膜、線粒體、葉綠體等感染病原菌部位周圍聚集,在感染后期傾向于參與細胞程序性死亡,限制病原菌擴展;同時通過引起H2O2、NO、SDH等生理生化特征的變化來發揮抗病作用[39,"5253]。

研究發現,多數抗黃萎病功能基因在植物中過表達均可促進ROS爆發而發揮抗病功能,如過表達NBSLRR類基因GbaNA1、呼吸爆發氧化酶同系物基因GbRboh5/18,均可顯著促進ROS產生,增強植株對大麗輪枝菌的抗性[5455]。

2.1.1"過氧化氫

植物遭受病原菌侵害時,可以利用過氧化氫(H2O2)作為信號分子參與植物抗逆反應。參與植物抗病反應的H2O2主要來源于質外體中的過氧化物酶、質膜上的NADPH氧化酶和光呼吸途徑中的乙醇酸氧化酶等參與的催化反應[38]。H2O2作為過氧化物可以直接殺死病原菌或者抑制孢子萌發;提高植株抵抗病原菌分泌的細胞壁降解酶的能力,誘發植保素和抗菌蛋白的產生,以及誘發過敏反應有關的自發性細胞死亡,系統獲得性抗性等[56]。

H2O2是植物活性氧抗病信號分子,棉花感黃萎病品種‘XH7’在接種大麗輪枝菌6"h后,H2O2積累水平迅速增高,而抗黃萎病品種‘XH21’則維持H2O2動態平衡發揮抗病作用[57]。在大麗輪枝菌毒素與擬南芥Arabidopsis"thaliana互作反應中,H2O2作為上游信號分子通過調節微管細胞骨架變化激活防御相關基因表達[58]。質外體是植物的第一道防線和釋放ROS的主要位點,棉花質外體硫氧還蛋白基因GbNRX1在大麗輪枝菌誘導下表達水平增加,清除由病原菌侵染引起的H2O2積累,避免自身被過量ROS損害。沉默GbNRX1導致質外體ROS大面積爆發,H2O2出現動態紊亂而造成棉花抗黃萎病能力下降[59]。將稻黃單胞菌Xanthomonas"oryzae的Harpin蛋白和來自天蠶蛾的天蠶素A蜂毒肽嵌合蛋白結合形成了一種抗菌蛋白Hcm1,轉Hcm1基因棉花通過增加H2O2含量和促進激活病程相關蛋白基因表達增強了轉基因棉花對大麗輪枝菌的抗性[60]。

2.1.2"一氧化氮

一氧化氮(NO)是植物抗病反應中重要的脂溶性自由基信號分子,通過多種方式發揮抗病調節作用,包括轉錄水平調控基因表達和轉錄后水平調控蛋白質修飾[61]。此外,NO還可以和植物激素、ROS等信號分子相互作用來調節植物抗性。硝酸還原酶(nitrate"reductase,"NR)催化的亞硝酸鹽還原過程被認為是植物抗病防御反應中NO的主要來源之一,如在大麗輪枝菌毒素與擬南芥互作過程中,擬南芥產生的NO主要來源于NR途徑[6264]。

在大麗輪枝菌毒素誘導下,NO與H2O2協同作用參與擬南芥的防御反應,NO作為上游信號分子觸發皮層微管解聚,激活病程相關蛋白基因PR1表達,且NO促發的防御反應不依賴于H2O2誘導的谷胱甘肽S轉移酶(glutathione"Stransferase,GST)基因表達而發揮抗病作用[39,"65]。沉默呼吸爆發氧化酶同源蛋白(respiratory"burst"oxidase"homologue,"Rboh)基因GhRbohD可抑制ROS生成,降低NO相關基因GhNOA1(nitric"oxide"associated)表達水平,降低NO含量,降低棉花對大麗輪枝菌的抗性[66]。抑制硬質酰基載體蛋白去飽和酶基因GhSSI2的表達顯著提高棉花內源NO含量,激活SA防御反應,增強棉花對大麗輪枝菌的抗性[67]。

2.1.3"琥珀酸脫氫酶

琥珀酸脫氫酶(SDH)是線粒體的一種標志酶[68],是植物系統中線粒體ROS(mitochondrial"reactive"oxygen"species,"mtROS)產生的重要來源[69]。植物中mtROS可以影響氧化還原信號傳導過程、植物激素信號通路、細胞程序性死亡和對病原體的防御機制等[40]。擬南芥SDH突變體dsr1和sdhaf2可以降低SDH活性,通過破壞ROS誘導的應激水楊酸信號通路,表現出對特定病原細菌和真菌更強的感病性[70]。植物中的SDH參與水楊酸應激信號傳導,低濃度的水楊酸可增加SDH活性并誘導線粒體H2O2產生[71]。

棉花根中的琥珀酸脫氫酶基因GhSDH11在大麗輪枝菌和水楊酸誘導下顯著上調表達;沉默GhSDH11可以減少棉花中水楊酸、富馬酸、NO和H2O2含量,降低棉花對大麗輪枝菌的抗性;而過表達GhSDH11則增強了擬南芥對大麗輪枝菌的抗性[53]。

2.2"防御酶類

病原菌侵染植物會促發植物體內多種防御酶類的表達,植物體內防御酶,如超氧化物歧化酶(SOD)、過氧化物酶(POD)、過氧化氫酶(CAT)、多酚氧化酶(PPO)等的活性水平是衡量植物體內防衛反應的重要指標,與植物抗病性密切相關[72]。

2.2.1"超氧化物歧化酶

超氧化物歧化酶(SOD)是存在于植物體內的一類具有清除自由基的蛋白酶[73]。SOD活性通常與植物的抗/感病性相關,可作為重要的抗性生理指標[41]。普遍認為在大麗輪枝菌誘導下棉花抗黃萎病品種的SOD活性高于感黃萎病品種,如用灌根法接種病原菌,感病品種‘冀棉11’在接菌24"h后葉片中SOD活性達到峰值(gt;160"U/mg),而耐病品種‘中棉所41’在接菌36"h后SOD活性達到峰值(gt;100"U/mg)[74];采用大麗輪枝菌毒素處理棉株后,葉片因損傷而引起SOD活性呈下降趨勢[75];傷根蘸菌處理棉花10"d后,葉片中的SOD活性同樣顯著下降[76]。以抗黃萎病海島棉品種‘7124’和感黃萎病陸地棉品種‘Hm40’為材料的嫁接試驗表明抗病性越強棉苗葉片中SOD活性越高[77]。

研究表明,棉花類萌發素蛋白(germinlike"proteins,"GLPs)基因GhABP19編碼蛋白具有SOD活性,受大麗輪枝菌和JA誘導后GhABP19表達上調,體外重組蛋白GhABP19可抑制大麗輪枝菌的生長;GhABP19基因沉默植株葉片中H2O2含量減少,內源SOD活性降低,JA信號通路受到抑制,接種大麗輪枝菌后18"d,與對照植株相比,沉默植株出現明顯的葉片黃化、萎蔫和維管束褐化等黃萎病癥狀;過表達GhABP19激活JA信號通路,增強擬南芥對大麗輪枝菌的抗性[34]。類似地,類萌發素蛋白GhGLP2也具有SOD活性,可抑制大麗輪枝菌孢子萌發;GhGLP2基因沉默植株接種大麗輪枝菌后21"d比對照植株表現出更為嚴重的葉片萎蔫、維管束褐化等黃萎病癥狀;過表達GhGLP2觸發JA/ET通路多個標記基因,如防衛基因PDF1.2、脂氧合酶(lipoxygenase,LOX)基因LOX2、植物營養貯存蛋白質(vegetative"storage"proteins,"VSP)基因VSP1表達,觸發氧化應激相關基因RbohD和RbohF表達,抑制大麗輪枝菌侵染并增強抗氧化脅迫能力[78]。

2.2.2"過氧化物酶

過氧化物酶(POD)參與植物體內許多重要的生理生化過程,如活性氧代謝、木質素合成以及細胞對病原菌的防御反應[79]。植物應對病原菌侵入時通過細胞壁的高度木質化建立物理屏障,限制病原菌的侵染與擴展,而POD被證明是促進植物細胞壁木質化的關鍵酶[42]。研究發現大麗輪枝菌侵染棉花后引起葉片中POD活性升高[7476],推測POD通過促進細胞壁中木質素合成而影響棉花的抗性[80]。利用陸地棉和海島棉染色體片段置換系群體進行研究發現,棉花抗黃萎病與POD活性呈正相關[81]。在大麗輪枝菌誘導下,感病品種POD的激活是通過合成新蛋白引起的,而抗病品種POD的激活是通過合成新蛋白和激活已有的POD[82]。

抗/感黃萎病棉花品種蛋白質組比較分析結果顯示,過氧化物酶是抗病品種富集最顯著的氧化還原酶。與感黃萎病品種‘XH7’相比,抗黃萎病棉花品種‘XH21’在接種大麗輪枝菌后,抗壞血酸過氧化物酶(ascorbate"peroxidase,"APX)迅速高水平積累、抗壞血酸(ascorbate"acid,"AsA)含量持續升高;沉默GbAPX1/12顯著降低棉花對大麗輪枝菌的抗性[57]。沉默細胞壁相關激酶(wallassociated"kinases,"WAKs)基因GhWAKs可增加大麗輪枝菌在棉花莖中的擴展,顯著降低木質素、H2O2和NO的積累,但提高了POD活性[83]。從鈴鐺刺Halimodendron"halodendron和胡楊Populus"euphratica中分離到兩個轉錄因子:乙烯響應因子(ethylene"responsive"factor,"ERF)HhERF2和脫水反應元件結合蛋白(dehydrationresponsive"elementbinding"protein,"DREB)PeDREB2a,通過花粉管通道法獲得轉基因棉花,發現接種大麗輪枝菌后轉基因棉花體內POD等酚類代謝相關酶的活性顯著增加,植株對大麗輪枝菌的抵抗能力增強[84]。

2.2.3"過氧化氫酶

過氧化氫酶(CAT)在植株各種抗逆反應中通過清除作用使ROS保持一定的濃度范圍,維持ROS的動態平衡,已在許多植物,包括擬南芥[85]、水稻[86]、黃瓜[87]等中被研究。擬南芥中3個過氧化氫酶中CAT2在植物葉片中活性較高,約占總酶活的80%左右,負責清除大部分H2O[43]2。在cat2突變體中,H2O2積累引發葉片自發性細胞死亡,激活SA、JA等免疫防御途徑[88]。

不同抗性棉花品種接種黃萎病菌后,葉片中CAT活性顯著升高,且抗病品種的酶活性普遍高于感病品種[76],如接種大麗輪枝菌4"d后,抗病品種‘中棉所41號’‘魯棉研21號’的CAT活性開始顯著升高且在第7"天達到峰值[gt;2"H2O2/(mg·min)],而感病品種‘蘇棉9號’的CAT活性在第4"天已達到最大值[lt;1"H2O2/(mg·min)][89];以抗黃萎病海島棉品種‘7124’和感黃萎病陸地棉品種‘Hm40’為材料的嫁接試驗表明抗病性越強CAT活性升高越快且活性越高[77]。棉花中的類甜蛋白(thaumatinlike"proteins,"TLPs)基因GhTLP19在大麗輪枝菌誘導下上調表達,沉默GhTLP19后棉花葉片CAT活性降低;接種大麗輪枝菌后,與對照植株相比,GhTLP19基因沉默植株莖部菌絲積累量明顯增加[90]。從陸地棉和海島棉基因組中系統鑒定了CAT基因家族,發現在大麗輪枝菌誘導下陸地棉和海島棉基因組中的CAT基因家族表達上調,并推測CAT基因家族可能通過調節ROS代謝發揮抗病作用[91]。

2.2.4"多酚氧化酶

植物在抵御病原微生物侵染過程中,多酚氧化酶(PPO)通過催化形成木質素及醌類化合物,構成保護性屏蔽而使細胞免受病原菌的侵害,也可以通過形成醌類物質直接發揮抗病作用。PPO參與多種功能過程包括植物防御、活性氧調節和苯丙烷途徑等,從而增強植物的抗性[44]。PPO在植物抵御病原微生物的過程

中通常被認為是直接發揮作用,在小麥抗白粉病、番茄抗葉霉病、葡萄抗霜霉病等中均有報道[9294]。

研究發現,大麗輪枝菌侵染棉花后引起PPO活性升高,如接種大麗輪枝菌72"h內感病品種‘新陸早7號’葉片中PPO活性升高[95];抗病品種‘中棉所41號’接菌后PPO活性升高程度最大且在第7"天達到峰值[gt;0.04"U/(mg·min)],感病品種‘蘇棉9號’接種菌后PPO活性升高程度最小[lt;0.02"U/(mg·min)][89];對陸地棉和海島棉染色體片段置換系群體的研究發現,抗病性與PPO活性呈正相關[81]。在陸地棉‘TM1’基因組中鑒定到13個PPO基因,其中GhPPO6D在大麗輪枝菌侵染后上調表達,PPO活性上升[96]。而沉默PPO基因導致棉花葉片變薄、變形、細胞死亡,從而降低棉花對黃萎病的抗性[97]。

2.2.5"丙二醛

丙二醛(MDA)是研究植物衰老和抗性生理的常用指標[45]。植物受到病原菌侵染時,不同植株中MDA含量變化存在差異,如茄子抗黃萎病品種在接種大麗輪枝菌后MDA含量呈現先升后降的趨勢,感病品種中MDA含量在后期再度上升[98];而MDA含量低的黃瓜品種抗枯萎病能力強[99]。在棉花抗黃萎病研究中發現,感病植株的膜脂過氧化水平高于健康植株,當抗/感品種接種大麗輪枝菌毒素后MDA含量均增加且感病品種增加更快[75];利用陸地棉和海島棉染色體片段置換系群體進行研究發現,抗病性與MDA含量呈負相關[81];以抗黃萎病海島棉品種‘7124’和感黃萎病陸地棉品種‘Hm40’為材料的嫁接試驗則表明抗病性越強MDA含量越低[77]。

接種大麗輪枝菌后棉花磷脂酶D(plant"phospholipase"D,"PLD)基因GhPLDδ顯著上調;GhPLDδ基因沉默植株接種大麗輪枝菌18"d后,比對照植株表現出明顯的葉片黃化萎蔫和維管束褐化等黃萎病癥狀;過表達GhPLDδ擬南芥葉綠素含量增加、丙二醛含量降低,GhPLDδ通過PLD產物磷脂酸(phosphatidic"acid)正調控棉花對大麗輪枝菌的防御反應[100]。沉默GhTLP19增加MDA含量,導致棉花對大麗輪枝菌的抗性降低[90]。ATP結合盒式蛋白(ATPbinding"cassette"transporter,"ABC)受大麗輪枝菌誘導表達上調,沉默Gh_D11G3432(ABCF5)后棉花MDA含量顯著升高,葉片中防御酶SOD、POD、CAT等的活性下降,降低了棉花對大麗輪枝菌的抗性[101]。

2.3"次生代謝產物

植物次生代謝產物主要包括酚類化合物、萜類化合物和含氮有機物生物堿三大類[102]。植物次生代謝是植物在進化過程中對環境適應的結果,植物受到病原菌侵染后,產生抗性物質作為生化壁壘和信號物質以增強自身的抵抗力[103]。苯丙烷類代謝是植物體內重要的次生代謝途徑之一,可形成植保素、木質素、類黃酮和酚類化合物等[104]。植保素又稱植物抗毒素,是植物遭受各種脅迫時在侵害部位附近產生和積累具有針對性抗菌活性的低分子量次生代謝產物[103,"105]。通常抗性植株的植保素積累速率較感病植株快,且僅在患病處產生并積累,抑制病原菌生長,在植物抗病中起化學屏障作用,而木質素作為物理屏障阻止病原菌擴展[106]。棉花對大麗輪枝菌的抗性與木質部導管的快速閉塞和萜類植物抗毒素的積累有關,其中涉及棉花抗黃萎病反應的次生代謝產物主要有棉酚、單寧、木質素等[107108]。

2.3.1"棉酚

棉酚是錦葵科棉族植物特有的一種倍半萜類次生代謝產物,主要由根部合成向地上部分運輸并儲存于色素腺體內。與棉花黃萎病抗性相關的包括棉酚(gossypol,"G)、半棉酚(hemigossypol,nbsp;HG)、6甲基氧半棉酚(6methoxyhemigossypol,"MHG)、脫氧半棉酚(deoxyhemigossypol,"dHG)和去氧6甲基氧半棉酚(desoxy6methyoxyhemigossypol,"dMHG)等[109]。棉花中柱組織接種大麗輪枝菌12"h后,棉酚合成關鍵酶杜松烯合成酶(cadinene"synthase)活性提高,誘導dHG、HG、dMHG、MHG的合成[110111]。研究發現,在大麗輪枝菌誘導下棉花中的棉酚含量與抗病性呈正相關,如用大麗輪枝菌菌絲胞壁提取物作為激發子處理棉花,耐病品系‘1028’在誘導24"h后葉片中棉酚含量達到峰值(gt;0.3%),而感病品種‘中棉所17’在誘導36"h后棉酚含量達到峰值(≤0.3%)[112];對12個抗病、耐病和感病棉花品種接種大麗輪枝菌后的棉酚含量進行分析,發現接菌15"d后抗病品種根部的棉酚含量顯著高于感病品種,如抗病品種‘冀668’接菌后根部棉酚含量(7.92%)顯著高于感病品種‘K222’(5.33%)[46]。

棉酚合成途徑中異戊二磷酸異構酶(isopentenyl"diphosphate"isomerase)基因GbIPI[113]、(+)δ杜松烯合成酶(cadinene"synthase)基因cad1A/cdn1C4[114115]、細胞色素P450單加氧酶(cytochrome"P450"monooxygenase)基因CYP706B1[116]、萜烯合成酶(terpene"synthases,"TPSs)基因GhTPS[117]可以被大麗輪枝菌誘導表達,使棉酚含量增加。此外,棉酚生物合成中甲羥戊酸(mevalonate,"MVA)途徑的17個基因在大麗輪枝菌誘導后顯著上調[118]。棉花中參與棉酚生物合成的肉桂醇脫氫酶(cinnamyl"alcohol"dehydrogenase,"CAD)基因GbCAD1在大麗輪枝菌和JA誘導下上調表達;沉默GbCAD1顯著降低棉花根和葉中的棉酚含量,從而降低棉花對大麗輪枝菌的抗性[33]。外源褪黑素增加了接種大麗輪枝菌后棉酚合成途徑基因的表達并顯著增加棉酚含量;沉默褪黑素生物合成關鍵酶基因,血清素N乙酰轉移酶(serotonin"Nacetyltransferase,"SNAT)基因GhSNAT1和咖啡酸O甲基轉移酶(caffeic"acidOmethyltransferase,"COMT)基因GhCOMT,棉酚含量降低,棉花對大麗輪枝菌的抗性降低;在接種大麗輪枝菌前進行外源褪黑素預處理,棉花恢復了因基因沉默而降低的抗性水平[119]。

2.3.2"單寧

單寧是一種莽草酸途徑合成的多酚類黃酮化合物,在植物中具有抗氧化、抗蟲、抑菌等作用[120]。研究表明,大麗輪枝菌侵染能引起棉花細胞中單寧含量增加,接種大麗輪枝菌后,棉花抗病品種根部和葉部的酚類物質均明顯高于感病品種,且抗感品種體內酚類物質含量的差異在根部比葉部更明顯[121];未接種大麗輪枝菌時抗黃萎病品種‘陜3337’"‘陜3072’的單寧含量高于感病品種‘魯棉1號’‘中棉所10號’,接菌后‘陜3337’的單寧含量隨病情發展而增加[122];對12個抗病、耐病和感病棉花品種接種大麗輪枝菌后的單寧含量分析,發現未接菌時抗病品種根部單寧含量顯著高于感病品種,接菌15"d后單寧含量顯著提高,且感病品種單寧含量顯著高于抗病品種,如抗病品種‘冀668’接菌前根部單寧含量(4.98%)顯著高于感病品種‘K222’(2.65%),而接菌后‘K222’的單寧含量(7.01%)顯著高于‘冀668’(5.02%)[46]。

與單寧合成相關的抗黃萎病基因研究主要集中在類黃酮生物合成途徑中的一些關鍵酶,如花青素還原酶(anthocyanin"reductase,"ANR)基因GbANR在抗黃萎病品種‘新海13’中的表達量高于感病材料‘H.D2’,接種大麗輪枝菌12"h后‘新海13’根部GbANR表達水平上調達9倍以上[123];大麗輪枝菌誘導花青素合成酶(anthocyanidin"synthase,"ANS)基因GbANS表達,沉默GbANS顯著抑制花青素產生,增加H2O2積累,降低棉花對黃萎病的抗性[124];從擬南芥中克隆到一個VSAD1(Verticillium"sensitive"and"anthocyanin"deficient"1),其編碼類黃酮生物合成途徑的查爾酮合成酶(chalcone"synthase,"CHS),在大麗輪枝菌侵染過程中被誘導表達,沉默棉花中與VSAD1同源的基因GhCHS導致棉花對大麗輪枝菌的感病性增加[125]。

2.3.3"木質素

植物受到病原菌侵染時,可以通過結構變化抵抗病原體的侵入和擴展,如木質素沉積、乳頭狀突起結構的形成[126]。當涉及與維管束相關的病害(如棉花黃萎病)時,木質素與植物抗病性的關系尤其緊密[47]。研究表明,抗黃萎病棉花品種與感病品種的木質素合成、沉積速率和程度存在明顯差異,在接種大麗輪枝菌后,抗病品種積累大量木質素以提高莖稈木質化程度和交聯程度,感病品種則木質化程度減輕,莖部木質部發育延遲[80,"127];接種大麗輪枝菌35"d后,抗病海島棉‘Pima"9053’的莖部導管細胞壁高度木質化且導管堵塞不明顯,感病陸地棉‘邯208’的導管細胞壁僅發生輕度木質化且導管堵塞嚴重,并且棉花葉片和葉柄的酸不可溶性木質素含量與病情指數呈負相關,酸不可溶性與可溶性木質素的比值大小與抗性強弱表現一致[127];用大麗輪枝菌蛋白質脂多糖激發子處理棉花后,棉花下胚軸組織木質化反應增強,苯丙氨酸解氨酶(phenylalanine"ammonialyase,"PAL)、肉桂醇脫氫酶(CAD)和細胞壁相關過氧化物酶活性短暫升高,導致木質素聚合物的合成和沉積增加[128]。

目前,許多棉花抗性相關基因的功能都與木質素合成相關。過表達GhLac1、GhLAC15、GhDIR1均能增加木質素含量,提高維管束木質化程度,增強植物對大麗輪枝菌的抗性[32,"129130]。木質素生物合成途徑中的一些關鍵酶參與棉花對大麗輪枝菌的抗性,如4香豆酸輔酶A連接酶(4coumarateCoA"ligase,"4CL)調控木質素生物合成途徑不同分支輸出,沉默Gh4CL30降低總木質素含量,增加愈創木基木質素和紫丁香基木質素的比值(G/S)、咖啡酸和阿魏酸含量,增強棉花對大麗輪枝菌的抗性[131];咖啡酸O甲基轉移酶(COMT)是木質素單體合成中的關鍵酶,GhCOMT在大麗輪枝菌誘導下表達水平升高[132];肉桂醇脫氫酶(CAD)是木質素單體生物合成的最后一個酶,沉默GhCAD35/45/43嚴重影響S木質素的生物合成,損害莖部防御誘導的木質化從而降低抗性[133]。此外,調控木質素合成的一些轉錄因子也參與棉花對大麗輪枝菌的抗性,如沉默BEL1轉錄因子基因GhBLH7D06顯著抑制大麗輪枝菌在棉花莖部的定殖和擴展,GhBLH7D06能夠直接靶向結合苯丙氨酸解氨酶基因GhPALA06啟動子區抑制其表達進而抑制木質素的生物合成,負調控棉花對大麗輪枝菌的抗性[134];WRKY轉錄因子GhWRKY1like通過直接激活與木質素生物合成相關基因GhPAL6和GhCOMT1的表達,促進木質素特別是S木質素單體的生物合成,正向調節棉花對大麗輪枝菌的抗性[135];轉錄因子GhMYB4通過抑制木質素合成關鍵基因(如GhC4H1/2、Gh4CL4、GhLac1等)的表達阻礙木質素在次生壁沉積,改變細胞壁完整性,促使更多的寡聚半乳糖醛酸(oligogalacturonides,"OGs)釋放,作為損傷相關分子模式(damage"associated"molecular"pattern,"DAMP)增強棉花對大麗輪枝菌的抗性[136]。

2.4"植物激素

激素介導的信號傳導是植物抵御病原菌侵染最重要的防御機制之一,在植物防御各種病原物(如細菌、真菌和病毒)中發揮著至關重要的作用。目前已有研究報道的抗性相關植物激素包括SA、JA、ET、脫落酸(abscisic"acid,"ABA)、生長素(auxin,"IAA)、赤霉素(gibberellins,"GA)和油菜素內酯(brassinosteroid,"BR)等[4850,"137140]。大麗輪枝菌是一種半活體營養型病原菌,在植物的初始感染階段表現為活體營養型,到后期感染階段轉變為死體營養型生活方式[141]。SA、JA和ET是對抗大麗輪枝菌的主要植物激素,通常與ROS和MAPK(絲裂原活化蛋白激酶)等響應生物脅迫的信號通路相互作用發揮功能[142]。

2.4.1"水楊酸

水楊酸(SA)廣泛參與植物種子萌發、細胞生長、呼吸作用、衰老等生命活動[48]。SA在植物防御中起著至關重要的作用,通常參與激活對活體營養型和半活體營養型病原菌的防御反應以及建立系統獲得性抗性[143]。植物受到病原菌侵染后,體內SA含量升高,誘導病程相關蛋白(PR)的表達,從而表現出對病原菌的抗性[144]。對接種大麗輪枝菌后海島棉根部的轉錄組分析發現,植物激素信號轉導途徑中存在一個重要分支:“SA→病程相關基因非表達子(nonexpression"of"PR"gene"1,"NPR1)→TGA轉錄因子→PR1→抗病性”,即SA信號通路參與棉花對大麗輪枝菌的抗性[145]。

在棉花中,許多SA信號相關基因已被鑒定為抗黃萎病相關基因。SA處理提高核糖體蛋白(ribosomal"protein)基因GaRPL18的表達,沉默GaRPL18后SA含量降低導致棉花對大麗輪枝菌的抗性降低,而過表達GaRPL18擬南芥在接種大麗輪枝菌24"h后,PR1表達顯著上調,抗性提高[146]。SA處理提高含IQ基序蛋白(IQ"motif"containing,"IQM)基因GhIQM1表達,沉默GhIQM1棉花植株在接種大麗輪枝菌48"h后NPR1、NPR3、PR5的表達量顯著上調,接種大麗輪枝菌20"d后沉默植株葉片黃化、萎蔫等黃萎病癥狀顯著輕于對照植株[147]。過表達S腺苷甲硫氨酸脫羧酶(Sadenosylmethionine"decarboxylase,SAMDC)基因GhSAMDC降低SA水平,增強擬南芥對大麗輪枝菌的敏感性,外源SA可部分逆轉其敏感性[148]。此外,SA合成途徑相關基因也參與植物對病原菌的防御。ICS1(isochorismate"synthase"1)是SA合成的關鍵酶,EDS1(enhanced"disease"susceptibility"1)和PAD4(phytoalexin"deficient"4)正向調節SA生物合成。GbEDS1可促進SA生物合成,正調控棉花對大麗輪枝菌的防御反應[149];過表達GhPGIP1使ICS1、EDS1和PAD4的表達水平上調,增強棉花對黃萎病的抗性[150]。

2.4.2"茉莉酸

茉莉酸JA在植物生長發育如種子萌發、根系生長、果實成熟、葉片衰老和氣孔開放中發揮重要作用[144]。JA在生物和非生物脅迫中也發揮著至關重要的作用,特別是在植物抵御死體營養型和(半)活體營養型病原菌侵染的防御反應方面[151]。外源茉莉酸甲酯(methyljasmonate,"MeJA)處理可以提高棉花對大麗輪枝菌的抗病性[152]。對海島棉根部的轉錄組分析發現,"JA生物合成酶丙二烯氧化物合酶(allene"oxide"synthase,"AOS)在大麗輪枝菌誘導下顯著上調,即JA信號通路參與棉花對大麗輪枝菌的抗性[145]。

在棉花中,許多抗黃萎病基因與JA信號通路相關。如過表達棉花枯草桿菌酶(subtilase)基因GbSBT1激活JA通路標記基因PDF1.2表達上調,增強擬南芥對大麗輪枝菌的抗性[153];依賴Ca2+的蛋白激酶(Ca2+dependent"protein"kinases,"CPKs)基因GhCPK33通過直接控制JA的生物合成而負調控棉花對大麗輪枝菌的抗性[154];過表達GhPLP2"(編碼Patatinlike蛋白)增加亞油酸和α亞麻酸的積累,促進JA生物合成的脂肪酸代謝,激活JA介導的防御反應,增強擬南芥對大麗輪枝菌的抗性[155]。此外,一些轉錄因子調控JA通路參與棉花對大麗輪枝菌的抗性。如HDZip轉錄因子GhHB12在JA誘導下表達上調,過表達GhHB12,下調GhJAZ2(jasmonate"ZIMdomain,"JAZ)和GhPR3,降低棉花對大麗輪枝菌的抗性[156];MYB轉錄因子GhODO1在JA和大麗輪枝菌誘導下表達上調,沉默GhODO1降低JA介導的防御信號和JA含量,顯著降低棉花對大麗輪枝菌的抗性[157]。

2.4.3"乙烯

乙烯(ET)作為植物中唯一的氣體激素,參與種子萌發、幼苗發育、花葉以及果實的衰老及凋謝等植物生長發育過程,在植物應對生物脅迫和非生物脅迫的抗性反應中起著至關重要的作用[158]。當植物受到病原菌侵染時,乙烯含量急劇增加,作為預警信號物質參與植物防御反應[159]。通過對接種大麗輪枝菌后海島棉‘7124’的表達譜分析,發現大量ET生物合成或信號基因受誘導,如氨基環丙烷羧酸氧化酶(1aminocyclopropane1carboxylic"acid"oxidase,"ACO)基因ACO1/3、乙烯不敏感(ethyleneinsensitive)基因EIN2和乙烯響應因子(ethylene"response"factor)基因ERF1,表明棉花在感染大麗輪枝菌后激活乙烯信號通路參與抗性反應[160]。

已有研究表明多個棉花抗黃萎病相關基因與ET信號通路相關。如外源ET處理提高GbVIP1(VirE2"interaction"protein"1,VIP1)的表達[161];過表達GbaNA1激活ET信號通路相關基因的表達[54];乙烯生物合成前體為1氨基環丙烷1羧酸(ACC),其在植株體內的合成依賴于ACC合成酶(ACC"synthase,"ACS)的激活,過表達GhACS2/6可減少大麗輪枝菌在棉花根部的定殖和擴展[162]。沉默GhWRKY70D13可提高ACC和JA含量,從而提高棉花對大麗輪枝菌的抗性[163]。ERF轉錄因子通常被認為在植株對病原體防御反應中起重要作用,如GbERFb、GbERF1like、GbABR1均正調控棉花對大麗輪枝菌的抗病性[164166]。Kiwellins蛋白是一種富含半胱氨酸的蛋白質,GhKWL1是GhERF105的正向調控因子,沉默GhKWL1降低棉花對大麗輪枝菌的抗性,過表達GhKWL1增強了擬南芥對大麗輪枝菌的抗性[167]。

2.4.4"茉莉酸/乙烯和水楊酸的相互關系

在植物免疫反應中,通常認為JA和ET在植物防御死體營養型病原菌過程中協同發揮作用,而SA主要介導植物對活體營養型病原菌的抗性,且與JA/ET有拮抗作用[144]。在棉花對大麗輪枝菌的抗性反應中,植物激素并不是獨立作用于病原物,不同的信號途徑之間相互聯系,通過激素間的相互拮抗或協同作用更有效地抵御病原菌的侵染。如SCL蛋白(scarecrowlike)是GRAS轉錄因子家族的重要成員,沉默GhSCL132A,"SA信號標記基因PR5下調,SA含量降低,"而JA信號標記基因AOS1上調,JA含量增加,導致棉花對大麗輪枝菌的抗性降低[168];沉默谷氨酸脫氫酶(glutamate"dehydrogenase,"GDH)基因GhGDH2,棉花根部SA含量降低,而增加JA含量可提高棉花對大麗輪枝菌的抗性[169]。另一方面,一些抗黃萎病基因通過激活JA/ET信號通路并抑制SA合成通路來參與抗病機制。如過表達GbWRKY1可提高JA信號通路標記基因PR4和ET生物合成基因ACS2的表達水平,降低SA信號通路標記基因PR5的表達水平,沉默GbWRKY1會抑制JA通路標記基因AOS、PR4和ET生物合成基因ACS的表達,并提高SA通路標記基因NPR1、PR1和PR5的表達水平,降低棉花對大麗輪枝菌的抗性[170];沉默轉錄因子基因GhWIN2會抑制JA生物合成相關基因的表達但增加SA含量,增強棉花對大麗輪枝菌的抗性[171]。

在棉花中,許多抗黃萎病基因參與SA/JA/ET信號轉導通路的共同作用。如外源SA/JA/ET處理均提高了TBL蛋白(trichome"birefringencelike,"TBL)基因GhTBL34表達水平,沉默GhTBL34降低棉花對大麗輪枝菌的抗性[172];番茄Ve同源基因Gbve1/Gbvdr3/Gbvdr6,在SA、JA、ET和大麗輪枝菌處理下均被誘導表達[173175];棉花防御相關的乳膠蛋白(major"latex"protein,"MLP)GhMLP28受大麗輪枝菌誘導表達,并響應SA/JA/ET,GhMLP28激活GhERF6活性,增強部分GCCbox(AGCCGCC元件)基因的表達,正調控棉花對大麗輪枝菌的抗性[176]。

3"總結與展望

與其他植物抗性類似,棉花對黃萎病的抗性涉及復雜的抗性基因網絡調控及其“物化”的抗性生理生化反應。以往研究基本揭示了棉花對黃萎病的抗性遺傳模式,克隆了一批與黃萎病抗性相關的基因,構建了抗性基因網絡及其“物化”的抗性生理生化反應。在此基礎上,本文重點從活性氧、防御相關酶、次生代謝產物和植物激素四個方面對棉花抗病生理生化反應進行了系統總結,梳理了抗性生理生化反應與抗病相關基因的關系,闡述了棉花抗性生理生化反應對黃萎病抗性的貢獻(圖1)。后續,關于棉花抗黃萎病生理生化抗性還需重點解決如下問題:一是還需研究各類生理生化反應與棉花抗/感黃萎病的關系,尋找指示棉花黃萎病抗性的關鍵生理生化指標;二是是否存在其他與棉花黃萎病抗性相關的生理生化反應類型,如新的植物次生代謝物質;三是還需深入解析黃萎病抗性基因網絡調控/“物化”生理生化反應的機制,為系統解析棉花抗黃萎病的機制提供理論基礎。通過上述問題的深入研究,全面理解和構建“抗黃萎病遺傳模式—抗黃萎病基因鑒定—抗黃萎病分子機制—抗黃萎病生理生化反應”的棉花抗黃萎病系統理論,最終為棉花抗性遺傳改良提供理論和技術支撐。

參考文獻

[1]"曾娟,"陸宴輝,"簡桂良,"等."棉花病蟲草害調查診斷與決策支持系統[M]."北京:"中國農業出版社,"2017.

[2]"GUO"Xiuhua,"CAI"Caiping,"YUAN"Dongdong,"et"al."Development"and"identification"of"Verticillium"wiltresistant"upland"cotton"accessions"by"pyramiding"QTL"related"to"resistance"[J]."Journal"of"Integrative"Agriculture,"2016,"15(3):"512520.

[3]"KLOSTERMAN"S"J,"ATALLAH"Z"K,"VALLAD"G"E,"et"al."Diversity,"pathogenicity;"and"management"of"Verticillium"species"[J]."Annual"Review"of"Phytopathology,"2009,"47:"3962.

[4]"栗紅梅."中植棉2號[J]."中國棉花,"2007(3):"19.

[5]"ZHAO"Yunlei,"WANG"Hongmei,"CHEN"Wei,"et"al."Genetic"structure,"linkage"disequilibrium"and"association"mapping"of"Verticillium"wilt"resistance"in"elite"cotton"(Gossypium"hirsutum"L.)"germplasm"population"[J/OL]."PLoS"ONE,"2014,"9(1):"e86308."DOI:"10.1371/journal.pone.0086308.

[6]"葛海燕,"汪業春,"郭旺珍,"等."陸地棉抗黃萎病性狀的遺傳及分子標記研究[J]."棉花學報,"2008,"20(1):"1922.

[7]"SHABAN"M,"MIAO"Yuhuan,"ULLAH"A,"et"al."Physiological"and"molecular"mechanism"of"defense"in"cotton"against"Verticillium"dahliae"[J]."Plant"Physiology"and"Biochemistry,"2018,"125:"193204.

[8]"SONG"Ranran,"LI"Junpeng,"XIE"Chenjian,"et"al."An"overview"of"the"molecular"genetics"of"plant"resistance"to"the"Verticillium"wilt"pathogen"Verticillium"dahliae"[J/OL]."International"Journal"of"Molecular"Sciences,"2020,"21(3):"1120."DOI:"10.3390/ijms21031120.

[9]"張勝昔,"孟艷艷,"馮常輝."棉花抗黃萎病轉基因育種研究進展[J]."湖北農業科學,"2013,"52(23):"56735675.

[10]WANG"Ping,"ZHOU"Lin,"JAMIESON"P,"et"al."The"cotton"wallassociated"kinase"GhWAK7A"mediates"responses"to"fungal"wilt"pathogens"by"complexing"with"the"chitin"sensory"receptors"[J]."Plant"Cell,"2020,"32(12):"39784001.

[11]HAN"Libo,"LI"Yuanbao,"WANG"Fuxin,"et"al."The"cotton"apoplastic"protein"CRR1"stabilizes"chitinase"28"to"facilitate"defense"against"the"fungal"pathogen"Verticillium"dahliae"[J]."Plant"Cell,"2019,"31(2):"520536.

[12]馬存."棉花枯萎病和黃萎病的研究[M]."北京:"中國農業出版社,"2007.

[13]簡桂良,"鄒亞飛,"馬存."棉花黃萎病連年流行的原因及對策[J]."中國棉花,"2003(3):"1314.

[14]FRADIN"E"F,"THOMMA"B."Physiology"and"molecular"aspects"of"Verticillium"wilt"diseases"caused"by"V.dahliae"and"V.alboatrum"[J]."Molecular"Plant"Pathology,"2006,"7(2):"7186.

[15]肖紅利,"孔志強,"包郁明,"等."大麗輪枝菌侵染抗感棉種的組織學過程觀察[J]."植物病理學報,"2014,"44(3):"287294.

[16]ZHAO"Pan,"ZHAO"Yunlong,"JIN"Yun,"et"al."Colonization"process"of"Arabidopsis"thaliana"roots"by"a"green"fluorescent"proteintagged"isolate"of"Verticillium"dahliae"[J]."Protein"amp;"Cell,"2014,"5(2):"9498.

[17]BARBARA"D"J,"CLEWES"E."Plant"pathogenic"Verticillium"species:"how"many"of"them"are"there?"[J]."Molecular"Plant"Pathology,"2003,"4(4):"297305.

[18]CHEN"Jieyin,"KLOSTERMAN"S"J,"HU"Xiaoping,"et"al."Key"insights"and"research"prospects"at"the"dawn"of"the"population"genomics"era"for"Verticillium"dahliae"[J]."Annual"Review"of"Phytopathology,"2021,"59:"3151.

[19]INDERBITZIN"P,"BOSTOCK"R"M,"DAVIS"R"M,"et"al."Phylogenetics"and"taxonomy"of"the"fungal"vascular"wilt"pathogen"Verticillium,"with"the"descriptions"of"five"new"species"[J/OL]."PLoS"ONE,"2011,"6(12):"e28341."DOI:"10.1371/journal.pone.0028341.

[20]DE"JONGE"R,"BOLTON"M"D,"KOMBRINK"A,"et"al."Extensive"chromosomal"reshuffling"drives"evolution"of"virulence"in"an"asexual"pathogen"[J]."Genome"Research,"2013,"23(8):"12711282.

[21]MILGROOM"M"G,"JIMENEZGASCO"M"D,"OLIVARESGARCIA"C,"et"al."Recombination"between"clonal"lineages"of"the"asexual"fungus"Verticillium"dahliae"detected"by"genotyping"by"sequencing"[J/OL]."PLoS"ONE,"2014,"9(9):"e106740."DOI:"10.1371/journal.pone.0106740.

[22]WILHELM"S."Longevity"of"the"Verticillium"wilt"fungus"in"the"laboratory"and"field"[J]."Phytopathology,"1955,"45(3):"180181.

[23]WANG"Yonglin,"HU"Xiaoping,"FANG"Yulin,"et"al."Transcription"factor"VdCmr1"is"required"for"pigment"production,"protection"from"UV"irradiation,"and"regulates"expression"of"melanin"biosynthetic"genes"in"Verticillium"dahliae"[J]."MicrobiologySgm,"2018,"164(4):"685696.

[24]CHEN"Jieyin,"XIAO"Hongli,"GUI"Yuejing,"et"al."Characterization"of"the"Verticillium"dahliae"exoproteome"involves"in"pathogenicity"from"cottoncontaining"medium"[J/OL]."Frontiers"in"Microbiology,"2016,"7:"1709."DOI:"10.3389/fmicb.2016."01709.

[25]田李,"李俊嬌,"戴小楓,"等."從功能基因到生物學性狀:大麗輪枝菌致病性形成的分子基礎[J]."生物技術通報,"2022,"38(1):"5169.

[26]ZHANG"Dandan,"DAI"Xiaofeng,"KLOSTERMAN"S"J,"et"al."The"secretome"of"Verticillium"dahliae"in"collusion"with"plant"defence"responses"modulates"Verticillium"wilt"symptoms"[J]."Biological"Reviews,"2022,"97(5):"18101822.

[27]GUI"Yuejing,"CHEN"Jieyin,"ZHANG"Dandan,"et"al."Verticillium"dahliae"manipulates"plant"immunity"by"glycoside"hydrolase"12"proteins"in"conjunction"with"carbohydratebinding"module"1"[J]."Environmental"Microbiology,"2017,"19(5):"19141932.

[28]QIN"Jun,"WANG"Kailun,"SUN"Lifan,"et"al."The"plantspecific"transcription"factors"CBP6Og"and"SARD1"are"targeted"by"a"Verticillium"secretory"protein"VdSCP41"tonbsp;modulate"immunity"[J/OL]."eLife,"2018,"7:"e34902."DOI:"10.7554/eLife.34902.

[29]ZHANG"Wenqi,"GUI"Yuejing,"SHORT"D"P"G,"et"al."Verticillium"dahliae"transcription"factor"VdFTF1"regulates"the"expression"of"multiple"secreted"virulence"factors"and"is"required"for"full"virulence"in"cotton"[J]."Molecular"Plant"Pathology,"2018,"19(4):"841857.

[30]SANTHANAM"P,"THOMMA"B"P."Verticillium"dahliae"Sge1"differentially"regulates"expression"of"candidate"effector"genes"[J]."Molecular"PlantMicrobe"Interactions,"2013,"26(2):"249256.

[31]NEUTELINGS"G."Lignin"variability"in"plant"cell"walls:"Contribution"of"new"models"[J]."Plant"Science,"2011,"181(4):"379386.

[32]HU"Qin,"MIN"Ling,"YANG"Xiyan,"et"al."Laccase"GhLac1"modulates"broadspectrum"biotic"stress"tolerance"via"manipulating"phenylpropanoid"pathway"and"jasmonic"acid"synthesis"[J]."Plant"Physiology,"2018,"176(2):"18081823.

[33]GAO"Wei,"LONG"Lu,"ZHU"Longfu,"et"al."Proteomic"and"virusinduced"gene"silencing"(VIGS)"analyses"reveal"that"gossypol,"brassinosteroids,"and"jasmonic"acid"contribute"to"the"resistance"of"cotton"to"Verticillium"dahliae"[J]."Molecular"amp;"Cellular"Proteomics,"2013,"12(12):"36903703.

[34]PEI"Yakun,"LI"Xiancai,"ZHU"Yutao,"et"al."GhABP19,"a"Novel"germinlike"protein"from"Gossypium"hirsutum,"plays"an"important"role"in"the"regulation"of"resistance"to"Verticillium"and"Fusarium"wilt"pathogens"[J/OL]."Frontiers"in"Plant"Science,"2019,"10:"583."DOI:"10.3389/fpls.2019.00583.

[35]DAAYF"F."Verticillium"wilts"in"crop"plants:"Pathogen"invasion"and"host"defence"responses"[J]."Canadian"Journal"of"Plant"Pathology,"2015,"37(1):"820.

[36]李興紅,"馬峙英,"張桂寅."棉花黃萎病抗病機制的研究進展[J]."河北農業大學學報,"1995,"18(4):"118123.

[37]夏正俊,"顧本康,"吳藹民,"等."棉花品種抗黃萎病性與體內生化成分相關分析[J]."植物保護學報,"1994,"21(4):"305310.

[38]FOREMAN"J,"DEMIDCHIK"V,"BOTHWELL"J"H"F,"et"al."Reactive"oxygen"species"produced"by"NADPH"oxidase"regulate"plant"cell"growth"[J]."Nature,"2003,"422(6930):"442446.

[39]JIA"Zhiqi,"YUAN"Haiyong,"LI"Yingzhang."NO"and"H2O2induced"by"Verticillium"dahliae"toxins"and"its"influence"on"the"expression"of"GST"gene"in"cotton"suspension"cells"[J]."Chinese"Science"Bulletin,"2007,"52(10):"13471354.

[40]HUANG"Shaobai,"BRAUN"H"P,"GAWRYLUK"R"M"R,"et"al."Mitochondrial"complex"Ⅱ"of"plants:"subunit"composition,"assembly,"and"function"in"respiration"and"signaling"[J]."Plant"Journal,"2019,"98(3):"405417.

[41]GILL"S"S,"TUTEJA"N."Reactive"oxygen"species"and"antioxidant"machinery"in"abiotic"stress"tolerance"in"crop"plants"[J]."Plant"Physiology"and"Biochemistry,"2010,"48(12):"909930.

[42]PASSARDI"F,"PENEL"C,"DUNAND"C."Performing"the"paradoxical:"how"plant"peroxidases"modify"the"cell"wall"[J]."Trends"in"Plant"Science,"2004,"9(11):"534540.

[43]HU"Yeqin,"LIU"Sheng,"YUAN"Hongmei,"et"al."Functional"comparison"of"catalase"genes"in"the"elimination"of"photorespiratory"H2O2"using"promoter"and"3′untranslated"region"exchange"experiments"in"the"Arabidopsis"cat2"photorespiratory"mutant"[J]."Plant"Cell"and"Environment,"2010,"33(10):"16561670.

[44]KHODADADI"F,"TOHIDFAR"M,"VAHDATI"K,"et"al."Functional"analysis"of"walnut"polyphenol"oxidase"gene"(JrPPO1)"in"transgenic"tobacco"plants"and"PPO"induction"in"response"to"walnut"bacterial"blight"[J]."Plant"Pathology,"2020,"69(4):"756764.

[45]ALY"A"A,"MANSOUR"M"T"M,"MOHAMEDnbsp;H"I,"et"al."Examination"of"correlations"between"several"biochemical"components"and"powdery"mildew"resistance"of"flax"cultivars"[J]."Plant"Pathology"Journal,"2012,"28(2):"149155.

[46]郝蔚,"王麗麗,"景偉文,"等."接種落葉型黃萎病菌棉株的棉酚和單寧含量與抗病性的關系[J]."江蘇農業科學,"2016,"44(2):"147151.

[47]林輝,"何祖華."植物維管束抗病研究進展[J]."植物生理學報,"2020,"56(12):"25632570.

[48]VLOT"A"C,"DEMPSEY"D"A,"KLESSIG"D"F."Salicylic"acid,"a"multifaceted"hormone"to"combat"disease"[J]."Annual"Review"of"Phytopathology,"2009,"47:"177206.

[49]RUAN"Jingjun,"ZHOU"Yuexia,"ZHOU"Meiliang,"et"al."Jasmonic"acid"signaling"pathway"in"plants"[J/OL]."International"Journal"of"Molecular"Sciences,"2019,"20(10):"2479."DOI:"10.3390/ijms20102479.

[50]VAN"LOON"L"C,"GERAATS"B"P"J,"LINTHORST"H"J"M."Ethylene"as"a"modulator"of"disease"resistance"in"plants"[J]."Trends"in"Plant"Science,"2006,"11(4):"184191.

[51]CHOUDHURY"F"K,"RIVERO"R"M,"BLUMWALD"E,"et"al."Reactive"oxygen"species,"abiotic"stress"and"stress"combination"[J]."Plant"Journal,"2017,"90(5):"856867.

[52]ALI"M,"CHENG"Zhihui,"AHMAD"H,"et"al."Reactive"oxygen"species"(ROS)"as"defenses"against"a"broad"range"of"plant"fungal"infections"and"case"study"on"ROS"employed"by"crops"against"Verticillium"dahliae"wilts"[J]."Journal"of"Plant"Interactions,"2018,"13(1):"353363.

[53]ZHANG"Xiangyue,"FENG"Zili,"ZHAO"Lihong,"et"al."Succinate"dehydrogenase"SDH11"positively"regulates"cotton"resistance"to"Verticillium"dahliae"through"a"salicylic"acid"pathway"[J/OL]."Journal"of"Cotton"Research,"2020,"3:"12."DOI:"10.1186/s42397020000526.

[54]LI"Nanyang,"ZHOU"Lei,"ZHANG"Dandan,"et"al."Heterologous"expression"of"the"cotton"NBSLRR"gene"GbaNA1"enhances"Verticillium"wilt"resistance"in"Arabidopsis"[J/OL]."Frontiers"in"Plant"Science,"2018,"9:"119."DOI:"10.3389/fpls.2018.00119.

[55]CHANG"Ying,"LI"Bo,"SHI"Qian,"et"al."Comprehensive"analysis"of"respiratory"burst"oxidase"homologs"(Rboh)"gene"family"and"function"of"GbRboh5/18"on"Verticillium"wilt"resistance"in"Gossypium"barbadense"[J/OL]."Frontiers"in"Genetics,"2020,"11:"788."DOI:"10.3389/fgene.2020.00788.

[56]YUAN"Hongmei,"LIU"Wencheng,"LU"Yingtang."CATALASE2"coordinates"SAmediated"repression"of"both"auxin"accumulation"and"JA"biosynthesis"in"plant"defenses"[J]."Cell"Host"amp;"Microbe,"2017,"21(2):"143155.

[57]LU"Tianxin,"ZHU"Liping,"LIANG"Yuxuan,"et"al."Comparative"proteomic"analysis"reveals"the"ascorbate"peroxidasemediated"plant"resistance"to"Verticillium"dahliae"in"Gossypium"barbadense"[J/OL]."Frontiers"in"Plant"Science,"2022,"13:"877146."DOI:"10.3389/fpls.2022.877146.

[58]YAO"Linlin,"ZHOU"Qun,"PEI"Baolei,"et"al."Hydrogen"peroxide"modulates"the"dynamic"microtubule"cytoskeleton"during"the"defence"responses"to"Verticillium"dahliae"toxins"in"Arabidopsis"[J]."Plant"Cell"and"Environment,"2011,"34(9):"15861598.

[59]LI"Yuanbao,"HAN"Libo,"WANG"Haiyun,"et"al."The"thioredoxin"GbNRX1"plays"a"crucial"role"in"homeostasis"of"apoplastic"reactive"oxygen"species"in"response"to"Verticillium"dahliae"infection"in"cotton"[J]."Plant"Physiology,"2016,"170(4):"23922406.

[60]ZHANG"Zhiyuan,"ZHAO"Jun,"DING"Lingyun,"et"al."Constitutive"expression"of"a"novel"antimicrobial"protein,"Hcm1,"confers"resistance"to"both"Verticillium"and"Fusarium"wilts"in"cotton"[J/OL]."Scientific"Reports,"2016,"6:"20773."DOI:"10.1038/srep20773.

[61]BELLIN"D,"ASAI"S,"DELLEDONNE"M,"et"al."Nitric"oxide"as"a"mediator"for"defense"responses"[J]."Molecular"PlantMicrobe"Interactions,"2013,"26(3):"271277.

[62]劉銳濤,"張穎,"樊秀彩,"等."一氧化氮在植物抗病反應中的作用機制[J]."植物生理學報,"2020,"56(4):"625634.

[63]SHI"Fumei,"LI"Yingzhang."Verticillium"dahliae"toxinsinduced"nitric"oxide"production"in"Arabidopsis"is"major"dependent"on"nitrate"reductase"[J]."BMB"Reports,"2008,"41(1):"7985.

[64]YAO"Linlin,"PEI"Baolei,"ZHOU"Qun,"et"al."NO"serves"as"a"signaling"intermediate"downstream"of"H2O2"to"modulate"dynamic"microtubule"cytoskeleton"during"responses"to"VDtoxins"in"Arabidopsis"[J]."Plant"Signaling"amp;"Behavior,"2012,"7(2):"174177.

[65]SHI"Fumei,"YAO"Linlin,"PEI"Baolei,"et"al."Cortical"microtubule"as"a"sensor"and"target"of"nitric"oxide"signal"during"the"defence"responses"to"Verticillium"dahliae"toxins"in"Arabidopsis"[J]."Plant"Cell"and"Environment,"2009,"32(4):"428438.

[66]HUANG"Wanting,"ZHANG"Yalin,"ZHOU"Jinglong,"et"al."The"respiratory"burst"oxidase"homolog"protein"D"(GhRbohD)"positively"regulates"the"cotton"resistance"to"Verticillium"dahliae"[J/OL]."International"Journal"of"Molecular"Sciences,"2021,"22(23):"13041."DOI:"10.3390/ijms222313041.

[67]MO"Shaojing,"ZHANG"Yan,"WANG"Xingfen,"et"al."Cotton"GhSSI2"isoforms"from"the"stearoyl"acyl"carrier"protein"fatty"acid"desaturase"family"regulate"Verticillium"wilt"resistance"[J]."Molecular"Plant"Pathology,"2021,"22(9):"10411056.

[68]HUANG"Shaobai,"MILLAR"A"H."Succinate"dehydrogenase:"the"complex"roles"of"a"simple"enzyme"[J]."Current"Opinion"in"Plant"Biology,"2013,"16(3):"344349.

[69]RALPH"S"J,"MORENOSANCHEZ"R,"NEUZIL"J,"et"al."Inhibitors"of"succinate:"quinone"reductase/complex"Ⅱregulate"production"of"mitochondrial"reactive"oxygen"species"and"protect"normal"cells"from"ischemic"damage"but"induce"specific"cancer"cell"death"[J]."Pharmaceutical"Research,"2011,"28(11):"26952730.

[70]BELT"K,"HUANG"Shaobai,"THATCHER"L"F,"et"al."Salicylic"aciddependent"plant"stress"signaling"via"mitochondrial"succinate"dehydrogenase"[J]."Plant"Physiology,"2017,"173(4):"20292040.

[71]GLEASON"C,"HUANG"Shaobai,"THATCHER"L"F,"et"al."Mitochondrial"complex"Ⅱ"has"a"key"role"in"mitochondrialderived"reactive"oxygen"species"influence"on"plant"stress"gene"regulation"and"defense"[J]."Proceedings"of"the"National"Academy"of"Sciences"of"the"United"States"of"America,"2011,"108(26):"1076810773.

[72]李艷,"高寶嘉,"陳連濤."植物誘導抗性的分子機制研究進展[J]."河北林果研究,"2013,"28(4):"427430.

[73]魏婧,"徐暢,"李可欣,"等."超氧化物歧化酶的研究進展與植物抗逆性[J]."植物生理學報,"2020,"56(12):"25712584.

[74]丁錦平,"張慶琛,"魏理,"等."黃萎菌誘導棉花活性氧及保護酶系的變化研究[J]."河南農業科學,"2012,"41(7):"8487.

[75]侯麗娟,"李衛,"劉燕霞,"等."棉花黃萎病菌毒素對棉花生化代謝的影響[J]."西北農業學報,"2010,"19(12):"6367.

[76]李丹,"吐爾迪·吐尼亞孜,"王麗麗,"等."棉花抗黃萎病性與葉片保護酶活性和丙二醛含量的關系[J]."新疆農業大學學報,nbsp;2014,"37(2):"131136.

[77]陳營營,"張友昌,"夏松波,"等."海陸嫁接棉苗對黃萎病抗性及相關生理指標研究[J]."分子植物育種,"2014,"12(6):"11481158.

[78]PEI"Yakun,"ZHU"Yutao,"JIA"Yujiao,"et"al."Molecular"evidence"for"the"involvement"of"cotton"GhGLP2,"in"enhanced"resistance"to"Verticillium"and"Fusarium"wilts"and"oxidative"stress"[J/OL]."Scientific"Reports,"2020,"10(1):"12510."DOI:"10.1038/s4159802068943x.

[79]LEGENDRE"L,"RUETER"S,"HEINSTEIN"P"F,"et"al."Characterization"of"the"oligogalacturonideinduced"oxidative"burst"in"cultured"soybean"(Glycine"max)"cells"[J].nbsp;Plant"Physiology,"1993,"102(1):"233240.

[80]XU"Li,"ZHU"Longfu,"TU"Lili,"et"al."Lignin"metabolism"has"a"central"role"in"the"resistance"of"cotton"to"the"wilt"fungus"Verticillium"dahliae"as"revealed"by"RNASeqdependent"transcriptional"analysis"and"histochemistry"[J]."Journal"of"Experimental"Botany,"2011,"62(15):"56075621.

[81]LI"Pengtao,"RASHID"M"H"O,"CHEN"Tingting,"et"al."Transcriptomic"and"biochemical"analysis"of"upland"cotton"(Gossypium"hirsutum)"and"a"chromosome"segment"substitution"line"from"G.hirsutum"x"G.barbadense"in"response"to"Verticillium"dahliae"infection"[J/OL]."BMC"Plant"Biology,"2019,"19:"19."DOI:"10.1186/s1287001816194.

[82]AKHUNOV"A"A,"GOLUBENKO"Z,"MUSTAKIMOVA"E"C,"et"al."Activation"mechanism"of"intra"and"extracellular"cotton"peroxidases"by"wilt"infection"[J]."Chemistry"of"Natural"Compounds,"2010,"46(4):"608611.

[83]YANG"Jun,"XIE"Meixia,"WANG"Xingfen,"et"al."Identification"of"cell"wallassociated"kinases"as"important"regulators"involved"in"Gossypium"hirsutum"resistance"to"Verticillium"dahliae"[J/OL]."BMC"Plant"Biology,"2021,"21(1):"220."DOI:"10.1186/s1287002102992w.

[84]李永亮,"董雪妮,"雷志,"等."轉HhERF2和PeDREB2a基因棉花對脅迫的耐受能力分析[J]."中國農業科技導報,"2015,"17(3):"1928.

[85]ZOU"Junjie,"LI"Xidong,"RATNASEKERA"D,"et"al."Arabidopsis"CALCIUMDEPENDENT"PROTEIN"KINASE8"and"CATALASE3"function"in"abscisic"acidmediated"signaling"and"H2O2"homeostasis"in"stomatal"guard"cells"under"drought"stress"[J]."Plant"Cell,"2015,nbsp;27(5):"14451460.

[86]JOO"J,"LEE"Y"H,"SONG"S"I."Rice"CatA,"CatB,"and"CatC"are"involved"in"environmental"stress"response,"root"growth,"and"photorespiration,"respectively"[J]."Journal"of"Plant"Biology,"2014,"57(6):"375382.

[87]ZHOU"Yong,"LIU"Shiqiang,"YANG"Zijian,"et"al."CsCAT3,"a"catalase"gene"from"Cucumis"sativus,"confers"resistance"to"a"variety"of"stresses"to"Escherichia"coli"[J]."Biotechnology"amp;"Biotechnological"Equipment,"2017,"31(5):"886896.

[88]GIRI"M"K,"SINGH"N,"BANDAY"Z"Z,"et"al."GBF1"differentially"regulates"CAT2"and"PAD4"transcription"to"promote"pathogen"defense"in"Arabidopsis"thaliana"[J]."Plant"Journal,"2017,"91(5):"802815.

[89]楊宜紅,"陸燕,"吳穎靜,"等."棉花品種黃萎病抗性與免疫反應的關系[J]."核農學報,"2017,"31(3):"588596.

[90]LI"Zhanshuai,"WANG"Xiaoyan,"CUI"Yupeng,"et"al."Comprehensive"genomewide"analysis"of"thaumatinlike"gene"family"in"four"cotton"species"and"functional"identification"of"GhTLP19"involved"in"regulating"tolerance"to"Verticillium"dahliae"and"drought"[J/OL]."Frontiers"in"Plant"Science,"2020,"11:"575015."DOI:"10.3389/fpls.2020.575015.

[91]WANG"Wei,"CHENG"Yingying,"CHEN"Dongdong,"et"al."The"catalase"gene"family"in"cotton:"Genomewide"characterization"and"bioinformatics"analysis"[J/OL]."Cells,"2019,"8(2):"86."DOI:"10.3390/cells8020086.

[92]胡瑞波,"田紀春."小麥多酚氧化酶研究進展[J]."麥類作物學報,"2004,"24(1):"8185.

[93]王全華,"王秀峰,"林忠平."外源GO基因導入番茄后對葉霉病的抗性機制[J]."中國農業科學,"2006,"39(7):"13651370.

[94]房玉林,"宋士任,"張艷芳,"等."不同品種葡萄抗霜霉病特性與葉片POD、PPO活性關系的研究[J]."西北植物學報,"2007,"27(2):"392395.

[95]高峰,"李國英,"王欽英."水楊酸誘導棉花耐黃萎病的效應[J]."新疆農業科學,"2004,"41(5):"333336.

[96]張慧,"田新權,"高巍,"等."陸地棉PPO基因全基因組鑒定及對黃萎病菌的響應分析[J]."棉花學報,"2017,"29(5):"428436.

[97]MUSTAFA"R,"IQBAL"M"J,"HAMZA"M,"et"al."Functional"identification"of"G.hirsutum"genes"for"their"role"in"normal"plant"development"and"resistance"against"Verticillium"dahliae"using"virusinduced"gene"silencing"[J]."European"Journal"of"Plant"Pathology,"2021,"161(4):"917931.

[98]PANG"Yezhou,"WANG"Zhenghong,"GUO"Saisai,"et"al."Verticillium"dahliae"reduces"plant"growth,"constitutively"induces"antioxidant"metabolism"and"gene"expression"in"eggplant"(Solanum"melongena"L.)"[J/OL]."Physiological"and"Molecular"Plant"Pathology,"2021,"114:"101641."DOI:"10.1016/j.pmpp.2021.101641.

[99]田雪亮,"劉鳴韜,"楊家榮."黃瓜枯萎菌粗毒素對不同抗性黃瓜種子萌發及幼苗脅迫作用研究[J]."中國生態農業學報,"2008,"16(6):"14951498.

[100]ZHU"Yutao,"HU"Xiaoqian,"WANG"Ping,"et"al."The"phospholipase"D"gene"GhPLDδ"confers"resistance"to"Verticillium"dahliae"and"improves"tolerance"to"salt"stress"[J/OL]."Plant"Science,"2022,"321:"111322."DOI:"10.1016/j.plantsci.2022.111322.

[101]DONG"Qi,"MAGWANGA"R"O,"CAI"Xiaoyan,"et"al."RNAsequencing,"physiological"and"RNAi"analyses"provide"insights"into"the"response"mechanism"of"the"ABCmediated"resistance"to"Verticillium"dahliae"infection"in"cotton"[J/OL]."Genes,"2019,"10(2):"110."DOI:"10.3390/genes10020110.

[102]DIXON"R"A.nbsp;Natural"products"and"plant"disease"resistance"[J]."Nature,"2001,"411(6839):"843847.

[103]AHUJA"I,"KISSEN"R,"BONES"A"M."Phytoalexins"in"defense"against"pathogens"[J]."Trends"in"Plant"Science,"2012,"17(2):"7390.

[104]BEDNAREK"P,"OSBOURN"A."Plantmicrobe"interactions:"Chemical"diversity"in"plant"defense"[J]."Science,"2009,"324(5928):"746748.

[105]KUC"J."Phytoalexins,"stress"metabolism,"and"disease"resistance"in"plants"[J]."Annual"Review"of"Phytopathology,"1995,"33:"275297.

[106]李明,"曾任森,"駱世明."次生代謝產物在植物抵抗病蟲為害中的作用[J]."中國生物防治,"2007,"23(3):"269273.

[107]HARRISON"N"A,"BECKMAN"C"H."Time/space"relationships"of"colonization"and"host"responses"in"wiltresistant"and"wiltsusceptible"cotton"(Gossypium)"cultivars"inoculated"with"Verticillium"dahliae"and"Fusarium"oxysporum"f.sp."vasinfectum"[J]."Physiological"Plant"Pathology,"1982,"21(2):"193207.

[108]MACE"M"E,"BELL"A"A,"BECKMAN"C"H."Histochemistry"and"identification"of"diseaseinduced"terpenoid"aldehydes"in"Verticilliumwiltresistant"andsusceptible"cottons"[J]."Canadian"Journal"of"Botany,"1976,"54(18):"20952099.

[109]馮立田,"鄧振旭."棉酚及其應用研究的概況和某些進展[J]."山東師大學報(自然科學版),"1999,"14(1):"6567.

[110]MACE"M"E,"STIPANOVIC"R"D."Mode"of"action"of"the"phytoalexin"desoxyhemigossypol"against"the"wilt"pathogen,"Verticillium"dahliae"[J]."Pesticide"Biochemistry"and"Physiology,"1995,"53(3):"205209.

[111]ALCHANATI"I,"PATEL"J"A"A,"LIU"Jinggao,"et"al."The"enzymatic"cyclization"of"nerolidyl"diphosphate"by"δcadinene"synthase"from"cotton"stele"tissue"infected"with"Verticillium"dahliae"[J]."Phytochemistry,"1998,"47(6):"961967.

[112]袁紅霞,"秦粉菊."棉花黃萎病菌激發子對棉花黃萎病的誘抗作用[J]."湖北農業科學,"2006,"45(6):"717719.

[113]WANG"Yechun,"QIU"Chengxiang,"ZHANG"Fei,"et"al."Molecular"cloning,"expression"profiling"and"functional"analyses"of"a"cDNA"encoding"isopentenyl"diphosphate"isomerase"from"Gossypium"barbadense"[J]."Bioscience"Reports,"2009,"29(2):"111119.

[114]TAN"Xiaoping,"LIANG"Wanqi,nbsp;LIU"Changjun,"et"al."Expression"pattern"of"(+)δcadinene"synthase"genes"and"biosynthesis"of"sesquiterpene"aldehydes"in"plants"of"Gossypium"arboreum"L."[J]."Planta,"2000,"210(4):"644651.

[115]TOWNSEND"B"J,"POOLE"A,"BLAKE"C"J,"et"al."Antisense"suppression"of"a"(+)deltacadinene"synthase"gene"in"cotton"prevents"the"induction"of"this"defense"response"gene"during"bacterial"blight"infection"but"not"its"constitutive"expression"[J]."Plant"Physiology,"2005,"138(1):"516528.

[116]LUO"Ping,"WANG"Yanhong,"WANG"Guodong,"et"al."Molecular"cloning"and"functional"identification"of"(+)δcadinene8hydroxylase,"a"cytochrome"P450"monooxygenase"(CYP706B1)"of"cotton"sesquiterpene"biosynthesis"[J]."Plant"Journal,"2001,"28(1):"95104.

[117]YANG"Changqing,"WU"Xiuming,"RUAN"Juxin,"et"al."Isolation"and"characterization"of"terpene"synthases"in"cotton"(Gossypium"hirsutum)"[J]."Phytochemistry,"2013,"96:"4656.

[118]ZHANG"Zhiqiang,"LIU"Wei,"MA"Zongbin,"et"al."Transcriptional"characterization"and"response"to"defense"elicitors"of"mevalonate"pathway"genes"in"cotton"(Gossypium"arboreum"L.)"[J/OL]."Peerj,"2019,"7:"e8123."DOI:"10.7717/peerj.8123.

[119]LI"Cheng,"HE"Qiuling,"ZHANG"Fan,"et"al."Melatonin"enhances"cotton"immunity"to"Verticillium"wilt"via"manipulating"lignin"and"gossypol"biosynthesis"[J]."Plant"Journal,"2019,"100(4):"784800.

[120]何洪英."單寧的生理活性[J]."飲料工業,"2001,"4(5):"1921.

[121]汪紅,"王燁,"袁紅霞,"等."酚類物質含量與棉花抗黃萎病性能關系研究[J]."中國棉花,"1999(10):"1617.

[122]甘莉,"呂金殿."棉花品種中糖及單寧含量與抗黃萎病的關系[J]."陜西農業科學,"1989(6):"1314.

[123]郝蔚."不同脅迫條件下棉花抗黃萎病產物的表達分析及相關基因研究[D]."烏魯木齊:"新疆農業大學,"2015.

[124]LONG"Lu,"ZHAO"Jingruo,"XU"Fuchun,"et"al."Silencing"of"GbANS"reduces"cotton"resistance"to"Verticillium"dahliae"through"decreased"ROS"scavenging"during"the"pathogen"invasion"process"[J]."Plant"Cell"Tissue"and"Organ"Culture,"2018,"135(2):"213221.

[125]LEI"Kaijian,"ZHANG"Li,"DU"Xiaoyu,"et"al."A"chalcone"synthase"controls"the"Verticillium"disease"resistance"response"in"both"Arabidopsis"thaliana"and"cotton"[J]."European"Journal"of"Plant"Pathology,"2018,"152(3):"769781.

[126]HUECKELHOVEN"R."Cell"wallassociated"mechanisms"of"disease"resistance"and"susceptibility"[J]."Annual"Review"of"Phytopathology,"2007,"45:"101127.

[127]吳立柱,"王省芬,"張艷,"等."酸不可溶性木質素和漆酶在棉花抗黃萎病中的作用[J]."作物學報,"2014,"40(7):"11571163.

[128]SMIT"F,"DUBERY"I"A."Cell"wall"reinforcement"in"cotton"hypocotyls"in"response"to"a"Verticillium"dahliae"elicitor"[J]."Phytochemistry,"1997,"44(5):"811815.

[129]ZHANG"Yan,"WU"Lizhu,"WANG"Xingfen,"et"al."The"cotton"laccase"gene"GhLAC15"enhances"Verticillium"wilt"resistance"via"an"increase"in"defenceinduced"lignification"and"lignin"components"in"the"cell"walls"of"plants"[J]."Molecular"Plant"Pathology,"2019,"20(3):"309322.

[130]SHI"Haiyan,"LIU"Zhihao,"ZHU"Li,"et"al."Overexpression"of"cotton"(Gossypium"hirsutum)"dirigent"1"gene"enhancesnbsp;lignification"that"blocks"the"spread"of"Verticillium"dahliae"[J]."Acta"Biochimica"et"Biophysica"Sinica,"2012,"44(7):"555564.

[131]XIONG"Xianpeng,"SUN"Shichao,"ZHU"Qianhao,"et"al."The"cotton"lignin"biosynthetic"gene"Gh4CL30"regulates"lignification"and"phenolic"content"and"contributes"to"Verticillium"wilt"resistance"[J]."Molecular"PlantMicrobe"Interactions,"2021,"34(3):"240254.

[132]WU"Cuicui,"ZUO"Dongyun,"XIAO"Shuiping,"et"al."Genomewide"identification"and"characterization"of"GhCOMT"gene"family"during"fiber"development"and"Verticillium"wilt"resistance"in"cotton"[J/OL]."Plants,"2021,"10(12):"2756."DOI:"10.3390/plants10122756.

[133]LI"Haipeng,"ZHANG"Shulin,"ZHAO"Yunlei,"et"al."Identification"and"characterization"of"cinnamyl"alcohol"dehydrogenase"encoding"genes"involved"in"lignin"biosynthesis"and"resistance"to"Verticillium"dahliae"in"upland"cotton"(Gossypium"hirsutum"L.)"[J/OL]."Frontiers"in"Plant"Science,"2022,"13:"840397."DOI:"10.3389/fpls.2022.840397.

[134]MA"Qiang,"WANG"Nuohan,"MA"Liang,"et"al."The"cotton"BEL1like"transcription"factor"GHBLH7D06"negatively"regulates"the"defense"response"against"Verticillium"dahliae"[J/OL]."International"Journal"of"Molecular"Sciences,"2020,"21(19):"7126."DOI:"10.3390/ijms21197126.

[135]HU"Qin,"XIAO"Shenghua,"WANG"Xiaorui,"et"al."GhWRKY1like"enhances"cotton"resistance"to"Verticillium"dahliae"via"an"increase"in"defenseinduced"lignification"and"S"monolignol"content"[J/OL]."Plant"Science,"2021,"305:"110833."DOI:"10.1016/j.plantsci.2021.110833.

[136]XIAO"Shenghua,"HU"Qin,"SHEN"Jili,"et"al."GhMYB4"downregulates"lignin"biosynthesis"and"enhances"cotton"resistance"to"Verticillium"dahliae"[J]."Plant"Cell"Reports,"2021,"40(4):"735751.

[137]DOMINGO"C,"ANDRES"F,"THARREAU"D,"et"al."Constitutive"expression"of"OsGH3.1"reduces"auxin"content"and"enhances"defense"response"and"resistance"to"a"fungal"pathogen"in"rice"[J]."Molecular"PlantMicrobe"Interactions,"2009,"22(2):"201210.

[138]JIANG"Changjie,"SHIMONO"M,"SUGANO"S,"etnbsp;al."Abscisic"acid"interacts"antagonistically"with"salicylic"acid"signaling"pathway"in"riceMagnaporthe"grisea"interaction"[J]."Molecular"PlantMicrobe"Interactions,"2010,"23(6):"791798.

[139]NAKASHITA"H,"YASUDA"M,"NITTA"T,"et"al."Brassinosteroid"functions"in"a"broad"range"of"disease"resistance"in"tobacco"and"rice"[J]."Plant"Journal,"2003,"33(5):"887898.

[140]PIETERSE"C"M,"LEONREYES"A,"VAN"DER"ENT"S,"et"al."Networking"by"smallmolecule"hormones"in"plant"immunity"[J]."Nature"Chemical"Biology,"2009,"5(5):"308316.

[141]THALER"J"S,"OWEN"B,"HIGGINS"V"J."The"role"of"the"jasmonate"response"in"plant"susceptibility"to"diverse"pathogens"with"a"range"of"lifestyles"[J]."Plant"Physiology,"2004,"135(1):"530538.

[142]GLAZEBROOK"J."Contrasting"mechanisms"of"defense"against"biotrophic"and"necrotrophic"pathogens"[J]."Annual"Review"of"Phytopathology,"2005,"43:"205227.

[143]GRANT"M,"LAMB"C."Systemic"immunity"[J]."Current"Opinion"in"Plant"Biology,"2006,"9(4):"414420.

[144]BARI"R,"JONES"J."Role"of"plant"hormones"in"plant"defence"responses"[J]."Plant"Molecular"Biology,"2009,"69(4):"473488.

[145]ZHANG"Yan,"WANG"Xingfen,"DING"Zeguo,"et"al."Transcriptome"profiling"of"Gossypium"barbadense"inoculated"with"Verticillium"dahliae"provides"a"resource"for"cotton"improvement"[J/OL]."BMC"Genomics,"2013,"14:"637."DOI:"10.1186/1471216414637.

[146]GONG"Qian,"YANG"Zhaoen,"WANG"Xiaoqian,"et"al."Salicylic"acidrelated"cotton"(Gossypium"arboreum)"ribosomal"protein"GaRPL18"contributes"to"resistance"to"Verticillium"dahliae"[J/OL]."BMC"Plant"Biology,"2017,"17:"59."DOI:"10.1186/s1287001710075.

[147]李名江,"雷建峰,"祖麗皮耶·托合尼亞孜,"等."棉花GhIQM1基因克隆及抗黃萎病功能分析[J]."作物學報,"2022,"48(9):"22652273.

[148]MO"Huijuan,"SUN"Yanxiang,"ZHU"Xiaoli,"et"al."Cotton"Sadenosylmethionine"decarboxylasemediated"spermine"biosynthesis"is"required"for"salicylic"acid"and"leucinecorrelated"signaling"in"the"defense"response"to"Verticillium"dahliae"[J]."Planta,"2016,"243(4):"10231039.

[149]ZHANG"Yan,"WANG"Xingfen,"RONG"Wei,"et"al."Histochemical"analyses"reveal"that"stronger"intrinsic"defenses"in"Gossypium"barbadense"than"in"G.hirsutum"are"associated"with"resistance"to"Verticillium"dahliae"[J]."Molecular"PlantMicrobe"Interactions,"2017,"30(12):"984996.

[150]LIU"Nana,"ZHANG"Xueyan,"SUN"Yun,"et"al."Molecular"evidence"for"the"involvement"of"a"polygalacturonaseinhibiting"protein,"GhPGIP1,"in"enhanced"resistance"to"Verticillium"and"Fusarium"wilts"in"cotton"[J/OL]."Scientific"Reports,"2017,"7:"39840."DOI:"10.1038/srep39840.

[151]DING"Lina,"XU"Haibin,"YI"Hongying,"et"al."Resistance"to"hemibiotrophic"F."graminearum"infection"isnbsp;associated"with"coordinated"and"ordered"expression"of"diverse"defense"signaling"pathways"[J/OL]."PLoS"ONE,"2011,"6(4):"e19008."DOI:"10.1371/journal.pone.0019008.

[152]LI"Jiaojiao,"ZINGENSELL"I,"BUCHENAUER"H."Induction"of"resistance"of"cotton"plants"to"Verticillium"wilt"and"of"tomato"plants"to"Fusarium"wilt"by"3aminobutyric"acid"and"methyl"jasmonate"[J]."Journal"of"Plant"Diseases"and"Protection,"1996,"103(3):"288299.

[153]DUAN"Xingpeng,"ZHANG"Zhidong,"WANG"Jin,"et"al."Characterization"of"a"novel"cotton"subtilase"gene"GbSBT1"in"response"to"extracellular"stimulations"and"its"role"in"Verticillium"resistance"[J/OL]."PLoS"ONE,"2016,"11(4):"e0153988."DOI:"10.1371/journal.pone.0153988.

[154]HU"Qin,"ZHU"Longfu,"ZHANG"Xiangnan,"et"al."GhCPK33"negatively"regulates"defense"against"Verticillium"dahliae"by"phosphorylating"GhOPR3"[J]."Plant"Physiology,"2018,"178(2):"876889.

[155]ZHU"Yutao,"HU"Xiaoqian,"WANG"Ping,"et"al."GhPLP2"positively"regulates"cotton"resistance"to"Verticillium"wilt"by"modulating"fatty"acid"accumulation"and"jasmonic"acid"signaling"pathway"[J/OL]."Frontiers"in"Plant"Science,"2021,"12:"749630."DOI:"10.3389/fpls.2021.749630.

[156]HE"Xin,"WANG"Tianyi,"ZHU"Wan,"et"al."GhHB12,"a"HDZIP"I"transcription"factor,"negatively"regulates"the"cotton"resistance"to"Verticillium"dahliae"[J/OL]."International"Journal"of"Molecular"Sciences,"2018,"19(12):"3997."DOI:"10.3390/ijms19123997.

[157]ZHU"Yutao,"HU"Xiaoqian,"WANG"Ping,"et"al."GhODO1,"an"R2R3type"MYB"transcription"factor,"positively"regulates"cotton"resistance"to"Verticillium"dahliae"via"the"lignin"biosynthesis"and"jasmonic"acid"signaling"pathway"[J]."International"Journal"of"Biological"Macromolecules,"2022,"201:"580591.

[158]GUO"Hongwei,"ECKER"J"R."The"ethylene"signaling"pathway:"new"insights"[J]."Current"Opinion"in"Plant"Biology,"2004,"7(1):"4049.

[159]WANG"K"L"C,"LI"Hai,"ECKER"J"R."Ethylene"biosynthesis"and"signaling"networks"[J]."Plant"Cell,"2002,"14:"S131S151.

[160]XU"Li,"ZHU"Longfu,"TU"Lili,"et"al."Differential"gene"expression"in"cotton"defence"response"to"Verticillium"dahliae"by"SSH"[J]."Journal"of"Phytopathology,"2011,"159(9):"606615.

[161]ZHANG"Kai,"ZHAO"Pei,"WANG"Hongmei,"et"al."Isolation"and"characterization"of"the"GbVIP1"gene"and"response"to"Verticillium"wilt"in"cotton"and"tobacco"[J/OL]."Journal"of"Cotton"Research,"2019,"2:"2."DOI:"10.1186/s4239701900190.

[162]JIA"Mingzhu,"LI"Zhifang,"HAN"Shuan,"et"al."Effect"of"1aminocyclopropane1carboxylic"acid"accumulation"on"Verticillium"dahliae"infection"of"upland"cotton"[J/OL]."BMC"Plant"Biology,"2022,"22(1):"386."DOI:"10.1186/s12870022037748.

[163]XIONG"Xiangpeng,"SUN"Shichao,"ZHANG"Xinyu,"et"al."GhWRKY70D13"regulates"resistance"to"Verticillium"dahliae"in"cotton"through"the"ethylene"and"jasmonic"acid"signaling"pathways"[J/OL]."Frontiers"in"Plant"Science,"2020,"11:"69."DOI:"10.3389/fpls.2020.00069.

[164]LIU"Jianguang,"WANG"Yongqiang,"ZHAO"Guiyuan,"et"al."A"novel"Gossypium"barbadense"ERF"transcription"factor,"GbERFb,"regulation"host"response"and"resistance"to"Verticillium"dahliae"in"tobacco"[J]."Physiology"and"Molecular"Biology"of"Plants,"2017,"23(1):"125134.

[165]GUO"Weifeng,"JIN"Li,"MIAO"Yuhuan,"et"al."An"ethylene"responserelated"factor,"GbERF1like,"from"Gossypium"barbadense"improves"resistance"to"Verticillium"dahliae"via"activating"lignin"synthesis"[J]."Plant"Molecular"Biology,"2016,"91(3):"305318.

[166]LIU"Yujia,"LIU"Xin,"LONG"Lu,"et"al."GbABR1"is"associated"with"Verticillium"wilt"resistance"in"cotton"[J]."Biologia,"2018,"73(5):"449457.

[167]CHEN"Yang,"ZHANG"Mi,"WANG"Lei,"et"al."GhKWL1"upregulates"GhERF105"but"its"function"is"impaired"by"binding"with"VdISC1,"a"pathogenic"effector"of"Verticillium"dahliae"[J/OL]."International"Journal"of"Molecular"Sciences,"2021,"22(14):"7328."DOI:"10.3390/ijms22147328.

[168]CHEN"Chen,"LU"Lili,"MA"Shuya,"et"al."Analysis"of"PAT1"subfamily"members"in"the"GRASnbsp;family"of"upland"cotton"and"functional"characterization"of"GhSCL132A"in"Verticillium"dahliae"resistance"[J]."Plant"Cell"Reports,"2023,"42(3):"487504.

[169]XIONG"Xianpeng,"SUN"Shichao,"ZHU"Qianhao,"et"al."Transcriptome"analysis"and"RNA"interference"reveal"GhGDH2"regulating"cotton"resistance"to"Verticillium"wilt"by"JA"and"SA"signaling"pathways"[J/OL]."Frontiers"in"Plant"Science,"2021,"12:"654676."DOI:"10.3389/fpls.2021.654676.

[170]ZHANG"Xue,"LIU"Jianfeng,"WU"Lizhu,"et"al."GbWRKY1,"a"member"of"the"WRKY"transcription"factor"family"identified"from"Gossypium"barbadense,"is"involved"in"resistance"to"Verticillium"wilt"[J]."Biotechnology"amp;"Biotechnological"Equipment,"2019,"33(1):"13541364.

[171]LI"Xiancai,"LIU"Nana,"SUN"Yun,"et"al."The"cotton"GhWIN2"gene"activates"the"cuticle"biosynthesis"pathway"and"influences"the"salicylic"and"jasmonic"acid"biosynthesis"pathways"[J/OL]."BMC"Plant"Biology,"2019,"19(1):"379."DOI:"10.1186/s1287001918886.

[172]ZHAO"Yunlei,"JING"Huijuan,"ZHAO"Pei,"et"al."GhTBL34"is"associated"with"Verticillium"wilt"resistance"in"cotton"[J/OL]."International"Journal"of"Molecular"Sciences,"2021,"22(17):"9115."DOI:"10.3390/ijms22179115.

[173]ZHANG"Baolong,"YANG"Yuwen,"CHEN"Tianzi,"et"al."Island"cotton"Gbve1"gene"encoding"a"receptorlike"protein"confers"resistance"to"both"defoliating"and"nondefoliating"isolates"of"Verticillium"dahliae"[J/OL]."PLoS"ONE,"2012,"7(12):"e51091."DOI:"10.1371/journal.pone.0051091.

[174]CHEN"Tianzi,"KAN"Jialian,"YANG"Yuwen,"et"al."A"Ve"homologous"gene"from"Gossypium"barbadense,"Gbvdr3,"enhances"the"defense"response"against"Verticillium"dahliae"[J]."Plant"Physiology"and"Biochemistry,"2016,"98:"101111.

[175]YANG"Yuwen,"CHEN"Tianzi,"LING"Xitie,"et"al."Gbvdr6,"a"gene"encoding"a"receptorlike"protein"of"cotton"(Gossypium"barbadense),"confers"resistance"to"Verticillium"wilt"in"Arabidopsis"and"upland"cotton"[J/OL]."Frontiers"in"Plant"Science,"2018,"8:"2272."DOI:"10.3389/fpls.2017.02272.

[176]YANG"Chunlin,"LIANG"Shan,"WANG"Haiyun,"et"al."Cotton"major"latex"protein"28"functions"as"a"positive"regulator"of"the"ethylene"responsive"factor"6"in"defense"against"Verticillium"dahliae"[J]."Molecular"Plant,"2015,"8(3):"399411.

(責任編輯:楊明麗)

猜你喜歡
植物
誰是最好的植物?
為什么植物也要睡覺
長得最快的植物
各種有趣的植物
植物也會感到痛苦
會喝水的植物
植物的防身術
把植物做成藥
哦,不怕,不怕
將植物穿身上
主站蜘蛛池模板: 欧美国产精品不卡在线观看| 无码免费的亚洲视频| 麻豆国产在线不卡一区二区| 日韩欧美综合在线制服| 婷婷六月在线| 亚洲综合国产一区二区三区| av一区二区无码在线| 国产高清在线观看| 全午夜免费一级毛片| 精品视频在线一区| 成年人国产网站| 国产美女在线免费观看| 国产高清又黄又嫩的免费视频网站| 国产aⅴ无码专区亚洲av综合网| 久久77777| 精品成人免费自拍视频| 精品人妻AV区| 夜夜操国产| 国产精品免费p区| av一区二区三区在线观看| 国产在线精品网址你懂的| 91伊人国产| 国产精品视频系列专区| 无遮挡一级毛片呦女视频| 亚洲欧美综合在线观看| 国产青榴视频| 国产视频入口| 免费 国产 无码久久久| 国产91视频免费| 992tv国产人成在线观看| 91无码视频在线观看| 秋霞午夜国产精品成人片| 99手机在线视频| 91久久青青草原精品国产| 又黄又湿又爽的视频| 欧美亚洲国产精品久久蜜芽| a网站在线观看| 国外欧美一区另类中文字幕| 久久婷婷色综合老司机| 欧美精品色视频| 欧美一区中文字幕| 最近最新中文字幕在线第一页| 毛片基地视频| 亚洲成在人线av品善网好看| 2022国产91精品久久久久久| 国产在线观看人成激情视频| 极品私人尤物在线精品首页 | 国产在线专区| 国产日韩久久久久无码精品| 国产高清在线观看91精品| 国产黄网永久免费| 亚洲日韩AV无码一区二区三区人| 色综合久久无码网| 五月婷婷综合在线视频| 成人看片欧美一区二区| 久久国产免费观看| 夜夜操国产| 国产成人亚洲精品蜜芽影院| 亚洲精品中文字幕无乱码| 无码国产偷倩在线播放老年人| 国产麻豆福利av在线播放| 区国产精品搜索视频| 国产成人综合日韩精品无码首页| 日韩av高清无码一区二区三区| 欧美日韩国产在线播放| 国产精品无码一区二区桃花视频| 国产区免费| 99热这里只有精品免费国产| 五月天在线网站| 国产精品成人观看视频国产 | 国产乱人免费视频| 蜜桃视频一区二区| 制服丝袜 91视频| 中文字幕中文字字幕码一二区| 国产女人在线观看| 欧美精品色视频| 曰韩人妻一区二区三区| 亚洲国产成熟视频在线多多| 成年人国产视频| 午夜日本永久乱码免费播放片| 亚洲欧美不卡视频| 欧美激情福利|