楊靖 柳煒佳 李英 曾莉 閆芳

本文引用: 楊? 靖, 柳煒佳, 李? 英, 曾? 莉, 閆? 芳. 中藥納米制劑研究進展[J]. 湖南中醫藥大學學報, 2024, 44(4): 706-712.
〔摘要〕 納米制劑是目前藥劑學領域的研究熱點。傳統中藥“納米化”為中藥創新研究打開了新的大門,不僅改變了中藥應用的“尺度”,更是拓展了中藥治療的范圍。中藥納米制劑既能延續傳統中藥治療“多靶點、多層次”的特點,又能改善活性成分口服生物利用度低、組織靶向性不足等問題。通過總結中藥外泌體、碳點、納米凝膠、聚合物膠束、自微乳和納米脂質體相關研究,分析不同中藥納米制劑的作用特點,為創新中藥研究提供思路。
〔關鍵詞〕 中藥;納米制劑;研究進展;構成;生物活性
〔中圖分類號〕R283? ? ? ? ?〔文獻標志碼〕A? ? ? ? ? 〔文章編號〕doi:10.3969/j.issn.1674-070X.2024.04.029
Research progress on nanoagents of Chinese medicine
YANG Jing1, LIU Weijia2, LI Ying1, ZENG Li1, YAN Fang3*
1. Department of Pharmacy, Chengdu Fifth People's Hospital (The Fifth People's Hospital of Chengdu University of Chinese Medicine), Chengdu, Sichuan 611130, China; 2. Department of Rehabilitation Medicine, Chengdu Fifth People's Hospital (The Fifth People's Hospital of Chengdu University of Chinese Medicine), Chengdu, Sichuan 611130, China; 3. Medical Research and Transformation Center, Chengdu Fifth People's Hospital (The Fifth People's Hospital of Chengdu University of Chinese Medicine), Chengdu, Sichuan 611130, China
〔Abstract〕 Recently, nanoagents have become a hot topic in the field of pharmaceutics. The "nanotization" of Chinese medicine has opened up new avenues for the innovative research of Chinese medicine, not only changing the "scale" of its application but also expanding the scope of Chinese Medicine treatment. Nanoagents of Chinese medicine can maintain the characteristics of "multi-target and multi-level" of Chinese medicine treatment and improve low oral bioavailability and inadequate tissue targeting of active ingredients. By summarizing the relevant research on exosomes, carbon dots, nanogels, polymeric micelles, self-microemulsion, and nano-liposomes of Chinese medicine, and analyzing the functional characteristics of different nanoagents of Chinese medicine, this study provides ideas for innovative research on Chinese medicine.
〔Keywords〕 Chinese medicine; nanoagent; research progress; composition; biological activity
近年來,伴隨材料科學、藥物制劑學、藥物代謝動力學等學科的創新發展,藥物劑型不斷豐富,新劑型的涌現刷新了人們對藥物作用特點的認識,也打破了傳統藥物應用的固有邊界。“納米藥物”,即通過“納米化”,將藥物與載體材料制成粒徑在10~1 000 nm范圍內的藥物晶體或載藥微粒,從而獲得有別于常規藥物的靶向性和作用強度[1]。在中醫藥領域,外泌體、碳點(carbon dot,CD)、納米凝膠、聚合物膠束、自微乳、脂質體等納米技術,已廣泛應用于中藥新藥研發,并衍生出多種生物學活性(圖1),旨在從細胞、亞細胞、分子層面賦予傳統中藥理論新的內涵[2]。
1 中藥負載納米材料的主要類型和特點
1.1? 中藥來源的外泌體
外泌體是由細胞內多泡體與細胞膜融合后釋放到細胞外基質中的脂質包裹體,直徑30~100 nm,內含蛋白、核酸、脂質和代謝物。幾乎所有類型的細胞都可產生并釋放外泌體。不同細胞通過分泌不同組分的外泌體實現細胞間通信,進而實現細胞功能的調節。諸多研究發現,來源于藥用植物的外泌體或外泌體樣納米囊泡富含各種具有生物活性的脂質、蛋白、RNA等成分[3],是天然的納米制劑,在創傷修復與再生[4]、抗炎與免疫調節[5]、抗腫瘤[6]、腸轉運蛋白[7]等方面均有顯著調控作用。此外,鑒于植物外泌體或外泌體樣納米囊泡體積小、穿透性強,且一定程度耐酸堿、耐高溫的特點,這些微囊泡成為藥物遞送的理想載體[8]。
1.2? 中藥CD
CD是一類具有顯著熒光性能的零維碳納米材料,由超細、分散、準球形且直徑小于10 nm的碳納米顆粒組成[9],根據碳源的不同可分為碳量子點(car?bon quantum dot,CQD)、石墨烯量子點(graphene quan?tum dot,GQD)、碳化聚合物點(carbonized polymer dot,CPD)和碳納米點(carbon nanodot,CND)[10]。因其良好的光學性質、水溶性、低毒性和生物相容性,CD廣泛應用于醫學成像[11]、光熱治療[12]、抗腫瘤治療[13]等醫藥領域。
1.3? 中藥納米凝膠
納米凝膠,即直徑小于200 nm的水凝膠,是一種三維網狀的聚合物。與其他尺寸的凝膠相比,納米凝膠容易被細胞吞噬,易于透過血腦屏障實現腦部給藥,且載藥效率高[14],目前在促進藥物經皮吸收、控制藥物釋放、靶向給藥等方面發揮重要作用。當傳統中藥具備納米凝膠特性(即形成中藥納米凝膠)時,中藥的治療潛能被極大開發。
1.4? 中藥聚合物膠束
膠束是一種有序排列的熱力學穩定膠狀團聚體,當水溶液中的表面活性劑達到一定濃度時,分子自組裝形成[15]。由兩親性嵌段共聚物自組裝形成的熱力學穩定膠體溶液稱為聚合物膠束[16]。聚合物膠束由于其粒徑小、內部疏水不含水、外表面鏈段保護作用、增溶性、低毒性等特點,已成為目前藥物遞送系統的重要選擇之一[17]。
1.5? 中藥自微乳
微乳是一種透明或半透明、低黏度、各向同性且熱力學穩定的納米級油水混合體系,由水相、油相、表面活性劑和助表面活性劑在適當比例下自發形成[18]。微乳因增溶能力強、透明度高、熱力學穩定性強、擴散快、吸收率高、便于制備等特點被視為強大的替代載藥系統[19]。與微乳相比,自微乳(self-microemulsifying,SME)型藥物遞送系統由相同的組分構成,在水中自動分散形成微乳,屬于微乳的濃縮液。
1.6? 中藥脂質體
“脂質體”一詞可追溯至二十世紀六十年代,最初用于描述“磷脂在水中可自發形成雙分子層囊泡”的結構[20]。脂質體由一個或幾個脂質雙層組成,直徑20~1 000 nm,包含磷脂或鞘脂尾部(親脂性)聚集形成的疏水區域和頭部(親水性)暴露的親水區域。因該結構與細胞膜成分非常相似,可與細胞膜融合,進而釋放內容物進入細胞,調節細胞功能,故可用于靶向細胞內部。為提高藥物對細胞的選擇性,避免非目的性吞噬細胞攝取,載藥脂質體直徑一般不超過100 nm[21]。由此,脂質納米顆粒[或稱納米脂質體(lipid nanoparticle, LNP)作為脂質體的優化劑型出現在制藥行業。除粒徑大小差異外,LNP與傳統脂質體在組成成分、內部結構方面亦有顯著不同,如LNP中膽固醇比例明顯高于傳統脂質體;傳統脂質體內部有親水空腔,而LNP內部因內容物(如核酸)與磷脂頭部的電荷差異而形成多層核心[22]。目前,傳統脂質體已廣泛用于小分子藥物遞送[23];LNP多用于核酸[如mRNA[24]、小干擾RNA(small interfering RNA,siRNA)[25]等]遞送。隨著脂質體/LNP制備組裝技術的不斷完善,源自中藥的天然化合物逐漸成為脂質體/LNP藥物遞送體系的主角。
2 中藥納米制劑的生物學活性
2.1? 抗炎
源自生姜的外泌體樣納米囊泡直徑為50~200 nm,內含脂質(如磷脂酸、磷脂酰乙醇胺、磷脂酰膽堿、磷脂酰絲氨酸、二半乳糖二酰基甘油)、蛋白(如酶、肌動蛋白、通道蛋白/轉運體)、微小RNA(microRNA,miRNA)、活性化合物(如6-姜酚、8-姜酚、10-姜酚、6-姜烯酚)等生物活性組分。其中,姜酚和姜烯酚類化合物具有抗炎活性,如6-姜酚能抑制核因子κB(nuclear factor-κB,NF-κB)活化與蛋白激酶C(protein kinase C,PKC)易位,抑制細胞因子生成和T細胞激活,從而發揮抗炎作用[26]。大蒜衍生的外泌體樣納米囊泡(ginger-derived exosome-like nanoparticle,GEN)含有26種脂質、61種蛋白質和127種已知的miRNA。GEN可顯著下調Toll樣受體4(Toll-like rec?eptor 4,TLR4)、髓細胞分化初級反應基因88(myeloid differentiation factor 88,MyD88)和NF-κB的表達,減少葡聚糖硫酸鈉(dextran sulfate sodium,DSS)誘導的促炎細胞因子分泌;GEN所含Han-miR3630-5p可結合TLR4的3非翻譯區,從而抑制TLR4表達;此外,GEN通過恢復毛螺桿菌科的相對豐度和降低幽門螺桿菌的相對豐度,改變結腸炎小鼠腸道微生物群[27]。可見,抑制TLR4/MyD88/NF-κB信號通路和調節腸道微生物群是GEN減輕DSS誘導腸道炎癥損傷的潛在機制[27]。LIU等[28]制備魚腥草精油(Houttuynia essential oil,HEO)自微乳(SME-HEO)研究該制劑對脂多糖(lipopolysaccharide, LPS)誘導小鼠乳腺炎及血乳屏障(blood-milk barrier, BMB)的影響,結果發現,SME-HEO可顯著下調促炎因子腫瘤壞死因子-α(tumor necrosis factor-α, TNF-α)和白細胞介素-1β(interleukin-1β, IL-1β),上調抗炎因子白細胞介素-10(interleukin-10, IL-10),抑制髓過氧化物酶(myeloperoxidase, MPO)表達,減輕乳腺組織病理損傷;此外,SME-HEO通過上調閉鎖小帶蛋白(zonula occludens protein 1, ZO-1)、緊密連接蛋白-1(claudin-1)、緊密連接蛋白-3(claudin-3)和緊密連接組分閉合蛋白(occludin)表達保護BMB的完整性。可見,SME-HEO具有良好的抗炎和乳腺保護作用。一種裝載紫草素的透明質酸-玉米醇溶蛋白納米凝膠能選擇性抑制巨噬細胞炎癥小體,同時減少促炎細胞因子的釋放,作用途徑與抑制胱天蛋白酶-1(cysteine aspartic acid specific protease-1,Caspase-1)活化和IL-1β生成有關[29]。
2.2? 抗腫瘤
人參來源的微囊泡結構[細胞外納米囊泡(ginseng-derived extracellular nanovesicle,GsNV)或外泌體樣納米顆粒(ginseng-derived exosome-like nanop?articles,GsEN)]因其廣泛的生物活性備受關注。近期研究發現,GsNV在體外能抑制破骨細胞的分化,并維持骨髓源性巨噬細胞(bone marrow-derived macroph?age,BMM)的活性;在LPS誘導的骨吸收小鼠模型中,GsNV同樣能抑制破骨細胞分化[30]。該效應與抑制NF-κB受體活化因子配體(receptor activator of NF-κB ligand,RANKL)誘導的NF-κB抑制蛋白(inhibitor of NF-κB,IκBα)、c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)、細胞外信號調節激酶(extracellular signal-regulated kinase,ERK)信號通路和調節破骨細胞成熟的基因有關[30]。此外,GsEN在體外、體內被證明是膠質瘤治療的候選制劑,能通過血腦屏障靶向膠質瘤,并在腫瘤微環境(tumor microenvironment,TME)中招募M1巨噬細胞,表明GsEN在抑制膠質瘤進展和調節腫瘤相關巨噬細胞(tumor-associated macrophage,TAM)方面具有良好的潛力[31]。類似地,由RES合成的CD(RES-CD)能提高RES的腫瘤靶向性,癌細胞毒性作用更顯著[32]。損傷腫瘤細胞線粒體功能是RES-CD抗腫瘤作用的途徑之一,包括細胞內鈣釋放、細胞色素C氧化酶活性抑制和線粒體膜擾動。這一特性在多種癌細胞模型中被發現,預示該途徑是RES-CD抗腫瘤效應優于單獨RES或其他CD制劑的重要基礎[32]。海藻酸是源自海帶、巨藻等褐藻細胞壁的一種天然多糖醛酸,在抗腫瘤[33]、抗氧化[34]、抑菌[35]、抗炎[36]、免疫調節[37]等領域發揮重要作用。來源于金銀花的外泌體含有活性組分miR-2911,該物質富集于金銀花不同組織中;miR-2911可靶向人乳頭瘤病毒(human papillomavirus,HPV)16/18的E6和E7致癌基因,抑制HPV16/18陽性子宮頸癌細胞增殖并誘導其凋亡;E6/E7-p53/Caspase3軸是miR-2911抗腫瘤效應的關鍵分子途徑[38]。源自郁金、姜黃、莪術等中藥的活性成分姜黃素因其廣泛的藥理活性而備受關注,然而,低口服生物利用度的問題一直限制其應用。基于聚合物膠束的姜黃素遞送系統能顯著提高姜黃素的口服生物利用度,阻止網狀內皮系統攝取姜黃素,且可增強姜黃素的腫瘤滲透和保留效應,表現出強于游離姜黃素的抗癌活性[39]。紫草素是源自中藥紫草的脂溶性萘醌類化合物。已有研究發現,紫草素具有抗腫瘤活性[40]。然而,低口服生物利用度、不良反應和非選擇性毒性限制了該化合物的臨床應用[41]。與單純紫草素比較,紫草素納米凝膠能顯著提高紫草素釋放靶向性和細胞凋亡率[紫草素納米凝膠干預的7-氨基放線菌素D陽性率(50.33%±2.60%)顯著高于單純紫草素作用(30.33%±0.88%)][42]。另外,中藥活性化合物納米聯合用藥策略為耐藥腫瘤的治療提供新的機遇。一種雙氫青蒿素(dihydroartemisinin,DHA)-粉防己堿(tetrandrine,TET)聯合的pH敏感脂質體(DT-pH-LP)治療多柔比星(doxorubicin,DOX)耐藥乳腺癌表現出良好的腫瘤抑制作用;該脂質體具有良好的球形結構、均勻的分散結構以及長期穩定性;隨著DOX耐藥逆轉能力的增強,DT-pH-LP對MCF-7/ADR細胞和MCF-7細胞的抑制作用均顯著增強,且對心肌細胞H9c2的毒性低[43]。機制研究提示,該脂質體中DHA能增強細胞內活性氧(reactive oxygen species,ROS)生成和脂質過氧化反應,表明通過負載的納米載體可促進TET抗腫瘤作用,實現二者協同效應[43]。
2.3? 抗氧化
從西藍花水提取物(broccoli water extract,BWE)中獲得的CD(BWE-CD)具有突出的抗氧化性能,能有效清除A549細胞、293T細胞和斑馬魚體內的ROS,并減輕LPS誘導的斑馬魚體內炎癥[44]。這些效應依賴于BWE-CD與自由基的直接反應,可調節一氧化氮水平,上調超氧化物歧化酶和谷胱甘肽過氧化物酶-4的表達[44]。由于氧化應激與炎癥反應存在關聯性,通過抗氧化(清除ROS)增強抗炎效應也是中藥納米凝膠作用特點之一。YEO等[45]設計了一種生物相容性聚苯硼酸(polymeric phenylboronic acid,PPBA)-單寧酸(tannic acid,TA)納米凝膠(PPBA-TA nanogel,PTNG),能有效清除外源性過氧化氫和體內ROS;對于體外和體內誘導性炎癥模型,PTNG均表現出抗炎作用,能顯著減少中性粒細胞募集和促炎細胞因子表達。在植物界廣泛分布的槲皮素(quercetin,QCT)因其優異的抗氧化和抗炎特性而得到廣泛認可,在急性肺損傷(acute lung injury,ALI)治療中顯示出巨大潛力,然而低溶解度和口服生物利用度降低其應用價值。一種可吸入的槲皮素-海藻酸納米凝膠(QCT-alginate nanogel,QUNG)能顯著提高QCT的溶解度和口服生物利用度;超聲霧化吸入QUNG可明顯逆轉ALI大鼠氧化應激損傷,并下調炎癥細胞因子表達[46],提示超聲霧化吸入QUNG是一種可行的肺靶向給藥方法。
2.4? 抑菌
納米技術在抗菌藥物傳遞應用中具有提高抗菌效果的潛力。由靜電作用和疏水作用控制的小檗堿(berberine,BBR)-黃酮苷自組裝納米粒子(nanoparticle,NP)和納米纖維(nanofiber,NFib)展示了與BBR不同的抗菌特性。三者抑菌活性比較:NP遠大于BBR,BBR遠大于NFib。該活性差異可歸因于NP和NFib不同的空間配置和自組裝過程[47]。黃酮苷和BBR首先形成一維復合單元,隨后自組裝成三維納米結構;隨著親水性的葡萄糖醛酸朝向外部,NP展現出更強的細菌親和力,導致菌群銳減和生物膜減少;體外溶血試驗、細胞毒性試驗和體內斑馬魚毒性評估表明,NP與NFib自組裝體具有良好的生物相容性,為自釋放藥物用于細菌感染治療提供了重要參考[47]。一種抑菌納米傳遞系統由來源于中藥黃連和大黃的抗菌化合物BBR和大黃素通過自主裝構成。大黃素作為分層的骨架,BBR嵌入其中。體外抑菌實驗表明,納米顆粒的最小殺菌濃度為0.1 μmol/mL,低于BBR和大黃素;納米顆粒對金黃色葡萄球菌生物膜有強烈的抑制作用;同時,納米顆粒具有良好的生物相容性和安全性[48]。該研究揭示了源自傳統中藥組合的小分子自組裝設計模式。
2.5? 促創面愈合
一種由殼聚糖/蠶絲水凝膠海綿、血小板血漿外泌體(platelet-rich plasma exosome,PRP-Exos)和莪術均質多糖(Curcuma zedoaria polysaccharide,ZWP)組成的藥物遞送系統用于治療糖尿病大鼠創面愈合,表現出優于單用PRP-Exos或ZWP的創面閉合性能,且未見不良反應;該治療效應可能與促進膠原合成與沉積以及傷口部位血管生成有關[49]。XU等[50]開發了一種木質素納米凝膠(lignin nanogel,LNG),該納米凝膠由聚乙二醇、聚丙烯乙二醇、聚二甲基硅氧烷三者的聚氨酯共聚物加入木質素制成。LNG能降低ROS水平,保護人正常肝細胞免受氧化應激引起的凋亡;體內實驗結果提示,LNG能提高Ki67表達,加速小鼠燒傷創面的愈合[50]。表明抗氧化促進創面愈合是LNG生物活性特征之一。
2.6? 細胞保護
近年來,來源于植物的天然化合物顯示出美容的應用潛力,包括防曬、保濕、抗衰老、燒燙傷修復和皮膚疾病的治療。“納米化”植物化合物能增強藥妝產品的無菌體驗,實現持續遞送并增強皮膚保護活性。姜黃素[51]、白藜蘆醇[52]等天然產物借助脂質體/LNP載體的高滲透性和高穩定性成功實現皮膚各層次護理,加速燒燙傷愈合[53]。納米遞送技術為增強化妝品中植物衍生物的生物活性提供了理想載體,為皮膚科患者與化妝品用戶提供了許多臨床益處[54]。番茄紅素(lycopene,LYC)是常見類胡蘿卜素之一,具有抗氧化[55]、抗炎[56]、抗衰老[57]、免疫調節[58]、護肝[59]等生物學活性。一項研究發現,LYC的納米脂質體(LNP-LYC)比單純LYC能更有效地減少腦缺血再灌注損傷大鼠的腦梗死病變,并改善大鼠的神經行為。分子層面,LNP-LYC能降低一氧化氮合酶、NADPH氧化酶-2等氧化酶蛋白與Caspase-3水平,升高B淋巴細胞瘤-2表達,并能通過下調絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)-JNK信號抑制細胞凋亡[60]。此外,LNP-LYC能抑制鐵調素介導的鐵轉運蛋白-1的減少,并使鐵水平正常化,提示LNP-LYC通過調節鐵代謝對腦缺血再灌注損傷大鼠發揮神經保護作用[60]。作為一種抗疲勞、抗抑郁的經典中藥,肉桂油(cinnamon oil,CO)常因低口服生物利用度而受限。MA等[61]設計CO固體自微乳化給藥系統(CO solid SME drug delivery system,CO-S-SME),該系統能有效改善慢性不可預知溫和刺激模型小鼠的抑郁樣行為,增加模型小鼠神經遞質水平,降低皮質酮和炎癥因子表達;CO-S-SME能改變腸道菌群組成,降低厚壁菌/擬桿菌比例以及乳酸桿菌的相對豐度,調節α多樣性和β多樣性。綜上,CO-S-SME通過單胺類神經遞質、皮質酮、炎癥細胞因子、腸道菌群等途徑發揮抗抑郁作用。
2.7? 止血
常見臨床止血炭藥包括黃柏炭、絲路薊炭、芝麻炭等。源自這些炭化藥用植物的CD具有止血作用。在動物出血模型中,接受黃柏炭CD治療的動物的出血時間明顯短于對照組,表現出止血活性;黃柏炭CD干預后,纖維蛋白原和血小板水平顯著增加;于低劑量黃柏炭CD干預后,凝血酶時間縮短,而凝血酶原時間和活化部分凝血活酶時間在黃柏炭CD治療組與對照組之間差異無統計學意義,提示黃柏炭CD止血效能與激活纖維蛋白系統有關[62]。
3 總結
中藥外泌體、CD、納米凝膠、聚合物膠束、自微乳、脂質體/LNP等制劑充分發揮了納米劑型的優勢,將中藥作用原理從整體、宏觀層面引向分子、微觀層面,可增強中藥治療的靶向性,提高活性成分的利用率,彌補中藥應用時的不足。中藥“納米化”是創新中藥研究的重要內容之一,不僅衍生出中藥作用的新理論,而且有助于發現中藥治療的新適應證。雖然中藥納米制劑的基礎研究已有突破性進展,但缺少足夠的證據支持中藥納米化的臨床推廣。后續研究可篩選潛在中藥納米制劑作為臨床轉化的候選藥物,借助臨床研究證據為復雜疾病的治療提供新的思路。
參考文獻
[1] 姚? 碩, 劉鼎鑫, 韓? 戈, 等. 納米藥物在癌癥診療中的應用進展[J]. 中國細胞生物學學報, 2023, 45(12): 1945-1960.
[2] 李昀姝, 彭? 鵬, 張茜玥, 等. 載中藥納米材料促進骨與軟骨修復研究進展[J]. 中國中醫骨傷科雜志, 2024, 32(2): 92-96.
[3] DAD H A, GU T W, ZHU A Q, et al. Plant exosome-like nanovesicles: Emerging therapeutics and drug delivery nanoplatforms[J]. Molecular Therapy, 2021, 29(1): 13-31.
[4] HWANG J H, PARK Y S, KIM H S, et al. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice[J]. Journal of Controlled Release, 2023, 355: 184-198.
[5] CHEN X Y, LIU B L, LI X Z, et al. Identification of anti-inflammatory vesicle-like nanoparticles in honey[J]. Journal of Extracellular Vesicles, 2021, 10(4): e12069.
[6] SHEN Y X, ZHANG N, TIAN J L, et al. Advanced approaches for improving bioavailability and controlled release of anthocyanins[J]. Journal of Controlled Release, 2022, 341: 285-299.
[7] LI D F, TANG Q, YANG M F, et al. Plant-derived exosomal nanoparticles: Potential therapeutic for inflammatory bowel disease[J]. Nanoscale Advances, 2023, 5(14): 3575-3588.
[8] KIM J, LI S Y, ZHANG S Y, et al. Plant-derived exosome-like nanoparticles and their therapeutic activities[J]. Asian Journal of Pharmaceutical Sciences, 2022, 17(1): 53-69.
[9] BO?VER R D, TOWN J R, LI X, et al. Carbon dots for carbon dummies: The quantum and the molecular questions among some others[J]. Chemistry, 2022, 28(47): e202200748.
[10] GARCIA-MILLAN T, SWIFT T A, MORGAN D J, et al. Small variations in reaction conditions tune carbon dot fluorescence[J]. Nanoscale, 2022, 14(18): 6930-6940.
[11] MOHAMMADI R, NADERI-MANESH H, FARZIN L, et al. Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: A review[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 212: 114628.
[12] BALOU S, SHANDILYA P, PRIYE A. Carbon dots for photothermal applications[J]. Frontiers in Chemistry, 2022, 10: 1023602.
[13] XU J X, NING J, WANG Y, et al. Carbon dots as a promising therapeutic approach for combating cancer[J]. Bioorganic & Medicinal Chemistry, 2022, 72: 116987.
[14] 楊小瑜, 姜一平, 馮浩維, 等. 紫草外用傳統制劑與新型納米制劑的研究進展[J]. 中國藥房, 2023, 34(15): 1909-1914.
[15] 王? 燕, 周應學. 單分子膠束的制備及應用研究進展[J]. 化學研究與應用, 2024, 36(1): 10-27.
[16] 趙健清, 唐昭敏. 交聯星型聚合物膠束的制備及其抗腫瘤應用[J]. 工業微生物, 2023, 53(4): 10-12.
[17] GHEZZI M, PESCINA S, PADULA C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions[J]. Journal of Controlled Release, 2021, 332: 312-336.
[18] 鐘文嘉, 黃益穗, 劉灼波. 基于含水量-電導率擬合曲線模型優化丹參酮提取物微乳的研究[J]. 中國藥學雜志, 2024, 59(3): 256-262.
[19] MADHAVI N, BATTU H. Enhanced in vitro and ex vivo transdermal permeation of microemulsion gel of tapentadol hydrochloride[J]. International Microencapsulation Society, 2024, 41(2): 127-139.
[20] 王興芝, 代英輝, 王東凱. 脂質體的制備方法及應用的研究進展[J]. 中國藥劑學雜志(網絡版), 2024, 22(1): 14-24.
[21] 彭佩純, 潘姿蕗, 鄧? 鑫. 靶向載藥脂質體在腫瘤治療中的應用研究進展[J]. 山東醫藥, 2023, 63(17): 91-96.
[22] EYGERIS Y, GUPTA M, KIM J, et al. Chemistry of lipid nanoparticles for RNA delivery[J]. Accounts of Chemical Research, 2022, 55(1): 2-12.
[23] LUO D H, LI X Y, GUO S S, et al. Paclitaxel liposome, cisplatin and 5-fluorouracil-based induction chemotherapy followed by de-escalated intensity-modulated radiotherapy with concurrent cisplatin in stage IVA-IVB childhood nasopharyngeal carcinoma in endemic area: A phase II, single-arm trial[J]. The Lancet Regional Health Western Pacific, 2023, 40: 100895.
[24] GOLUBOVSKAYA V, SIENKIEWICZ J, SUN J Y, et al. CAR-NK cells generated with mRNA-LNPs kill tumor target cells in vitro and in vivo[J]. International Journal of Molecular Sciences, 2023, 24(17): 13364.
[25] CHATTERJEE K, LAKDAWALA S, QUADIR S S, et al. siRNA-based novel therapeutic strategies to improve effectiveness of antivirals: An insight[J]. AAPS PharmSciTech, 2023, 24(6): 170.
[26] ZHU H, HE W X. Ginger: A representative material of herb-derived exosome-like nanoparticles[J]. Frontiers in Nutrition, 2023, 10: 1223349.
[27] ZHU Z Z, LIAO L Y, GAO M W, et al. Garlic-derived exosome-like nanovesicles alleviate dextran sulphate sodium-induced mouse colitis via the TLR4/MyD88/NF-κB pathway and gut microbiota modulation[J]. Food & Function, 2023, 14(16): 7520-7534.
[28] LIU Y Y, JIANG Y, YANG Y F, et al. Houttuynia essential oil and its self-microemulsion preparation protect against LPS-induced murine mastitis by restoring the blood-milk barrier and inhibiting inflammation[J]. Frontiers in Immunology, 2022, 13: 842189.
[29] CARDOSO M, GASPAR V M, FERREIRA C, et al. Macrophage-targeted shikonin-loaded nanogels for modulation of inflammasome activation[J]. Nanomedicine, 2022, 42: 102548.
[30] SEO K, YOO J H, KIM J, et al. Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation[J]. Nanoscale, 2023, 15(12): 5798-5808.
[31] KIM J, ZHU Y, CHEN S H, et al. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood-brain-barrier penetration and tumor microenvironment modulation[J]. Journal of Nanobiotechnology, 2023, 21(1): 253.
[32] BEN-ZICHRI S, RAJENDRAN S, BHUNIA S K, et al. Resveratrol carbon dots disrupt mitochondrial function in cancer cells[J]. Bioconjugate Chemistry, 2022, 33(9): 1663-1671.
[33] MONDAL A, NAYAK A K, CHAKRABORTY P, et al. Natural polymeric nanobiocomposites for anti-cancer drug delivery therapeutics: A recent update[J]. Pharmaceutics, 2023, 15(8): 2064.
[34] MAO L, ZUO J, LIU Y J, et al. Alginate based films integrated with nitrogen-functionalized carbon dots and layered clay for active food packaging applications[J]. International Journal of Biological Macromolecules, 2023, 253(Pt 1): 126653.
[35] DUDUN A A, CHESNOKOVA D V, VOINOVA V V, et al. Changes in the gut microbiota composition during implantation of composite scaffolds based on poly(3-hydroxybutyrate) and alginate on the large-intestine wall[J]. Polymers, 2023, 15(17): 3649.
[36] LI J Y, PU Y J, LI S, et al. Orally administrated olsalazine-loaded multilayer pectin/chitosan/alginate composite microspheres for ulcerative colitis treatment[J]. Biomacromolecules, 2023, 24(5): 2250-2263.
[37] CHEN Y M, WONG C C, WENG P W, et al. Bioinspired and self-restorable alginate-tyramine hydrogels with plasma reinforcement for arthritis treatment[J]. International Journal of Biological Macromolecules, 2023, 250: 126105.
[38] CHI Y H, SHI L, LU S, et al. Inhibitory effect of Lonicera japonica-derived exosomal miR2911 on human papilloma virus[J]. Journal of Ethnopharmacology, 2024, 318(Pt B): 116969.
[39] FARHOUDI L, KESHARWANI P, MAJEED M, et al. Polymeric nanomicelles of curcumin: Potential applications in cancer[J]. International Journal of Pharmaceutics, 2022, 617: 121622.
[40] SHI W, MEN L T, PI X, et al. Shikonin suppresses colon cancer cell growth and exerts synergistic effects by regulating ADAM17 and the IL-6/STAT3 signaling pathway[J]. International Journal of Oncology, 2021, 59(6): 99.
[41] YAN C M, LI Q X, SUN Q, et al. Promising nanomedicines of shikonin for cancer therapy[J]. International Journal of Nanom?edicine, 2023, 18: 1195-1218.
[42] LI S Y, ZHANG T, XU W G, et al. Sarcoma-targeting peptide-decorated polypeptide nanogel intracellularly delivers shikonin for upregulated osteosarcoma necroptosis and diminished pulmonary metastasis[J]. Theranostics, 2018, 8(5): 1361-1375.
[43] ZHANG X Y, LIU H, LI N, et al. A (traditional Chinese medicine) TCM-inspired doxorubicin resistance reversing strategy: Preparation, characterization, and application of a co-loaded pH-sensitive liposome[J]. AAPS PharmSciTech, 2023, 24(7): 181.
[44] DENG W W, ZANG C R, LI Q C, et al. Hydrothermally derived green carbon dots from broccoli water extracts: Decreased toxicity, enhanced free-radical scavenging, and anti-inflammatory performance[J]. ACS Biomaterials Science & Engineering, 2023, 9(3): 1307-1319.
[45] YEO J, LEE J, YOON S, et al. Tannic acid-based nanogel as an efficient anti-inflammatory agent[J]. Biomaterials Science, 2020, 8(4): 1148-1159.
[46] CHEN Y B, ZHANG Y B, WANG Y L, et al. A novel inhalable quercetin-alginate nanogel as a promising therapy for acute lung injury[J]. Journal of Nanobiotechnology, 2022, 20(1): 272.
[47] LI T, WANG P L, GUO W B, et al. Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application[J]. ACS Nano, 2019, 13(6): 6770-6781.
[48] TIAN X H, WANG P L, LI T, et al. Self-assembled natural phytochemicals for synergistically antibacterial application from the enlightenment of traditional Chinese medicine combination[J]. Acta Pharmaceutica Sinica B, 2020, 10(9): 1784-1795.
[49] XU N, WANG L L, GUAN J J, et al. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model[J]. International Journal of Biological Macromolecules, 2018, 117: 102-107.
[50] XU J, XU J J, LIN Q Y, et al. Lignin-incorporated nanogel serving As an antioxidant biomaterial for wound healing[J]. ACS Applied Bio Materials, 2021, 4(1): 3-13.
[51] SHARMA A, KUHAD A, BHANDARI R. Novel nanotechnological approaches for treatment of skin-aging[J]. Journal of Tissue Viability, 2022, 31(3): 374-386.
[52] CHEN J, WEI N, LOPEZ-GARCIA M, et al. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117: 286-291.
[53] QADIR A, AHMAD U, ALI A, et al. Lipid engineered nanoparticle therapy for burn wound treatment[J]. Current Pharmaceutical Biotechnology, 2022, 23(12): 1449-1459.
[54] ESPOSITO E, NASTRUZZI C, SGUIZZATO M, et al. Nanomedi?cines to treat skin pathologies with natural molecules[J]. Current Pharmaceutical Design, 2019, 25(21): 2323-2337.
[55] KULAWIK A, CIELECKA-PIONTEK J, ZALEWSKI P. The importance of antioxidant activity for the health-promoting effect of lycopene[J]. Nutrients, 2023, 15(17): 3821.
[56] SILVA MENEGUELLI T, DUARTE VILLAS MISHIMA M, HERM?SDORFF HHM, et al. Effect of carotenoids on gut health and inflammatory status: A systematic review of in vivo animal studies[J]. Critical Reviews in Food Science and Nutrition, 2023: 1-16.
[57] CRUPI P, FAIENZA M F, NAEEM M Y, et al. Overview of the potential beneficial effects of carotenoids on consumer health and well-being[J]. Antioxidants, 2023, 12(5): 1069.
[58] LUO H, BAO Y H, ZHU P. Development of a novel functional yogurt rich in lycopene by Bacillus subtilis[J]. Food Chemistry, 2023, 407: 135142.
[59] ABDEL-NAIM A B, HASSANEIN E H M, BINMAHFOUZ L S, et al. Lycopene attenuates chlorpyrifos-induced hepatotoxicity in rats via activation of Nrf2/HO-1 axis[J]. Ecotoxicology and Environmental Safety, 2023, 262: 115122.
[60] ZHAO Y S, XIN Z, LI N N, et al. Nano-liposomes of lycopene reduces ischemic brain damage in rodents by regulating iron metabolism[J]. Free Radical Biology & Medicine, 2018, 124: 1-11.
[61] MA T Y, TANG B J, WANG Y, et al. Cinnamon oil solid self-microemulsion mediates chronic mild stress-induced depression in mice by modulating monoamine neurotransmitters, corticosterone, inflammation cytokines, and intestinal flora[J]. Heliyon, 2023, 9(6): e17125.
[62] LIU X M, WANG Y Z, YAN X, et al. Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect[J]. Nanomedicine, 2018, 13(4): 391-405.
〔基金項目〕四川省醫院協會青年藥師科研專項資金項目(22007);成都市醫學科研課題(2023459)。
〔通信作者〕*閆? 芳,女,博士,副主任醫師,E-mail:fangyan@cdutcm.edu.cn。