王雙明,孫強,胡鑫,耿濟世,薛圣澤,劉浪,師慶民,魏江波



摘要:“雙碳”目標下,面對“缺油、少氣、相對富煤”的資源稟賦特征,煤炭在一段時期內仍占據中國的主體能源地位,但煤炭的低碳、清潔開發轉型勢在必行。地下原位熱解、氣化、干餾、制氫等方式有望成為未來煤炭開發的重要抓手。當前對煤炭原位開發已有較多探索,但地質選址和開發過程的地質安全性、可靠性和環保性仍是制約其規?;蜕虡I化的科學難題。因此,煤炭原位開發地質保障的理論和技術研究亟待深入。秉持“安全、經濟、環保、可持續”原則,從煤炭資源稟賦特征和地質條件出發,分析了煤炭原位開發研究現狀;基于煤炭開發全生命周期的科學理念,提出了“煤炭原位開發地質保障”的科學內涵;在查明采前地質條件的基礎上,從物理機制角度揭示深部原位開發過程中圍巖地質體響應特征和損害規律,闡明原位開發中巖體工程地質力學行為,構建原位開發地質條件動態評價模型,形成原位開發減損保障策略和方法,提出原位開發空間的再利用途徑,并以煤炭地下氣化和地下熱解2種開發模式為例闡述了原位開發階段性,明確了原位開發區設計的地質條件要素,強調開發過程中實時動態監測和評價圍巖地質體響應保證開發區密封性與安全性,實現地質條件時空演化的評價及地質風險可控性,此外注重協同開發深部熱能與共伴生資源,實現殘余資源利用和地下空間再利用。煤炭原位地質保障研究體現了資源賦存條件、地質環境約束、原位開發技術、地質風險防控、資源協同開發等層面的要求,突出了原位擾動條件下的地質條件變化,強調開發擾動與地質體結構的整體研究,理解原位開發時空效應范疇的多相場耦合損傷機制,從多圈層角度揭示原位開發擾動效應下地質風險模式,破解資源開發與地質環境制約之間矛盾,對于推動未來煤炭低碳開發,實現煤炭工業高質量發展具有重要的理論和實踐指導意義。
關鍵詞:深埋煤層;原位開發;碳中和;地質儲能
中圖分類號:TD 823文獻標志碼:A
文章編號:1672-9315(2024)01-0001-11
DOI:10.13800/j.cnki.xakjdxxb.2024.0101開放科學(資源服務)標識碼(OSID):
Geological guarantee for in-situ development of coal
WANG Shuangming1,2,3,SUN Qiang1,2,3,HU Xin1,2,3,GENG Jishi1,2,3,
XUE Shengze1,2,3,LIU Lang4,SHI Qingmin1,2,3,WEI Jiangbo1,2,3(1.Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation,
Xian University of Science and Technology,Xian 710054,China;
2.Geological Research Institute for Coal Green Mining,Xian University of Science and Technology,Xian? 710054,China;
3.College of Geology and Environment,Xian University of Science and Technology,Xian 710054,China;
4.College of? Energy Science and Engineering,Xian? University of Science and Technology,Xian 710054,China)
Abstract:Under the “dual carbon” target,faced with the resource endowment characteristics of “shortage of oil,scarcity of gas,and relative abundance of coal”,coal still occupies a dominant position in Chinas primary energy sector for a certain period.And it is imperative to develop the low-carbon and clean? transformation of coal.Underground in-situ pyrolysis,gasification,dry distillation,hydrogen production and other methods are expected to become important approaches for future coal development.At present,there have been many explorations on in-situ coal development第1期王雙明,等:煤炭原位開發地質保障,but the geological safety,reliability,and environmental protection of geological site selection and development process are still scientific challenges that constrain its scale and commercialization.Therefore,the theoretical and technical research on geological guarantee for in-situ coal development? needs to be deepened urgently.Adhering to the principles of “safety,economy,environmental protection,and sustainability”,this paper analyzes the current research status of coal in-situ development,starting from the characteristics of coal resource endowment and geological conditions.Based on the scientific concept of the entire life cycle of coal development,the scientific connotation of “geological guarantee for coal in-situ development” is proposed.By identifying pre-mining geological conditions,the response characteristics and damage laws of surrounding rock geological bodies during the deep in-situ development process are revealed from the perspective of physical mechanisms,clarify the geological and mechanical behavior of rock mass engineering in in-situ development,construct a dynamic evaluation model for geological conditions in in-situ development,form a loss reduction guarantee strategy and method for in-situ development,and propose ways to reuse in-situ development space.Taking two development models of underground coal gasification and underground pyrolysis as examples,this paper elaborates on the phased nature of in-situ development,clarifies the geological conditions elements of in-situ Development Zone? design,emphasizes real-time dynamic monitoring and evaluation of surrounding rock geological response during the development process to ensure the sealing and safety of the development zone,and achieves the evaluation of geological conditionsspatiotemporal evolution and geological risk controllability.In addition,the emphasis is placed on collaborative development of deep thermal energy and co-associated resources,achieving the utilization of residual resources and the reuse of underground space.The research on in-situ geological guarantee of coal reflects the requirements of resource occurrence conditions,geological environment constraints,in-situ development technology,geological risk prevention and control,and resource collaborative development.It attaches importance on? the changes in geological conditions under in-situ disturbance conditions,emphasizes the overall study of development disturbance and geological body structure,and recognizes the multiphase field coupling damage mechanism in the field of spatiotemporal effects of in-situ development.To reveal the geological risk mode under the disturbance effect of in-situ development from a multi layer perspective,and to identify the contradiction between resource development and geological environmental constraints has important theoretical and practical guiding significance for promoting low-carbon coal development in the future and achieving high-quality development of the coal industry.
Key words:deep-buried coal seams;in-situ development;carbon neutrality;geological energy-storage
0引言
面對“缺油、少氣、相對富煤”的資源稟賦特征,煤炭成為中國國民經濟發展和能源戰略安全的兜底保障[1],在未來一段時期仍將占據能源消費結構主體地位[2-5]。然而,隨著煤炭資源的開采,淺埋煤炭資源日益減少,開采地球深部煤炭資源成為中國戰略能源開發必將面臨的挑戰[6-8]。習近平總書記指出,地表至地下10 000 m范圍內均為可利用的成礦空間,目前世界先進水平勘探開采深度可達2 500~4 000 m,國內大多小于500 m。而據統計,中國53%的煤炭埋深在千米以下,深部豐富的煤炭資源還有待開發利用[9-10]。目前煤礦開采深度以每年8~12 m的速度增加,預計未來幾十年中國很多煤礦將進入到1 000~1 500 m的深度[11],但深部煤炭開發存在勘探難度大、地溫高、地應力大等問題[12-14]。同時,隨著東部煤炭資源逐漸枯竭,西部生態脆弱區已成為中國煤炭開采的主戰場[15]。傳統煤炭開采方法面臨著保護煤柱、極薄煤層等資源難以利用的問題,且對地質環境條件擾動損害大。為實現習近平總書記提出的“綠水青山就是金山銀山”的生態文明發展理念,推動煤炭工業高質量發展,必須協調煤炭開發與“綠水青山”生態文明建設的矛盾,減損開采已成大勢所趨[16-18]。
自2020年中國提出“碳達峰、碳中和”目標以來,煤炭工業必然朝著“綠色低碳減排、清潔高效利用”發展路徑推進,對常規采煤工藝轉型提出了嚴峻的要求[19],探索與應用新的開采技術愈加重要[20-23]。煤炭原位開發是通過把煤炭資源原位轉化為氣態和液態物質(如CH4、H2、CO、低碳烷烴、焦油等)進而開發利用的方法,包括原位熱解、氣化、干餾、制氫等,具有預防地面塌陷、實現煤炭高效利用、降低生產成本、空間封存CO2等優勢[24-26],為深部煤炭資源高效、安全、清潔開發提供了好的思路,能夠有效提升資源的利用率,也響應了低碳的時代主題[27-29]。
在闡明煤炭原位開發模式的基礎上,論述了煤炭原位開發地質保障的科學內涵,理清了煤炭原位開發與地質條件的約束關系,提出了煤炭原位開采減損地質保障理論研究的關鍵科學問題,構建了原位開發地質保障體系,服務于煤炭資源原位開發全過程,破解國家能源需求與地質條件損害的矛盾。
1原位開發地質保障內涵
“碳達峰、碳中和”國家戰略目標的落地和實施,將推動國家能源生產與消費體系變革。如何在低碳目標要求下增強中國能源自給能力,保障能源安全,筑牢強國和可持續發展基石,是當前能源科技領域亟待攻關的重要議題。面對“缺油、少氣、相對富煤”的能源稟賦條件,未來一段時期內,煤炭在中國的能源結構中依然占據主體地位,但逐漸轉向清潔高效開發利用[30]。當前,西部煤炭基地已經成為中國煤炭開發的主戰場,傳統開采面臨著生態環境脆弱,地質條件損害嚴重的難題。因此,煤炭開發利用需要根本性變革,才能在“雙碳”背景下實現中國能源的安全、綠色與可持續供給[31-32],同時實現“綠水青山”的生態文明建設要求。
煤炭原位開發(In-Situ Coal Development,ISCD)是變革性開發途徑,有望成為實現煤炭清潔低碳開發的重要抓手[33]。ISCD的開發理念是指在適宜的地質條件下,構建原位開發區(In-Situ Development Zone,ISDZ),將深部煤炭資源原位轉化為氣態和液態物質(如CH4、H2、CO、低碳烷烴、焦油等)進而開發利用,同時實現深部取熱、儲能以及碳封存等(圖1)。前人在原位開發領域進行了大量開發利用試驗和探索工作,其主要開發方式如圖2所示。
地質條件是制約ISCD推廣的重要因素之一,其中原位開發區的封閉性、安全性、環保性、經濟性和可靠性是亟待解決的科學問題。原位開發時,巖層結構會隨著開發時間與空間出現顯著的變化,造成地質條件和功能的損害[34-36],體現在原位開發區的封閉性和地質環境協調性,進而影響工程的可靠和安全性(圖3),這也是制約深部煤炭資源原位安全開發的瓶頸。
原位開發地質保障的科學內涵主要體現在:以深部煤炭原位開發為背景,采取理論研究、室內試驗和數值分析相結合的方法,從物理機制角度揭示深部原位開發過程中圍巖地質體響應特征和損害規律,闡明原位開發中巖體工程地質力學行為,提出原位開發地質條件動態評價模型,形成原位開發減損保障策略和方法,提出空間的再利用途徑,為原位安全開采提供系統性的基礎理論支撐。
2原位開發模式的地質約束
原位開發是深部煤炭資源減損利用的重要抓手,關于煤炭原位開發的途徑已有探討,如圖1、圖2所示,目前對煤炭原位氣化和原位熱解已有探索性工程試驗研究[37-38],原位生物氣化和液化開發多集中在試驗階段,這里以原位氣化(Underground Coal Gasification,UCG)和熱解(Underground Coal Pyrolysis,UCP)為例闡釋原位開發模式 。
2.1原位開發地質條件
與傳統井工開采相比,原位開發受到更為嚴格的地質條件制約。地質構造、巖(煤)層空間組合和展布特征、地應力、煤及圍巖力學性質、水文地質、地質環境等構成了原位開發核心地質要素,體現在資源稟賦特征和開發條件約束2個方面。因此,煤炭原位開發地質條件研究包含了開發前地質結構精準探查與評價(圖4),開發過程中圍巖地質結構響應機制與風險調控技術、開發后殘留資源開發與環境保護3個層面的內容,需要對開發前靜態地質條件和開發擾動地質條件進行探索(圖5)。
2.2煤炭原位開發模式
2.2.1煤炭原位氣化
煤炭地下氣化(UCG)通過對地下煤炭進行有控制地燃燒,在高溫熱作用及化學作用下產生可利用的CH4、H2、CO等氣體的煤炭開發方式(圖6)[39-41]。在煤炭地下原位氣化的開發過程中,主要包括建設前評價、氣化設施建設、煤炭氣化和產物分級處理4個階段。建設前評價階段主要是基于煤炭賦存地質條件的精細勘查,對地質條件進行系統評價,揭示煤炭地下原位氣化場地內煤、巖、水賦存特征及其與周邊生態環境的時空聯系。依據注入孔與出氣孔的位置來選址建設氣化設施,煤炭氣化過程和產物分級處理如圖7所示。
2.2.2煤炭原位熱解
煤炭原位熱解是將熱量導入地下煤層并對其直接加熱,煤炭的固態有機質受熱發生裂解后,將產生的液態和氣態有機質提取至地面進行處理加工的過程[42-43](圖8)。與煤炭地下氣化相似,煤炭地下熱解過程中煤層在熱效應下的物理力學性質變化也會導致煤層圍巖損害,從而引起巖層開裂失穩,熱解區封閉性失效,影響熱解進程的連續性和安全性,因此,深入研究煤及圍巖在原位地應力、地層溫度、地質結構等賦存環境下對熱解的響應行為和評價方法極為關鍵(圖9)。
2.3原位開發階段劃分及保障系統
煤炭原位開發分為采前、采中、采后3個階段(圖10)。采前階段需要結合地質條件因素根據戰略需求、資源數量、資源稟賦、開發模式對原位開發戰略進行評價與規劃。依據地質勘探結果設計原位開發區,保證開發區的密封性與安全性。采中階段監測原位開發過程中圍巖地質體響應,及時預測與防控地質風險。協同開發熱能與共伴生能源,提升資源利用率的同時保障原位開發的順暢性與產物潔凈性。原位開發采后階段回收利用殘余資源,依據采后地質條件評價空間封閉性與可儲性,探索資源可持續性[45-46]。做到煤炭原位開發全生命周期與地質條件的緊密結合,保障資源安全、經濟、環保、可持續開發。
煤炭原位開發地質保障是涉及到多學科的系統性研究[47-52]。煤炭原位開發需要做到地質條件透明化、信息反饋實時化、分析監控全程化、潛在風險可控化、開發過程信息化、科學研究系統化(圖11)。
2.3.1透明化
原位開發前應精細查明場地范圍內的地質條件與地質環境,在開發區域內的地表及地下反應區建立可視化監控測試體系,健全數據共享及全面評價體系,為地質保障技術的應用與實施提供專業支持,便于全面深入研究原位開發過程中涉及的演化機制,有利于提高原位開發技術水平,優化開發進程。
2.3.2實時化
實時監測原位開發全過程中的地質條件變化信息,根據地質環境特征隨開發進程的演化規律,構建三維可視化地質模型,結合數值模擬手段和監測數據進行實時反演和超前預測,準確評價原位開發過程中各參數的變化特征及穩定性。
2.3.3全程化
確保對煤炭原位開發的地質保障在原位開發前、中、后各階段貫穿始終。在開發前開展精準深入的地質條件及風險評價工作[53];在開發過程中建立全面有效的動態實時監測體系,堅持“持續監測—及時反饋—精準調控”的原則,對原位開發全過程進行科學保障。
2.3.4可控化
根據“井下無人”的指導原則,建立針對煤炭原位開發全過程的地上智能操控系統,針對覆巖變形破壞特征、煤炭開發進程、安全性評價指標等建立監測預警防控機制[54]。根據實時數據對原位開發進程進行精細化參數調整與過程控制,及時有效處置突發情況,確保原位開發進程安全穩定推進。
2.3.5信息化
按照時間順序,對原位開發全過程中的各項信息進行數據化整理與存儲,建立可根據開發進程、評價指標參數和開發區域進行索引的分類分級數據庫,便于研究過程中隨時調取各項數據進行對比分析。
2.3.6系統化
根據煤炭原位開發過程中收集到的各指標數據,對原位開發過程中的地質演化過程及圍巖高溫熱損傷機制進行準確闡述與揭示。針對原位開發過程中的宏觀變化特征,結合數值模擬預測結果,有針對性地采用科學技術手段為煤炭原位開發保駕護航。
3原位開發地質保障科學問題
煤炭開發地質保障體系的科學研究主要表現為6個方面。①原位開發靜態基礎地質條件分析與評價研究;②煤系與巖層結構精細刻畫及力學、水文參數研究;③開發條件下圍巖地質體動態演化規律及損傷機制;④原位開發地質風險模式及判識方法;⑤地質風險應對策略及關鍵減損技術;⑥污染-廢棄物(固-液-氣)防控與剩余資源再利用。上述6個方面體現了資源賦存條件、地質環境約束、原位開發技術、地質風險防控、資源協同開發等層面的要求,突出原位擾動條件下的地質條件變化,強調開發擾動與地質體結構整體研究;理解原位開發時空效應范疇的多相場耦合損傷機制(圖12)。從多圈層角度揭示原位開發擾動效應下地質風險模式,提出原位開發剩余資源開發策略,破解資源開發與地質環境制約的矛盾(圖13)。
4結論
1)隨著中國“雙碳”戰略實施和生態文明建設的推進以及煤炭開采深度的增加,亟待創新煤炭開發方式。以煤炭地下氣化、熱解、制氫、發電等代表的原位開發模式有望成為未來煤炭開發利用的重要抓手,但受煤炭賦存地質條件的復雜性和開發過程中潛在的圍巖地質體損傷誘發地質風險影響,原位開發地質選址、評價和開發全生命周期的安全性、可靠性和環保性仍是制約其規?;蜕虡I化的關鍵瓶頸。
2)基于“安全、經濟、環保、可持續”原則,煤炭原位開發地質保障的科學內涵體現在:煤炭開發全生命周期的地質條件的精細探查和評價,深部圍巖地質體動態響應特征的實時監測與反演,煤巖工程地質力學行為及時空演化模式的分析,原位開發地質條件動態評價模型的構建,包含殘留資源及空間再利用途徑的開發減損保障策略和方法的形成。
3)原位開發地質保障涵蓋了資源賦存條件、地質環境約束、原位開發技術、地質風險防控、資源協同開發等層面要求,強調原位開發過程中原位開發區設計的地質條件要素構成,明確動態監測和評價圍巖地質體響應是保證開發區密封性與開發安全性的核心內容,突出原位擾動條件下的地質條件變化,破解資源開發與地質環境制約的矛盾。煤炭原位開發地質保障研究對于推動未來煤炭低碳開發,實現煤炭工業高質量發展具有重要的理論和實踐指導意義。
參考文獻(References):
[1]劉耀彬,吳學平,傅春.中國煤炭城市分類及其經濟運行軌跡分析[J].資源科學,2007,29(3):2-7.
LIU Yaobin,WU Xueping,FU Chun.Classification and economic development track of coal mining cities in China[J].Resources Science,2007,29(3):2-7.
[2]張建強,寧樹正,陳美英,等.我國煤炭資源開發前景及對策[J].地質論評,2020,66(S1):143-145.
ZHANG Jianqiang,NING Shuzheng,CHEN Meiying,et al.Prospects and countermeasures of coal resources development in China[J].Geological Review,2020,66(S1):143-145.
[3]謝和平,任世華,謝亞辰,等.碳中和目標下煤炭行業發展機遇[J].煤炭學報,2021,46(7):2197-2211.
XIE Heping,REN Shihua,XIE Yachen,et al.Development opportunities of the coal industry towards the goal of carbon neutrality[J].Journal of China Coal Society,2021,46(7):2197-2211.
[4]來興平,方賢威.“雙碳”目標驅動西部煤炭分階控碳減熵增效與協同發展路徑[J].西安科技大學報,2022,42(5):841-848.
LAI Xingping,FANG Xianwei.Exploration of carbon control,entropy reducton,effcency increase and their coordinated development for coal in Western China under “Dual Carbon” target[J].Journal of Xian University of Science and Technology,2022,42(5):841-848.
[5]張吉雄,張強,巨峰,等.深部煤炭資源采選充綠色化開采理論與技術[J].煤炭學報,2018,43(2):377-389.
ZHANG Jixiong,ZHANG Qiang,JU Feng,et al.Theory and technique of greening mining integrating mining,separating and backfilling in deep coal resources[J].Journal of China Coal Society,2018,43(2):377-389.
[6]孫強,張衛強,耿濟世,等.利用煤炭開發地下空間儲能的技術路徑與地質保障[J].煤田地質與勘探,2023,51(2):229-242.
SUN Qiang,ZHANG Weiqiang,GENG Jishi,et al.Technological path and geological guarantee for energy storage in underground space formed by coal mining[J].Coal Geology & Exploration,2023,51(2):229-242.
[7]侯梅芳.碳中和目標下中國能源轉型和能源安全的現狀、挑戰與對策[J].西南石油大學學報(自然科學版),2023,45(2):1-10.
HOU Meifang.Current situation,challenges and countermeasures of Chinas energy transformation and energy security under the goal of carbon neutrality[J].Journal of Southwest Petroleum University(Science & Technology Edition),2023,45(2):1-10.
[8]TENG J W,QIAO Y H,SONG P H.Analysis of exploration,potential reserves and high efficient utilization of coal in China[J].Chinese Journal of Geophysics,2016,59(12):4633-4653.
[9]劉淑琴,暢志兵,劉金昌.深部煤炭原位氣化開采關鍵技術及發展前景[J].礦業科學學報,2021,6(3):261-270.
LIU Shuqin,CHANG Zhibing,LIU Jinchang.Key technologies and prospect for in-situ gasification mining of deep coal resources[J].Journal of Mining Science and Technology,2021,6(3):261-270.
[10]魏迎春,夏永翊,武玉良,等.深部煤炭資源探采對比與勘探方法探討[J].煤田地質與勘探,2016,44(4):25-29.
WEI Yingchun,XIA Yongxu,WU Yuliang,et al.Comparison of exploration and exploitation of coal resources and discussion on exploration methods[J].Coal Geology & Exploration,2016,44(4):25-29.
[11]JIANG L L,CHEN S S,CHEN Y P,et al.Underground coal gasification modelling in deep coal seams and its implications to carbon storage in a climate-conscious world[J].Fuel,2023,332:126016.
[12]袁亮.破解深部煤炭開采重大科技難題的思考與建議[J].科技導報,2016,34(2):1.
YUAN Liang.Thoughts and suggestions on solving major scientific and technological difficulties in deep coal mining[J].Science & Technology Review,2016,34(2):1.
[13]王永,王佟,康高峰,等.中國可供性煤炭資源潛力分析[J].中國地質,2009,36(4):845-852.
WANG Yong,WANG Tong,KANG Gaofeng,et al.A potential analysis of the availability of coal resources in China[J].Geology in China,2009,36(4):845-852.
[14]彭蘇萍.深部煤炭資源賦存規律與開發地質評價研究現狀及今后發展趨勢[J].煤,2008,17(2):1-11,27.
PENG Suping.Present study and development trend of the deepen coal resource distribution and mining geologic evaluation[J].Coal,2008,17(2):1-11,27.
[15]林建法.試析煤炭資源的安全保證問題[J].煤田地質與勘探,2006,34(4):6-9.
LIN Jianfa.Analysis of coal resource guarantee[J].Coal Geology & Exploration,2006,34(4):6-9.
[16]謝和平,高峰,鞠楊,等.深地煤炭資源流態化開采理論與技術構想[J].煤炭學報,2017,42(3):547-556.
XIE Heping,GAO Feng,JU Yang,et al.Theoretical and technological conception of the fluidization mining for deep coal resources[J].Journal of China Coal Society,2017,42(3):547-556.
[17]CUI J F,WANG W J,YUAN C.Application of stability analysis in surrounding rock control and support model of deep roadway[J].International Journal of Oil,Gas and Coal Technology,2022,29(2):180-192.
[18]王雙明,申艷軍,孫強,等.西部生態脆弱區煤炭減損開采地質保障科學問題及技術展望[J].采礦與巖層控制工程學報,2020,2(4):5-19.
WANG Shuangming,SHEN Yanjun,SUN Qiang,et al.Scientific issues of coal detraction mining geological assurance and their technology expectations in ecological fragile mining areas of Western China[J].Journal of Mining and Strata Control Engineering,2020,2(4):5-19.
[19]王雙明,段中會,馬麗,等.西部煤炭綠色開發地質保障技術研究現狀與發展趨勢[J].煤炭科學技術,2019,47(2):1-6.
WANG Shuangming,DUAN Zhonghui,MA Li,et al.Research status and future trends of geological assurance technology for coal green development in Western China[J].Coal Science and Technology,2019,47(2):1-6.
[20]WANG B,CUI C Q,ZHAO Y X,et al.Climate change mitigation in the coal mining industry:low-carbon pathways and mine safety indicators[J].Natural Hazards,2019,95,25-38.
[21]王雙明,孫強,喬軍偉,等.論煤炭綠色開采的地質保障[J].煤炭學報,2020,45(1):8-15.
WANG Shuangming,SUN Qiang,QIAO Junwei,et al.Geological guarantee of coal green mining[J].Journal of China Coal Society,2020,45(1):8-15.
[22]于海洋,許永彬,陳智明,等.雙碳目標下煤炭深部流態化開采及前景[J].潔凈煤技術,2023,29(1):15-32.
YU Haiyang,XU Yongbin,CHEN Zhiming,et al.Deep fluidized coal mining and its prospect under the target of carbon peak and carbon neutralization[J].Clean Coal Technology,2023,29(1):15-32.
[23]易同生,秦勇,周永峰,等.煤炭地下氣化項目技術經濟評價研究進展述評[J].煤田地質與勘探,2023,51(7):1-16.
YI Tongsheng,QIN Yong,ZHOU Yongfeng,et al.Research advances on the techno-economic evaluation of UCG projects[J].Coal Geology & Exploration,2023,51(7):1-16.
[24]潘月軍.新形勢下我國煤炭資源高效清潔利用途徑分析[J].潔凈煤技術,2023,29(S2):807-809.
PAN Yuejun.Analysis on the approaches of efficient and clean utilization of Chinas coal resources under the new situation[J].Clean Coal Technology,2023,29(S2):807-809.
[25]葛世榮.深部煤炭化學開采技術[J].中國礦業大學學報,2017,46(4):679-691.
GE Shirong.Chemical mining technology for deep coal resources[J].Journal of China University of Mining & Technology,2017,46(4):679-691.
[26]BAI B,QIANG L Y,ZHANG S S,et al.Influence of coal structure change caused by different pretreatment me-thods on Shengli lignite pyrolysis[J].Fuel,2023,332:126089.
[27]王雙明,申艷軍,孫強,等.“雙碳”目標下煤炭開采擾動空間CO2地下封存途徑與技術難題探索[J].煤炭學報,2022,47(1):45-60.
WANG Shuangming,SHEN Yanjun,SUN Qiang,et al.Underground CO2 storage and technical problems in coal mining area under the“dual carbon” target[J].Journal of China Coal Society,2022,47(1):45-60.
[28]孔令峰,東振,陳艷鵬,等.基于中深層煤原位清潔轉化技術構建低碳能源生態圈[J].天然氣工業,2022,42(9):166-175.
KONG Lingfeng,DONG Zhen,CHEN Yanpeng,et al.Construction of low-carbon energy ecosystem based on in-situ clean conversion technology of medium-deep coal[J].Natural Gas Industry,2022,42(9):166-175.
[29]劉峰,郭林峰,趙路正.雙碳背景下煤炭安全區間與綠色低碳技術路徑[J].煤炭學報,2022,47(1):1-15.
LIU Feng,GUO Linfeng,ZHAO Luzheng.Research on coal safety range and green low-carbon technology path under the dual-carbon background[J].Journal of China Coal Society,2022,47(1):1-15.
[30]卞正富,伍小杰,周躍進,等.煤炭零碳開采技術[J].煤炭學報,2023,48(7):2613-2625.
BIAN Zhengfu,WU Xiaojie,ZHOU Yuejin,et al.Coal mining technology with net zero carbon emission[J].Journal of China Coal Society,2023,48(7):2613-2625.
[31]王雙明,耿濟世,李鵬飛,等.煤炭綠色開發地質保障體系的構建[J].煤田地質與勘探,2023,51(1):33-43.
WANG Shuangming,GENG Jishi,LI Pengfei,et al.Construction of geological guarantee system for green coal mining[J].Coal Geology & Exploration,2023,51(1):33-43.
[32]CHANG S Y,ZHUO J K,MENG S,et al.Clean coal technologies in China:Current status and future perspectives[J].Engineering,2016,2(4),447-459.
[33]王雙明,申艷軍,宋世杰,等.“雙碳”目標下煤炭能源地位變化與綠色低碳開發[J].煤炭學報,2023,48(7):2599-2612.
WANG Shuangming,SHEN Yanjun,SONG Shijie,et al.Change of coal energy status and green and low-carbon development under the “dual carbon” goal[J].Journal of China Coal Society,2023,48(7):2599-2612.
[34]ZHONG C,DONG F L,GENG Y,et al.Toward carbon neutrality:The transition of the coal industrial chain in China[J].Frontiers in Environmental Science,2022,10:962257.
[35]謝和平,王金華,王國法,等.煤炭革命新理念與煤炭科技發展構想[J].煤炭學報,2018,43(5):1187-1197.
XIE Heping,WANG Jinhua,WANG Guofa,et al.New ideas of coal revolution and layout of coal science and technology development[J].Journal of China Coal Society,2018,43(5):1187-1197.
[36]謝和平,鞠楊,高明忠,等.煤炭深部原位流態化開采的理論與技術體系[J].煤炭學報,2018,43(5):1210-1219.
XIE Heping,JU Yang,GAO Mingzhong,et al.Theories and technologies for in-situ fluidized mining of deep underground coal resources[J].Journal of China Coal Society,2018,43(5):1210-1219.
[37]秦勇,王作棠,韓磊.煤炭地下氣化中的地質問題[J].煤炭學報,2019,44(8):2516-2530.
QIN Yong,WANG Zuotang,HAN Lei.Geological problems in underground coal gasification[J].Journal of China Coal Society,2019,44(8):2516-2530.
[38]LI H Z,GUO G L,ZHA J F,et al.Research on the surface movement rules and prediction method of underground coal gasification[J].Bulletin of Engineering Geology and the Environment,2016,75:1133-1142.
[39]LAOUAFA F,FARRET R,VIDAL-GILBERT S,et al.Overview and modeling of mechanical and thermomechanical impact of underground coal gasification exploitation[J].Mitigation and Adaptation Strategies for Global Change,2016,21:547-576.
[40]張金華,張夢媛,陳艷鵬,等.煤炭地下氣化現場試驗進展與啟示[J].煤炭科學技術,2022,50(2):213-222.
ZHANG Jinhua,ZHANG Mengyuan,CHEN Yanpeng,et al.Progresses and revelation of underground coal gasification field test[J].Coal Science and Technology,2022,50(2):213-222.
[41]MOCEK P,PIESZCZEK M,WIADROWSKI J,et al.Pilot-scale underground coal gasification(UCG)experiment in an operating Mine “Wieczorek” in Poland[J].Energy,2016,111:313-321.
[42]步學朋,忻仕河,王鵬,等.煤炭氣化發展及應用中的熱點問題探討[J].潔凈煤技術,2007,13(2):37-41.
BU Xuepeng,XIN Shihe,WANG Peng,et al.Discussion of the hotspot in the development and application of coal gasification[J].Clean Coal Technology,2007,13(2):37-41.
[43]邱立新,雷仲敏,周田君.潔凈煤技術的評價方法研究——以煤炭氣化技術的分析與評價為例[J].潔凈煤技術,2006,12(1):5-8.
QIU Lixin,LEI Zhongmin,ZHOU Tianjun.Research on the evaluation method of clean coal technology:Taking the analysis and evaluation of coal gasification technology as an example[J].Clean Coal Technology,2006,12(1):5-8.
[44]MICHAEL GRecent developments and current position of underground coal gasification[J].Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2018,232(1):39-46.
[45]王雙明,師慶民,王生全,等.富油煤的油氣資源屬性與綠色低碳開發[J].煤炭學報,2021,46(5):1365-1377.
WANG Shuangming,SHI Qingmin,WANG Shengquan,et al.Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas[J].Journal of China Coal Society,2021,46(5):1365-1377.
[46]馬麗,段中會,楊甫,等.“雙碳”背景下煤炭原位地下熱解采油意義研究[J].中國煤炭地質,2022,34(4):5-7.
MA Li,DUAN Zhonghui,YANG Fu,et al.Study on the significance of coal in-situ underground pyrolytic oil production under carbon peaking and carbon neutrality background[J].Coal Geology of China,2022,34(4):5-7.
[47]SCHIFFRIN D J.The feasibility of in situ geological sequestration of supercritical carbon dioxide coupled to underground coal gasification[J].Energy & Environmental Science,2015,8(8):2330-2340.
[48]劉瀟鵬.煤炭地下氣化高溫燒變圍巖移動破壞機制研究[J].巖石力學與工程學報,2022,41(7):1512.
LIU Xiaopeng.Study on high temperature burnt surrounding rock movement and failure mechanism in underground coal gasification[J].Chinese Journal of Rock Mechanics and Engineering,2022,41(7):1512.
[49]錢鳴高,繆協興,許家林.資源與環境協調(綠色)開采[J].煤炭學報,2007,32(1):1-7.
QIAN Minggao,MIAO Xiexing,XU Jialin.Green mining of coal resources harmonizing with environment[J].Journal of China Coal Society,2007,32(1):1-7.
[50]錢鳴高.加強煤炭開采理論研究 實現科學開采[J].采礦與安全工程學報,2017,34(4):615.
QIAN Minggao.Strengthening theoretical research on coal mining to achieve scientific mining[J].Journal of Mining & Safety Engineering,2017,34(4):615.
[51]SHI J H,FENG Z C,ZHOU D,et al.Analysis of fracture structure evolution of bituminous coal subjected to in situ steam pyrolysis combined with in situ micro-computed tomography technology[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2023,45(2):6010-6026.
[52]JU Y,ZHU Y,ZHOU H W,et al.Microwave pyrolysis and its applications to the in situ recovery and conversion of oil from tar-rich coal:An overview on fundamentals,methods,and challenges[J].Energy Reports,2021(7):523-536.
[53]郭威,劉召,孫友宏,等.富油煤原位熱解開發地下體系封閉方法探討[J].煤田地質與勘探,2023,51(1):107-114.
GUO Wei,LIU Zhao,SUN Youhong,et al.Discussion on underground system sealing methods in in-situ pyrolysis exploitation of tar-rich coal[J].Coal Geology & Exploration,2023,51(1):107-114.
[54]姚強嶺,李學華,朱柳,等.煤巖體地質力學參數原位測試系統開發與應用[J].中國礦業大學學報,2019,48(6):1169-1176.
YAO Qiangling,LI Xuehua,ZHU Liu,et al.Development and application of in-situ testing system for geomechanical parameters of coal and rock mass[J].Journal of China University of Mining & Technology,2019,48(6):1169-1176.
(責任編輯:劉潔)