金 劍,薛炳華
(河北大學經濟學院,河北 保定 071000)
戰略性新興產業大多為重點產業,從國際貿易角度來看,我國戰略性新興產業中既有競爭力較強的部門,也有短板部門,這體現了戰略性新興產業的復雜性[1]。這種復雜性特征也深刻影響著戰略性新興產業的研究,目前學術界采用的研究方法主要包括:基準回歸分析[2,3]、模糊集定性比較分析[4,5]、DEA模型[6,7]等。基于投入產出模型的部分研究對戰略性新興產業中的一些產業與環境之間的關系進行了探討。Fan等(2016)[8]對中國工業環境保護產業從產業鏈的角度測算和分析了各種系數,提倡積極推進環境融資。Chen(2015)[9]以水足跡測算中國臺灣新竹科學園集成電路產業、精密機械產業、生物科技產業對環境的影響。除此之外,還有學者利用結構分解模型對G7 國家高技術產業隱含碳排放進行分析,發現技術進步有效促進碳減排亦對中國戰略性新興產業發展具有參考價值[10]。
事實上,目前大部分戰略性新興產業投入產出表編制均有一定的局限性。國家統計局在2018 年才制定了《戰略性新興產業分類(2018)》標準,因此以往的投入產出表在編制過程中對戰略性新興產業分類界定并不清晰、規范。2018 年以后,鮮有戰略性新興產業投入產出表編制成果,一方面,由于《戰略性新興產業分類(2018)》細化至部門小類,因此數據難以獲得;另一方面,戰略性新興產業在國內國際雙循環背景下不斷創新,許多新興產業部門小類以往未進入大眾視野,導致數據處理經驗不足。鑒于此,本文采用時間比例因子漂移法確定分離系數編制戰略性新興產業投入產出表,基于投入產出技術對中國戰略性新興產業進行部門結構分析,以期準確把握戰略性新興產業整體情況,為政府部門采取針對性措施提供參考依據。
1.1.1 現有分離系數確定方法
編制戰略性新興產業投入產出表的關鍵是將全國投入產出表(153 部門)合并為39 部門后確定各部門與國民經濟行業部門中戰略性新興產業的對應關系,并將戰略性新興產業從中剝離出來。但在對應過程中,投入產出表中仍有部分部門同時存在戰略性新興產業與非戰略性新興產業部分。參考國家統計標準,戰略性新興產業主要包含于農林牧漁業等十七大門類中。然而,門類數據無法采取直接相加的方式來貼合戰略性新興產業投入產出實際數據,同時,目前與戰略性新興產業相關的基礎數據不完善,戰略性新興產業在包括但不限于十七大門類中的增加值等規模數據無法獲得。
鑒于此,本文依照許憲春和張美慧(2020)[11]對數字經濟核心產業的研究思路和測算方法,假定戰略性新興產業中間消耗占戰略性新興產業總產出的比重與相應產業中間消耗占總產出的比重相同,引入戰略性新興產業分離系數,即該行業部門中戰略性新興產業增加值占該部門總增加值的比重。利用該系數不僅可以將該部門戰略性新興產業活動的上下游關系進行分離,而且可以將戰略性新興產業活動所引發的增加值及形成的最終產品進行分離。
當前,對從全口徑投入產出表中分離某一產業的相應數據的方法主要有五種[12],分別為經驗法、統計法、就業人數法、產業分類法及比例因子漂移法。戰略性新興產業部門劃分細致,而《中國工業統計年鑒2021》有且僅有第二產業的小類行業的規模以上工業企業單位數等主要經濟指標,此時采取已有的通過戰略性新興產業部門企業單位數占合并后39部門投入產出表對應部門的比例的方法確定其中屬于第二產業部門的分離系數。
需要特別指出的是,其中歸屬于戰略性新興產業中核電產業部門(27)的核燃料加工(《國民經濟行業分類》(GB/T 4754-2017)中的對應代碼為2530)因其產品與軍事結合緊密及放射性污染等特殊原因,隸屬于原國家核工業部,相關數據難以查找,通過2021年《中國統計年鑒》可知2020年中國財政總支出為245679.03億元,其中,科學技術部門在國家財政支出中所占比例為3.67%,將此比例作為核燃料加工的分離系數。
1.1.2 時間比例因子漂移法
在上文提及的五類分離系數的確定方法中,就業人數法由于其可操作性強且較為科學合理一直被廣泛應用,但它同時受到數據可得性的限制。相較于就業人數法,比例因子漂移法以漂移因子大多由經驗估計而被認為主觀性較強,也因此限制了許多學者的研究。因而,為盡可能完全涵蓋戰略性新興產業部門,本文結合就業人數法給定基本分離因子,并引入i部門時間漂移因子τi,對漂移因子進行更加科學的補充及完善,這樣采用時間比例因子漂移法從投入產出總表中分離戰略性新興產業中的小類。
鑒于投入產出表中部門由大類、中類、小類組成,設戰略性新興產業分類中某部門i由若干小類ki構成,其中,p小類kiqp屬于國民經濟行業中的中類q,中類q及小類k就業人數分別為nq、nk,則基本分離因子μˉi可表示為:
在編制過程中,常常會出現部分年份數據不全的情況,若歷史年份數據充足,則可參考物理學狹義相對論中“時間膨脹”現象,以編表年份作為參考系觀測,將洛倫茲因子中的速度用編制年份及已有數據年份替換。為防止產生誤解,闡明“時間膨脹”公式適用條件,簡要介紹“時間膨脹”現象。物理學家亨德里克·安東·洛倫茲于20 世紀初提出了時空變換公式——洛倫茲變換,用于解釋測不到地球相對于“以太”參考系的運動速度的現象,該變換式是狹義相對論的基礎,愛因斯坦又基于狹義相對性原理和光速不變原理建立了包含運動學的系統的相對論,這也是“時間膨脹”鐘慢效應的由來。
在洛倫茲變換中,有兩個經典參照系:S和,他們分別表示靜止的慣性系和相對于S系做速度為v的勻速直線運動的慣性系,在兩個參照系下的四維時空坐標分別為在S系中,觀測者測得的質點沿x軸從A點到B點經歷的時間間隔為:
若物體固定于S′系中一點,此時測得的固有時間Δt′記作Δτ,則有:
這就是“時間膨脹”鐘慢效應公式,它成立的必要條件是物體相對于S′系靜止,而在觀測戰略性新興產業的數據隨時間變化的過程中,作為觀測者編制2020 年投入產出表相當于在2020 年審視2017 年的數據,因此以編表年份作為參考系觀測。由于速度與時間在路程一定時存在反比例關系,因此將洛倫茲因子中的速度用編制年份及已有數據年份替換時需要注意將已有年份作為“v”來處理。這是時間比例因子漂浮法的內核,符合物理學原理,具有現實意義,為該年份數據不充分的情況提供必要科學處理方法。
將替換后的結果結合經濟統計引入i部門時間漂移因子:
其中,λi為被剝離部門占所求部門個數比例,以戰略性新興產業部門剝離為例,需要從農林牧漁產品和服務部門中分離出生物醫藥產業(18)、生物農業及相關產業(20)、生物質能產業(21)、先進環保產業(33)及資源循環利用產業(34)中部分小類,此時λ=0.2。t0為已知數據年份,t為所求數據年份,Pi為i部門t0年換算后價格指數,τi為i部門時間漂移因子,I()· 為價格指數判定函數,其值為:
綜合上述參數及變量,可得時間比例因子法分離系數:
針對戰略性新興產業中屬于第一產業及第三產業的部分從2018年《中國基本單位統計年鑒》采用時間比例因子漂移法剝離,以下一代信息網絡產業部門(01)為例,其中屬于信息傳輸、軟件和信息技術服務部門的法人單位數為28243 個,占信息傳輸、軟件和信息技術服務部門法人單位數的3.97%,時間漂移因子通過式(5)和式(6)計算得到,其值為+0.0197,由式(7)得其對應分離系數為0.0399。同時,通過2021年《中國基本單位統計年鑒》采取傳統企業單位占比法得到的下一代信息網絡產業(01)部門對應39 部門投入產出表中信息傳輸、軟件和信息技術服務部門的分離系數為0.0457。
分別采用時間比例因子漂移法和傳統就業人數法剝離戰略性新興產業投入產出表,對比可知除信息傳輸、軟件和信息技術服務、科學研究和技術服務、金融及租賃和商務服務部門誤差在82.4%、56.8%、31.8%和18.5%外,其余部門相對誤差均在10%以內,可初步推斷在2017—2020年,四個部門發生較大技術進步,對戰略性新興產業產生了強烈影響。
誤差ε的計算公式為:
其中,εi表示i部門誤差,μi傳統代表采用傳統就業人數法獲取的i部門分離系數,μi時間指采用時間比例因子漂移法獲取的i部門分離系數。
1.1.3 結構分析方法
(1)結構分解
產業產出的增長率可分解為乘數效應、反饋效應及溢出效應三個部分。通過這種分解能夠反映產業部門間經濟技術聯系的變化來源進而掌握產業經濟增長的機制。參考Miller和Blair(1985)[13]的思路,運用結構分解技術,將Leontief逆矩陣分解為以下三個部分:
其中,Lij為Leontief逆矩陣中的元素,aij為直接消耗系數。
根據投入產出模型,在最終需求給定的情況下,i產業有以下恒等式:
根據式(10)可知,產業i的總產出可分解為三個部分,分別為由產業i自身最終需求變化導致的乘數效應M1i;由產業i最終需求增加作用于其他產業后,因產業之間的關聯作用反過來作用于產業i的反饋效應M2i;其他產業最終需求增加引起的溢出效應M3i。三者分別表征產業i的自我調節能力、產業i的反饋作用于自身的能力及產業i對其他產業的感應能力。
(2)結構路徑分解
借鑒陽立高等(2020)[14]的結構路徑分解法,從最終需求角度分析勞動者報酬等要素在各部門之間的傳導路徑,同時,產業各部門最終需求對勞動者報酬的拉動作用可以展現不同需求對研究對象的經濟要素的影響,拉動作用值由式(11)求得。
其中,VL為勞動報酬,AVL為勞動者報酬在總產出中的占比,X為總產出,I為單位矩陣,A為直接消耗系數矩陣,Y為最終需求向量。
將Leontief 逆矩陣展開,便可進一步得到最終需求對勞動者報酬的影響:
將上式中的直接消耗系數矩陣A展開可得到傳導路徑公式:
其中,AVLiYj表示部門i勞動者報酬的直接增量,AVLiAijYj表示部門i→部門j→勞動者報酬的一階路徑,AVLiAik AkjYj表示部門i→部門k→部門j→勞動者報酬的二階路徑。
(3)網絡結構分析
投入產出分析結合社會網絡的研究離不開產業部門及其關系的集合。整體網絡密度可以表征集合行業間關系的密切程度。密度越高,產業間指標的關聯度越高。對于有向的網絡規模N,網絡可能達到的關系總數為N(N-1),實際關系數為n,則網絡的整體密度ρ如下:
對于塊模型的分析是集中建立在可達性基礎上的凝聚子群分析之上的。本文設定一個臨界值作為凝聚子群產業部門之間距離的最大值,來查看部門間經濟技術聯系密切程度。一個點的點入度是進入該點的其他點的個數,即該點得到的直接關系數。一個點的點出度是該點直接發出的關系數。在研究網絡子群中產業部門的特點時,通常利用代表部門的點的出入度將這些點分為四類:孤立點,即既無點出度也無點入度的點;發送點,即只有點出度的點;接收點,即只有點入度的點;傳遞點,即既有點入度又有點出度的點。
盡管中國對戰略性新興產業的分類及范圍界定清晰,但戰略性新興產業投入產出分析仍處于初步探索階段,編制2020年戰略性新興產業投入產出表需確定全國投入產出表與國民經濟行業部門中戰略性新興產業的對應關系。根據國家統計局《戰略性新興產業分類(2018)》的分類標準,將戰略性新興產業范圍界定為40類(見表1)。由于制定的《戰略性新興產業分類(2018)》細化至《國民經濟行業分類》(GB/T 4754-2017)中的小類,分離系數所需數據較難查找。為保證所編表格的準確性、應用范圍豐富性及時效性,本文以國家統計局公布的2020 年(153 部門×153部門)全國投入產出表為基礎,利用2021年《中國統計年鑒》《中國工業統計年鑒》、2018 年和2021 年《中國基本單位統計年鑒》等相關數據,編制2020年戰略性新興產業投入產出表。

表1 戰略性新興產業范圍界定
通過時間比例因子漂移法編制的戰略性新興產業投入產出表基本表式見表2。共包含43個產業部門,其中前40 個為戰略性新興產業部門,41—43 部門為非戰略性新興產業部門,分別為除戰略性新興產業部門外的其他第一產業、其他第二產業和其他第三產業。

表2 戰略性新興產業投入產出表基本表式
表2中橫向表示的是第i部門對各個部門供給中間消耗的量,縱向表示的是第j部門消耗對應部門中間消耗的量。第二象限是最終使用數據,體現的43 個產業部門在消費、資本形成以及進出口的分配情況。第三象限中是43 個產業部門勞動報酬、生產稅凈值、固定資產折舊、營業盈余數據,反映了各部門增加值的分布情況。在原有2020 年全國投入產出表的基礎上,通過分離系數整理剝離戰略性新興產業數據后,計算得到2020 年戰略性新興產業投入產出表。
在通過時間比例因子漂移法分離得到的戰略性新興產業投入產出表的基礎上,分析戰略性新興產業部門結構,反映戰略性新興產業宏觀經濟運行的現狀,更準確地對中國宏觀經濟各個層面的數量規律進行探討。
基于時間比例因子漂移法分離得到的戰略性新興產業投入產出表進而獲得結構關聯效應值,結果如圖1 所示。從總乘數效應來看,2020 年各戰略性新興產業部門總乘數從大到小前五名依次為:資源循環利用產業(34)、電子核心產業(02)、高效節能產業(12)、先進有色金屬材料(12)、前沿新材料(16)。這些產業多為需要高精尖技術的制造業,但就其他部門產出效應來看,要想戰略性新興產業促進經濟增長,不能一味地促進高精尖技術的制造類產業與先進技術的融合,還應當注意傳統產業經濟部門對經濟增長的作用。

圖1 戰略性新興產業結構關聯靜態效應
綜合來看,在戰略性新興產業部門(01—40)中,除電子核心產業(02)等13 個部門乘數效應小于溢出效應外,均存在乘數效應>溢出效應>反饋效應的現象。在產業部門視角下,節能環保產業相關部門(32—34)相比于其他產業具有較高的乘數效應和溢出效應,代表其具有較強的自我調節能力和對其他產業感應能力,在戰略性新興產業結構關聯中占據重要地位。就三種效應而言,反饋效應占比處于弱勢,這是因為戰略性新興產業多生產最終產品,具有“高附加值”“尖端產業融合”等特點,與直接消耗系數聯系可知,產業部門產品多用于自身消耗,產業關聯反作用不明顯也在情理之中。
基于時間比例因子漂移法編制的戰略性新興產業投入產出表,按拉動值從高到低對戰略性新興產業勞動者報酬傳導路徑進行排序,可以發現:在前20條路徑中,2020 年由戰略性新興產業部門的最終需求引起的勞動者報酬增加量相對較大的路徑主要是“新興軟件和新型信息技術服務部門→新能源汽車相關服務部門最終需求”“新興軟件和新型信息技術服務部門→新技術與創新創業服務部門最終需求”“新能源汽車相關服務部門→新技術與創新創業服務部門最終需求”“新興軟件和新型信息技術服務部門→數字創意與融合服務部門最終需求”等路徑,拉動值分別為8393.18 億元、7297.82 億元、6068.61億元、5961.38億元。
從路徑類型來看,2020 年最終需求對勞動者報酬影響最大的路徑類型均為路徑“傳統經濟部門→(中間產品)→傳統經濟部門最終需求”,中間產品涉及各個部門,但在前20條路徑中沒有體現。其路徑起點多為新一代信息技術產業以及新能源汽車產業等技術更新換代較快、綜合效益好的產業部門,而中間產品則多為各戰略性新興產業部門。表明中國勞動者報酬的增長主要是由各部門的最終需求直接作用于其他部門所引起,同時各部門之間的關聯作用對勞動者報酬的拉動作用也較為重要。
結合上述結構路徑分解,直接消耗系數矩陣A的平方為戰略性新興產業部門間一次傳導的間接消耗系數[15]。通過刻畫網絡視角下戰略性新興產業部門間關系,直觀說明戰略性新興產業各部門間消耗關聯。圖2展示了基于2020年戰略性新興產業投入產出表間接消耗矩陣構建的43 部門行業關聯網絡,圖中數字為部門行業代碼。

圖2 基于2020年戰略性新興產業投入產出表的43部門行業關聯網絡圖
表示整體網絡結構特征的指標主要是密度,圖2中合作網絡密度為0.0102,相對較低,說明此網絡較為稀疏,這與選取的部門數量較多,而矩陣A2僅表達一次傳導,分散了其網絡聯系有關。為從圖2 中區分部門聯系的密集與稀疏,采用凝聚子群分析,結果如圖3所示。

圖3 基于2020年戰略性新興產業投入產出表的43部門凝聚子群圖
在圖2中線段較為密集的四個部門(部門代碼34、41、42、43)可以分為兩類,其中一類部門代碼是34 與41。除這四個部門外,其余部門可分為2或4類,這些類別對于認知不同部門行業特征具有一定參考意義。若其余部門分為4 類,以第一類(部門代碼01、02、08、35、07)為例,這些部門均與計算機、電信或通信等設備或活動有關,新一代知識技術密集特征明顯。
由于戰略性新興產業部門間均有投入產出關系,表達不同部門間連接關系的出入度需附加矩陣A2中的值,得到賦予權重后的出入度,將結果按出度由高到低排列,見表3。

表3 基于2020年戰略性新興產業投入產出表的43部門出入度
整體來看,戰略性新興產業各部門出入度均有差異,反映了戰略性新興產業各部門從供給和需求角度在經濟系統中發揮不同作用,側面印證了從多個視角觀測戰略性新興產業行業重要程度的必要性。各個部門均為子群間的“傳遞點”,網絡中不含“孤立點”“發送點”和“接收點”,表明戰略性新興產業各部門間聯系密切。出度較大的三個部門分別為其他第三產業(43)、其他第二產業(42)及資源循環利用產業(34),這三個部門為戰略性新興產業其他部門生產提供了一次傳導必要產品,作為戰略性新興產業大多數部門的上游部門,需要確保供給原料的質量安全。而入度較大的數字創意技術設備制造(35)、軌道交通裝備產業(09)、新能源汽車整車制造(23)等部門,以最終產品為導向,處于產業鏈末端,更加需要迎合市場需求,優化產品結構功能,為戰略性新興產業塑造更為創新的格局。
本文基于2020 年全國投入產出表,根據國家統計局《戰略性新興產業分類(2018)》的分類標準,采用時間比例因子法分離系數獲取戰略性新興產業各部門數據,編制了2020 年戰略性新興產業投入產出表,并根據結果進行結構分析。得出如下結論:第一,戰略性新興產業部門大多存在乘數效應和溢出效應強的現象,相較而言反饋效應占比處于弱勢,這與戰略性新興產業“高附加值”“尖端產業融合”特征有關。在產業部門視角下,節能環保產業相關部門(32—34)具有較強的自我調節能力和對其他產業感應能力,在戰略性新興產業結構關聯中占據重要地位。第二,戰略性新興產業需求對勞動者報酬的拉動主要是由技術更新換代較快、綜合效益好的產業所引起,新一代信息技術產業中的新興軟件和新型信息技術服務部門(03)富含高技術人才,使得部門最終需求對勞動者報酬的拉動作用在逐漸增強。第三,戰略性新興產業部門間一次傳導網絡較為稀疏,但各部門賦權后出入度均不為零,表明了戰略性新興產業部門間聯系密切。出度較大的資源循環利用產業(34)部門作為戰略性新興產業大多數部門的上游部門,需要確保供給原料的質量安全。而入度較大的數字創意技術設備制造(35)等部門,以最終產品為導向,處于產業鏈末端,更加需要迎合市場需求,優化產品結構功能,為戰略性新興產業塑造更為創新的格局。