999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于貝葉斯網絡的航空化工材料信息快速檢索方法

2024-05-07 03:13:43李彬蕙
粘接 2024年3期

摘 要:提出了基于貝葉斯網絡的航空化工材料信息快速檢索方法。以飛機座艙軟連接用膠粘劑為研究對象,利用有向無環圖貝葉斯網絡,根據局域條件概率,計算多個變量的聯合概率分布,并對多個變量之間相關性分析。充分考慮檢索信息邊緣權值,在貝葉斯網絡統一表示模型下,計算多變量字符排序,達到快速抽取檢索關鍵詞的目的。使用索引詞描述檢索語句,計算索引詞近似度,引入K均值聚類算法,實現信息快速檢索。實驗結果表明,所研究方法召回率和準確率最大值分別是0.99和0.95,檢索耗時最短為0.1 s,能夠達到快速檢索的目的。

關鍵詞:貝葉斯網絡;航空化工材料;信息快速檢索;K均值聚類

中圖分類號:TQ433.4+32

文獻標志碼:A文章編號:1001-5922(2024)03-0061-04

A fast retrieval method for aerochemical material information based

on bayesian networks

LI Binhui

(Shanghai Aircraft Design and Research Institute,Shanghai? 2012104,China

Abstract:A fast retrieval method for aviation chemical material information based on Bayesian networks was proposed.Taking the adhesive used for soft connection of aircraft cockpit as the research object,the joint probability distribution of multiple variables was calculated based on local Conditional probability using Directed acyclic graph Bayesian network,and the correlation between multiple variables was analyzed.Fully considering the edge weights of retrieval information,the multivariate character sorting was calculated under the unified representation model of Bayesian networks to achieve the goal of quickly extracting retrieval keywords.The index terms were used to describe the search statement,the approximation of the index words was calculated,and the K-means clustering algorithm was introduced to realize the rapid retrieval of information.The experimental results showed that the maximum recall and accuracy of the proposed method were 0.99 and 0.95,respectively,and the shortest retrieval time was 0.1 s,which can achieve the purpose of fast retrieval.

Key words:bayesian network;aviation chemical materials;quick information retrieval;K-means clustering

近年來,關于航空化工原料的信息呈爆炸性增長,使得用戶可以方便快捷地獲取這些信息。然而,大部分用戶獲取的信息不完整。如提出了一種基于循環生成對抗網絡的檢索算法,首先構建了一種基于循環生成對抗網絡的詞項和信息互換模型,運用交互式學習法,在多個維度上,實現了對多模態數據的語義一致性約束[1]。提出了基于詞映射構建偽查詢的檢索算法,利用詞匯映射來構建偽查詢語句,首先使用共享 Transformer獲取查詢上下文,然后使用查詢和偽查詢之間的雙語交互注意機制獲取查詢的跨語言特征表達結果,最后通過雙語交互排序來獲得查詢與文檔的匹配分數,進而實現跨語言的信息檢索[2]。為此,研究提出了基于貝葉斯網絡的航空化工材料信息快速檢索方法。該方法以飛機座艙軟連接用膠粘劑為研究對象,

結合貝葉斯網絡算法和K均值聚類算法,對信息進行快速檢索。

1 航空化工材料膠粘劑

以飛機駕駛艙軟性連接用的膠粘劑為例,用到的原材料主要有:

癸二酸,

山東齊魯藍帆塑料助劑有限公司;

三元醇,

武漢克米克生物醫藥技術有限公司;

乙二醇,

冰川冷媒(山東)環保科技有限公司;

丙酮,

廣州富飛化工實力供應商;

催化劑,

江蘇林越環保科技有限公司。

將癸二酸、乙二醇和三元醇置于三頸的瓶子中,在160~170 ℃溫度下進行2 h的反應;最后,在220~230 ℃溫度下放置聚酯反應催化劑進行2 h的反應。然后,將其脫水至預定分子質量,進行冷卻取出,就可以進行聚酯的合成了。

膠粘試樣的強度計算公式,可表示為:

C=KH

(1)

式中:K表示破壞荷載;H表示試樣寬度[3]。

通過對所合成的聚氨酯膠粘劑的性質及一些影響其性質的因素的考察,對其添加了1%的催化劑,經過化學反應,得到二元、三元醇摩爾比為1∶0.3,異氰酸酯與聚酯的質量比例為1∶1的結論[4]。本產品具有良好的耐高、低溫性能,適用于各類飛機座艙的軟性連接。

2 基于貝葉斯網絡的膠粘劑信息快速檢索

將飛機座艙軟連接用膠粘劑為研究對象,將信息多變量相互關系分析結果輸入貝葉斯網絡統一表示模型,以此快速抽取檢索關鍵詞。計算索引詞近似度,引入K均值聚類算法,實現信息的快速檢索。

2.1 基于貝葉斯網絡的檢索信息多變量相互關系分析

貝葉斯網絡是一類不含回路的有向圖,它可以用局部的條件概率表達出多個變量集的聯合概率分布,也可以用來研究多個變量間的相關性[5]。基于此,構建的檢索模型如圖1所示。

因為化學材料膠粘劑的樣本節點在邏輯上將信息取回的節點與被取回的節點分開,使得它們彼此獨立,利用貝葉斯原理,可以求出分布的聯合概率:

Pai|b=∑cPai|c→×Pb|c→×Pc→Pb

(2)

式中:i表示節點總數;c→表示信息庫的單位向量[6]。

提取單位矢量的目標是將矢量中單一信息的影響納入考量,從而計算出該矢量對信息檢索節點以及被檢索節點的影響[7-8]。

因此,待檢索節點中樣本節點的影響可表示為:

H1ai|c→=ωj∑ij=1ω2j0c→∧b→=1其他

(3)

式中:ωj表示第j個樣本權值;b→表示待檢索節點的單位向量[9]。信息庫信息與待檢索信息相似度越高,則權值越大[10]。

對于航空化工材料膠粘劑信息庫和待檢索信息的關系,在二者之間加入索引詞節點,通過索引詞計算這二者分布的聯合概率:

Pai|c→=∑dPai|d→×Pd→|c→

(4)

式中:d→表示索引詞節點的單位向量[11]。通過該計算結果,能夠反映d→對ai和c→的影響,所以待檢索節點中索引詞節點的影響可表示為:

H1ai|d→=ωj∑ij=1ω2j0dj∧aj=1其他

(5)

用影響變量描述航空化工材料膠粘劑信息檢索要求,能夠避免用固定特征詞描述檢索而導致描述結果不全面的缺陷,更適合對膠粘劑信息的檢索[12]。通過上述分析,明確了概率檢索空間,具有更為堅實的檢索基礎。

2.2 基于Tag的檢索關鍵詞快速抽取

在膠粘劑檢索信息多變量交互作用下,由于未考慮檢索信息的邊界權,且不同詞項間的關聯度并不相同,所以假定2個信息之間的相關程度是相同的,使用Tag進行檢索關鍵詞快速抽取。Tag標記是一種高層次的語義信息,它能反映出信息的主要內容,被用戶標記的相關頁面可以作為附加信息,估計膠粘劑下詞項之間的關聯程度,而這種關聯程度可以作為信息的邊緣權重,從而影響到最終抽取結果。因此,針對每一個標簽,可以獲得一個信息的重要性排名,最終獲得的網頁關鍵詞可以被認為是一個集成了多種排名結果的過程,如圖2所示。

在貝葉斯網絡統一表示模型下,計算多變量字符排序,可表示為:

scorex=∑η1rankx,η

(6)

式中:x表示詞項;η表示排序結果[13]。

從對相同詞項進行多個排序的結果可以看出,排名分數較高的詞最終的得分也很高,通過Tag標記能夠有效解決多個交互文檔序同時檢索造成的檢索量大的問題[14]。使用Tag的關鍵詞抽取方式,在一個特定頁面上,假設已標注出相應特征信息,就可直接從特定頁面中抽取排名最高的關鍵詞。

2.3 基于貝葉斯網絡的信息快速檢索

結合檢索關鍵詞抽取結果,將某一特定的檢索關鍵詞的重要性作為一個聚類問題,計算檢索結果中的關鍵字和被檢索對象之間的相似性,并預先設置相應的閾值。當接近值大于閾值時,表示提取與具體信息相關;反之,則不相關。不同的膠粘劑信息詞在不同的標簽詞中所占的比例不同,因此,可以將膠粘劑信息詞的索引重要程度視為一個集群問題。膠粘劑信息的類間接近度在文件集中被引導為索引詞:

Ik=lgMmk

(7)

式中:M表示特定膠粘劑信息文檔總數;mk表示第k個信息出現的文檔數[15]。

基于該計算結果,使用索引詞將材料信息文檔內容描述出來的頻率進行統一化處理,結果為:

Dk=IkmaxIk1,Ik2,…Ikl·α

(8)

式中:Ikl表示第k個信息在文檔集合l中出現的導頻率;α表示文檔近似度系數。

使用索引詞對檢索語句描述,并通過以下公式計算索引詞近似度。

simai|b=∑ni=1ωij·Dk∑ni=1Dk2·∑ni=1ωij2

(9)

設置閾值λ,當simai|b≥λ時,膠粘劑信息檢索結果和目標檢索相關,否則無關。

引入K均值聚類算法設計了如圖3所示的信息快速檢索流程。

引入K均值聚類算法能夠將具有相同屬性的信息聚集在一起,劃分為多個種類,從而對具有不同屬性信息開展精準化檢索。

充分考慮膠粘劑信息中的噪聲數據對K均值聚類效果所產生的干擾,通過聚類分析將具有相同屬性的信息聚集為一類。根據膠粘劑用到的原材料,可將信息簇劃分為癸二酸、三元醇、乙二醇、丙酮、催化劑這5類,K均值聚類目標是使檢索平均誤差達到最小,公式為:

minε=∑vr=5∑x∈Zr‖x-φr‖22

(10)

式中:r表示信息量;Zr表示信息對應的簇;φr表示簇Zr的均值向量。

通過引入K均值聚類算法進行精準化檢索,降低檢索誤差。

3 實例分析

3.1 膠粘劑應用數據分析

飛機座艙邊緣連接對聚氨酯膠的黏性有較高的要求,其中以聚酯為主的聚氨酯膠的黏性要比以聚醚膠為主的聚酯膠黏性要好,所以選擇聚酯作為樹脂組成成分。聚氨酯膠粘劑的膠接強度分析,如表1所示。

由表1可知,二元、三元醇摩爾比對膠水的粘接強度有顯著影響,可通過調節二元醇與三元醇摩爾比而得到具有優良性能的聚酯。

3.2 仿真環境

為了能夠驗證基于貝葉斯網絡的航空化工材料信息快速檢索效果,建立了一個信息檢索環境。該環境使用了如圖4所示的檢索引擎。

為使用戶能夠從數以億計的原始網頁庫中迅速、方便地檢索到檢索結果,搜索引擎需要對這些原始網頁進行預處理。通過一定策略,將網絡上的特定信息提取出來,并反饋給用戶,為用戶提供快速、高關聯度的信息服務。

3.3 檢索指標

檢索指標主要有2種,分別是召回率和準確率。

實際情況下,2個指標均較高,說明信息檢索效果好。

3.4 檢索效果分析

為了驗證所研究方法的有效性,將其與基于循環生成對抗網絡的檢索算法、基于詞映射構建偽查詢的檢索算法進行對比,結果如圖6所示。

由圖6可知,使用基于循環生成對抗網絡的檢索算法召回率和準確率最大值分別是0.79%和0.54%;使用基于詞映射構建偽查詢的檢索算法召回率和準確率最大值分別是0.45%和0.38%;使用基于貝葉斯網絡的快速檢索方法召回率和準確率最大值分別是0.99%和0.95%。

為了驗證所研究方法能夠快速檢索,對比3種方法信息檢索耗時情況,結果如表2所示。

由表2可知,使用所研究方法相比于其他2種方法檢索時間要短,其中檢索原材料的最短時間為0.1 s,檢索膠接強度的最短時間為3 s。

4 結語

(1)使用有向無環圖貝葉斯網絡,明確了檢索信息多變量相互關系,在貝葉斯網絡統一表示模型下,解決了傳統方法只能單一抽取關鍵詞的問題;

(2)在貝葉斯網絡中引入K均值聚類算法,能夠達到快速檢索的目的。

【參考文獻】

[1] 聶為之,王巖,楊嵩,等.基于循環生成對抗網絡的跨媒體信息檢索算法[J].計算機學報,2022,45(7):1529-1538.

[2] 李巖,郭軍軍,余正濤,等.基于詞映射構建偽查詢改善低資源跨語言信息檢索研究[J].山西大學學報(自然科學版),2022,45(2):322-331.

[3] 高云梅,張淑慧.基于信息檢索與K均值聚類的化工產品精準推薦算法研究[J].粘接,2023,50(3):132-135.

[4] 王丹,王玫.一種適用于內部信息統籌與服務對像信息快速檢索仿真設計[J].粘接,2022,49(11):169-173.

[5] 劉思琦,孫曉寧.面向過程的信息搜索用戶學習交互框架研究[J].情報理論與實踐,2021,44(4):30-39.

[6] 陳翔,于池,楊光,等.基于雙重信息檢索的Bash代碼注釋生成方法[J].軟件學報,2023,34(3):1310-1329.

[7] 戎軍濤.用戶認知導向的動態信息檢索模型構建[J].圖書館,2022,328(1):69-76.

[8] 黨小琴.基于本體論的數字圖書館信息檢索技術[J].科技通報,2022,38(8):110-113.

[9] 張子建,劉俊宇,梁煜,等.基于知識圖譜的智能變電站一次設備信息檢索研究[J].電氣傳動,2022,52(5):70-75.

[10] 陳樂,劉迎春.基于用戶需求挖掘的交互式信息檢索算法設計[J].計算機仿真,2022,39(5):418-422.

[11] 杜剛,張磊,馬春光,等.基于屬性基隱私信息檢索的位置隱私保護方法[J].哈爾濱工程大學學報,2021,42(5):680-686.

[12] 葉承斌,李宏亨.基于LDAP的大數據瀏覽隱式反饋信息檢索仿真[J].計算機仿真,2021,38(12):449-453.

[13] 肖筱南,趙小平.智能控制中一類隨機信號的信息檢索優化算法[J].西安石油大學學報(自然科學版),2022,37(5):123-126.

[14] 柳利芳,馬園園.基于多視角對稱非負矩陣分解的跨模態信息檢索方法[J].山東大學學報(理學版),2022,57(7):65-72.

[15] 王海龍,柳林,林民,等.基于信息檢索及k均值聚類的音樂個性化推薦算法[J].吉林大學學報(工學版),2021,51(5):1845-1850.

收稿日期:2023-10-16;修回日期:2024-01-08

作者簡介:李彬蕙(1993-),女,碩士,工程師,研究方向:航空新材料設計應用;E-mail:chen19851221@126.com。

引文格式:李彬蕙.基于貝葉斯網絡的航空化工材料信息快速檢索方法[J].粘接,2024,51(3):61-64.

主站蜘蛛池模板: 婷婷亚洲综合五月天在线| 九九线精品视频在线观看| 丁香婷婷久久| 日本成人精品视频| YW尤物AV无码国产在线观看| 国产草草影院18成年视频| 亚洲欧洲天堂色AV| 亚洲日本精品一区二区| 中文字幕乱码二三区免费| 丝袜美女被出水视频一区| 国产麻豆永久视频| 91精选国产大片| 高清乱码精品福利在线视频| 中文字幕av无码不卡免费| 国产精品不卡片视频免费观看| 99国产精品免费观看视频| 丁香五月婷婷激情基地| 精品自窥自偷在线看| 国产精品无码一二三视频| 中文字幕久久波多野结衣| 萌白酱国产一区二区| 久久精品中文无码资源站| 夜夜操国产| 国产又大又粗又猛又爽的视频| 白丝美女办公室高潮喷水视频| 国产成人无码Av在线播放无广告| 国产高清无码第一十页在线观看| 东京热一区二区三区无码视频| 欧美在线伊人| 国产裸舞福利在线视频合集| 欧美国产精品不卡在线观看| 色欲综合久久中文字幕网| 国产精品伦视频观看免费| 免费激情网址| 欧美曰批视频免费播放免费| 1024你懂的国产精品| 毛片在线播放网址| 午夜性爽视频男人的天堂| 国产在线自在拍91精品黑人| 伊人久久大香线蕉综合影视| 国产免费a级片| 日韩小视频在线播放| 亚洲日韩欧美在线观看| 国产靠逼视频| 久久国产精品嫖妓| 无码专区在线观看| 五月婷婷综合网| 国产综合另类小说色区色噜噜 | 婷婷五月在线| 一本大道香蕉高清久久| 日韩欧美国产成人| av手机版在线播放| 亚洲国产欧美国产综合久久| 青青热久免费精品视频6| 亚洲V日韩V无码一区二区 | 国产chinese男男gay视频网| 毛片在线看网站| 国产在线小视频| 亚洲日韩Av中文字幕无码| 久草青青在线视频| 高清视频一区| 99er精品视频| 亚洲熟女偷拍| 亚洲一道AV无码午夜福利| 精品91自产拍在线| 尤物国产在线| 国产精品无码影视久久久久久久| 欧美综合区自拍亚洲综合天堂| 国产精品午夜电影| 午夜天堂视频| 亚洲乱强伦| 熟妇丰满人妻| 尤物精品国产福利网站| 在线播放91| 一区二区偷拍美女撒尿视频| 国产精品一区二区国产主播| 日韩在线网址| 一本大道无码日韩精品影视| 成人在线观看不卡| 夜精品a一区二区三区| AⅤ色综合久久天堂AV色综合 | 538国产在线|