999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

長枝木霉代謝物對極細鏈格孢產毒抑制機制解析

2024-04-29 05:20:44邵學輝張樹武徐秉良
果樹學報 2024年1期

邵學輝 張樹武 徐秉良

收稿日期:2023-09-15 接受日期:2023-11-23

基金項目:甘肅省重點研發計劃項目(23YFNA0020);甘肅省科技重大專項(22ZD6NA045);甘肅農業大學“伏羲杰出人才培育計劃”項目(Gaufx-03J03);蘭州市科技計劃項目(2021-1-39)

作者簡介:邵學輝,男,在讀碩士研究生,研究方向為資源利用與植物保護。E-mail:1030372086@qq.com

*通信作者 Author for correspondence. E-mail:xubl@gsau.edu.cn;E-mail:zhangsw704@126.com

DOI:10.13925/j.cnki.gsxb.20230369

摘? ? 要:【目的】明確長枝木霉(SC5)代謝粗提物對極細鏈格孢(ABL2)產毒抑制機制?!痉椒ā恳愿皇刻O果的葉片為供試材料,通過生長速率法、LC-MS和RT-qPCR技術測定了SC5代謝粗提物對ABL2菌落生長、6種非寄主選擇性毒素產生及產毒相關基因表達的抑制作用?!窘Y果】質量濃度為0.5 mg·mL-1的SC5代謝粗提物對ABL2菌落生長和致病力具有顯著的抑制作用,第6天時抑制率分別為38.08%和76.96%;同時,0.5 mg·mL-1 SC5代謝粗提物對ABL2菌株產生的非寄主選擇性毒素TEN、ALT和TeA均具有顯著抑制作用,其中處理2 d后對毒素的抑制作用最顯著,其含量分別降低69.39%、98.51%和48.99%,并且其合成相關基因TES、TES(1)、PksA和PksJ的表達量顯著下調,分別降低89.02%、98.20%、46.49%和40.13%,但是對ABL2菌株非寄主選擇性毒素ATX-I含量和參與編碼其合成的PksF基因表達量具有提升作用?!窘Y論】質量濃度為0.5 mg·mL-1的SC5代謝粗提物對ABL2菌株生長和致病力具有抑制作用,可能通過調控ABL2菌株TES、TES(1)、PksA和PksJ基因下調表達,進而降低TEN、ALT和TeA的毒素的產生量及致病力。

關鍵詞:蘋果葉片;極細鏈格孢;長枝木霉;毒素;基因表達;生物防治

中圖分類號:S661.1? S436.661 文獻標志碼:A 文章編號:1009-9980(2024)01-0133-10

Identification and mechanism of Trichoderma longibrachiatum metabolites in inhibiting the Alternaria tenuissima toxin production

SHAO Xuehui, ZHANG Shuwu*, XU Bingliang*

(College of Plant Protection, Gansu Agricultural University/Engineering Laboratory for Biological Control of Crop Diseases and Pests, Lanzhou, 730070, Gansu, China)

Abstract: 【Objective】 Alternaria spp. can cause a variety of apple leaf diseases, which occur in all major apple producing areas in the world. It can lead to brown disease spots in apple leaves and even result in early defoliation, which seriously affects the development of apple industry and causes huge economic losses. Apple leaf blight caused by Alternaria tenuissima was found for the first time in apple producing areas of Gansu province. This fungus can damage apple leaves and petioles, causing leaves to die and fall off. A. alternata mainly damages plants by producing Alternaria toxins. The Alternaria toxins that have been found can be divided into five categories, i. e, diphenyl-α-pyrones and their derivatives, perylenequinones and their derivatives, tetraamino acids and their derivatives, long-chain amino polyols of glycerol tricarboxylate compounds, and hybrid structures. All of them have obvious toxicity, which can cause serious harm to plants and endanger the food safety of agricultural products. At present, chemical control is still the main means to prevent and control the diseases caused by Alternaria fungi. However, due to the influence of Alternaria resistance and environmental pollution, it is of great significance to find a series of biocontrol agents with higher controlling effect on Alternaria. Biocontrol of Trichoderma is safer and greener than the traditional chemical control methods. Trichoderma metabolites are also good antifungal substances, with broad-spectrum and efficient antibacterial activity, inhibiting the growth and metabolism of pathogenic fungi. The growth and metabolism of A. tenuissima ABL2 strain were inhibited by Trichoderma longibrachiatum SC5 metabolites. The content of non-host selective toxins in the metabolites of A. tenuissima ABL2 strain and the relative expression of genes related to the synthesis of A. tenuissima toxin were determined. The inhibition mechanism of T. longibrachiatum SC5 metabolites on A. tenuissima ABL2 strain production was clarified. The aim was to provide a reference and theoretical basis for the prevention and control of apple leaf blight caused by A. tenuissima. 【Methods】 T. longibrachiatum SC5 and A. tenuissima ABL2 strains were cultured on PDA medium for 7 days. The PDB liquid medium was made, and the SC5 strain was cultured on the medium for 15 days. The fermentation broth was filtered with filter paper and the broth was retained. The liquid was added with 3-fold-volume-ethyl acetate and oscillated for 1 hour. After standing extraction, the organic phase was evaporated in a rotary evaporator, and 1 ml of methanol was added to dissolve and evaporate. The SC5 metabolites were made into an orginal liquid with a concentration of 200.00 mg·mL-1, and added to the PDA medium to make a drug-containing medium with different concentrations of SC5 metabolites (0.01, 0.05, 0.10, 0.25, 0.50, 1.00 and 2.00 mg·mL-1). The ABL2 strain was inoculated on the drug-containing medium and cultured for 24 hours in a light incubator. The diameter of ABL2 colonies was measured and the colony inhibition rate was calculated on the 2, 4, 6, 8 and 10 days by cross method. On the 6th day, 5 mycelial plugs were prepared with a sterile puncher and placed in a 10 mL of EP tube, with 3 replicates per concentration. After adding 8 mL of ethyl acetate, ultrasonic oscillation was performed for 1.5 hours, centrifuged and filtered. After the ethyl acetate phase was evaporated to dryness, 1 mL of methanol was added to dissolve it, and 5 mm circular sterile filter paper was placed in it for later use. Inoculate healthy leaves after disinfection and rinsing using stab inoculation method. A circular filter paper soaked in ABL2 metabolites was placed at each wound, and placed in an artificial climate box for moisturizing culture for 7 days. The lesion size was measured and the pathogenic activity of the metabolites was calculated. The optimal inhibitory concentration of SC5 metabolites on the growth of ABL2 strain was screened. The total RNA and the metabolites of ABL2 strain growing in the optimal concentration of drug-containing medium was extracted on 2, 4, 6, 8 and 10 days, and the quantitative standard curves of six non-host-selective toxins were made respectively. Six toxin-producing related gene primers were designed and verified for specificity. Liquid Chromatograph Mass Spectrometer and Real Time Quantitative PCR were used to determine the content of toxins in ABL2 metabolites and the relative expression of toxin-producing related genes. 【Results】 The crude extract of SC5 metabolism at a concentration of 0.5 mg·mL-1 had a significant inhibitory effect on the growth and pathogenicity of ABL2, and the inhibition rates were 38.08% and 76.96% on the 6th day, respectively. 0.5 mg·mL-1 SC5 metabolic crude extract had a significant inhibitory effect on the non-host selective toxins TEN, ALT and TeA produced by ABL2 strain. The inhibitory effect was the most significant after 2 days treatment, and its content was reduced by 69.39%, 98.51% and 48.99%, respectively. The expression levels of TES, TES (1), PksA and PksJ were significantly down-regulated by 89.02%, 98.20%, 46.49% and 40.13%, respectively. However, the content of non-host selective toxin ATX-I of ABL2 strain and the expression of PksF gene involved in its synthesis increased. 【Conclusion】 The SC5 metabolites of T. longibrachiatum at a concentration of 0.5 mg·mL-1 had an inhibitory effect on the growth and pathogenicity of A. tenuissima ABL2 strain. It could reduce and inhibit the content of TEN, ALT and TeA by down-regulating the expression of TES, TES (1), PksA and PksJ genes in ABL2 strain, thereby reducing its pathogenicity. This study can provide a theoretical basis for the biological control of ABL2 strain.

Key words: Fuji apple leaves; Alternaria tenuissima; Trichoderma longibrachiatum; Toxin; Gene expression; Biological control

植物病原鏈格孢(Alternaria spp.)引起的蘋果病害,在世界各大產區普遍發生[1]。如蘋果鏈格孢?;停ˋ. alternata f. sp. mail)引起的蘋果斑點落葉病,主要危害蘋果葉片,使葉部出現褐色病斑,最終導致提前落葉[2]。同時,也可危害嫩枝和果實,導致樹勢衰弱,影響花芽形成和果實正常生長[3]。但是,近年來筆者課題組在甘肅省蘋果產區首次發現由極細鏈格孢(A. tenuissima)引起的蘋果葉枯病,發生后嚴重導致蘋果葉片枯死脫落。據報道,鏈格孢菌可通過產生鏈格孢毒素危害植物。已發現的鏈格孢毒素可分為5類,分別為二苯-α-吡喃酮類及其衍生物、苝醌類及其衍生物、四氨基酸及其衍生物、長鏈氨基多元醇的丙三羧酸酯類化合物、混雜多樣結構[4-5]。目前,研究最多的鏈格孢毒素有交鏈孢酚(AOH:Alternariol)、交鏈孢單甲醚(AME:Alternariol monomethyl ether)、交鏈孢烯(ALT:Altenuene)、交鏈孢毒素(ATX-Ⅰ、Ⅱ、Ⅲ:Altertoxin)、騰毒素(TEN:Tentoxin)、細交鏈孢菌酮酸(TeA:Tenuazonic Acid),其不僅對植物產生嚴重危害[6-7],而且危及農產品食品安全[8-9]。同時,相關研究發現鏈格孢毒素的生物合成受相關基因調控。Wenderoth等[10]鑒定了AOH、AME生物合成相關的基因簇PksI、omtI、moxI、aohR、sdrI、doxI并確定其功能;Liu等[11]發現聚酮合酶基因Pks參與鏈格孢代謝途徑且參與次生代謝物的合成,進而影響鏈格孢毒素含量;Li等[12]研究發現和驗證了TES和TES(1)基因是鏈格孢合成TEN毒素所需的兩個基因簇。目前,化學防治依舊是防控鏈格孢屬真菌引起的病害的主要手段[13],但是長期大量使用可導致鏈格孢菌抗藥性產生和污染環境[14],因此,尋找一類對鏈格孢具有較好防治效果的生防制劑對該病害的防控具有重要意義。

木霉作為一種優良的生防菌,被廣泛應用于農業生產中的病害防治[15]。前期Abdel-Lateff等[16]從長枝木霉代謝物中分離出一種吡喃酮衍生物,發現其具有清除自由基、抗氧化、抑菌活性;Mironenka等[17]發現哈茨木霉(Trichoderma harzianum)代謝物可抑制黃色鐮孢菌產孢,同時減少其色素和主要毒素的含量。但是,目前有關木霉代謝物對極細鏈格孢產毒抑制機制尚未見報道。因此,筆者在本試驗中評價了長枝木霉代謝粗提物對極細鏈格孢的抑菌效果和毒素產生的影響,旨在為防治鏈格孢引起的蘋果葉枯病提供參考依據和理論基礎。

1 材料和方法

1.1 材料

1.1.1 供試菌株 極細鏈格孢(A. tenuissima)ABL2(序列號:MZ222271)和長枝木霉(T. longibrachiatum)SC5(序列號:ON786721)菌株由甘肅農業大學植物保護學院植物病毒學和分子生物學實驗室分離、鑒定并保存。

1.1.2 供試葉片 供試葉片采自甘肅農業大學蘋果種植園,品種為富士。

1.1.3 標準溶液與試劑 鏈格孢毒素標準溶液(AOH、AME、ALT、TEN、TeA、ATX-Ⅰ)購自青島普瑞邦生物工程有限公司;乙酸乙酯(分析純)、甲酸(色譜純)、乙醇(分析純)、甲醇(色譜純)和乙腈(色譜純)均購自天津市大茂化學試劑廠;TRNzol Universal 總RNA提取試劑購自TIANGEN公司;cDNA合成試劑盒、RT-qPCR試劑盒和DNA Marker均購自TaKaRa Bio公司;上下游引物由北京擎科生物科技有限公司西安分公司合成。

1.2 方法

1.2.1 長枝木霉SC5和極細鏈格孢ABL2菌株活化 將低溫保存的SC5和ABL2菌株分別接種于PDA培養基活化培養7 d后,并再次制取菌餅接種于新的PDA培養基活化備用。

1.2.2 長枝木霉SC5代謝粗提物制備 SC5代謝粗提物制備參照Liu等[18]的方法并稍作修改。利用無菌打孔器制取活化3 d且直徑為5 mm的SC5菌餅,并接種于200 mL PDB培養基(3個菌餅),然后置于光照、28 ℃、150 r·min-1的恒溫振蕩培養箱中振蕩培養。待培養15 d后,利用中速定性濾紙抽濾去除菌絲,并將濾液經4 ℃、10 000 r·min-1離心30 min后,利用3倍體積的乙酸乙酯充分振蕩并萃取。將乙酸乙酯相置于旋轉蒸發儀蒸干濃縮并經1 mL甲醇溶解和0.22 μm濾器過濾,再次濃縮獲得SC5代謝粗提物。

1.2.3 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2生長的抑制作用 將濃縮后的SC5代謝粗提物利用甲醇配制質量濃度為200 mg·mL-1母液。同時,分別取1.000、0.500、0.250、0.125、0.050、0.025和0.005 mL的母液用甲醇制成1 mL的工作液,并加入99 mL滅菌后待凝固的PDA中,制得含SC5代謝粗提物質量濃度為2.00、1.00、0.50、0.25、0.10、0.05和0.01 mg·mL-1含藥培養基,以加入1 mL甲醇的培養基作為對照。然后,將直徑為5 mm的ABL2菌餅接種于不同濃度含藥培養基中央,并置于溫度為25 ℃全光照培養箱中培養,每個處理和對照均設10次重復,分別在接種培養第2、4、6、8和10 d時,采用十字交叉法測量菌落直徑,并計算SC5代謝粗提物對ABL2生長抑制率。

[生長抑制率/%=對照菌落直徑-處理菌落直徑對照菌落直徑-5 mm×100]。

1.2.4 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2致病力的影響 將1.2.3中經不同濃度SC5代謝粗提物和甲醇處理培養6 d時的ABL2菌株作為供試處理菌株和對照菌株,參照Desrochers等[19]的方法提取ABL2菌株代謝產物,并測定其致病力。利用直徑為7 mm打孔器制取5個不同濃度處理菌株和對照菌株菌餅,并分別置于10 mL EP管中,每個處理3次重復。然后,分別加入8 mL乙酸乙酯,并經渦旋振蕩和超聲提取后離心(8000 r·min-1)去除菌餅、菌絲。待靜置1 h后將乙酸乙酯相置于旋轉蒸發儀蒸干濃縮并經1 mL甲醇溶解和0.22 μm濾器過濾,收集獲得不同濃度處理菌株和對照菌株代謝產物。然后,將無菌濾紙片(直徑5 mm)置于不同濃度處理菌株和對照菌株代謝產物浸泡1 h,制備含有ABL2代謝產物的濾紙片備用。利用75%乙醇將健康的蘋果葉片消毒后,經無菌水清洗3次,然后,利用吸水紙吸干葉片表面水分,采用針刺接種法刺破葉片表面,并將含有不同濃度處理菌株和對照菌株ABL2代謝產物(陽性對照)的濾紙片接種于刺傷部位,試驗以1 mL甲醇浸泡等時間的濾紙片作為陰性對照,每組5個重復。接種后置于人工氣候箱,于第5天時利用十字交叉法測量其病斑大小。

1.2.5 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2毒素含量的影響 將SC5代謝粗提物對ABL2菌落和致病力抑制最佳濃度作為供試濃度,測定SC5代謝粗提物對ABL2毒素含量的影響。試驗以1.2.3 中SC5代謝粗提物對ABL2菌落生長抑制作用最佳濃度培養基培養的ABL2菌株作為處理,并以加入等體積甲醇的培養基培養的ABL2菌株作為對照,分別于培養2、4、6、8和10 d后制備處理和對照的菌餅,并參考1.2.4方法提取和制備處理和對照菌株代謝產物。待制備獲得處理和對照菌株代謝產物后,利用LC-MS檢測其AOH、AME、ALT、TEN、TeA和ATX-Ⅰ含量。試驗利用甲醇作為溶劑配制不同質量濃度(1000、500、250、100、50、25、10、5和1 ng·mL-1)鏈格孢毒素AOH、AME、ALT、TEN、TeA和ATX-Ⅰ標準品的混標溶液,并利用LC-MS測定后制作標準曲線(圖1、表1)。<\\LENOVO-FAN\fapai\果樹學報\1期-果樹學報-定版\1-2024-1-學報-飛翔\Image\image11.png>

然后,利用LC-MS檢測處理和對照菌株代謝產物AOH、AME、ALT、TEN、TeA和ATX-Ⅰ含量。超高效液相色譜條件為:Agilent 1290超高效液相色譜儀配備Elipse Plus C18 (規格1.8 μm,2.1 mm×150 mm)色譜柱;柱溫設置為30 ℃;流動相A為0.2%的甲酸水,B 為加入0.2%氨水的乙腈;進樣量為5 μL;流速設置0.3 mL·min-1(表2);質譜條件為:Agilent 6460三重四級桿質譜檢測器配備電噴霧離子源,采用正離子模式(ESI+);掃描范圍(m·z-1)設置為100~900;錐孔電壓分別設置為80、95 eV:碰撞電壓為15、25、35 eV;NMR數據監測模式;錐孔氣流150 L·h-1;離子源溫度350 ℃;噴霧電壓7500 V(表3)。同時,利用Agilent MassHunter Quantitative Analysis(For QQQ)分析并計算處理和對照菌株代謝產物AOH、AME、ALT、TEN、TeA和ATX-Ⅰ含量。

1.2.6 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2毒素合成相關基因表達的影響 (1)樣品采集及總RNA的提取和cDNA第一鏈合成。將SC5代謝粗提物對ABL2菌落和致病力抑制最佳濃度作為供試濃度,測定SC5代謝粗提物對ABL2毒素合成相關基因表達的影響。試驗以1.2.3中SC5代謝粗提物對ABL2菌落生長抑制作用最佳濃度培養基培養的ABL2菌株作為處理,并以加入等體積甲醇的培養基培養的ABL2菌株作為對照,待處理2、4、6、8和10 d后收集處理和對照ABL2菌株菌絲。菌絲處理方法參照鄭朋飛等[20]的,將處理和對照菌絲置于液氮中并充分研磨破碎,每個處理和對照均3個重復。然后,根據TRNzol Universal 總RNA提取試劑說明書提取RNA,并進行濃度及A260/A280 比值測定。利用PrimeScript? RT reagent Kit (Perfect Real Time) 試劑盒進行反轉錄,合成處理和對照樣品cDNA第一鏈。

(2)ABL2毒素合成相關基因表達量分析。試驗以處理2、4、6、8和10 d后的處理和對照ABL2菌株菌絲cDNA第一鏈為模板,利用TB Green? Premix Ex Taq? (Tli RNaseH Plus)試劑盒測定SC5代謝粗提物對ABL2毒素合成相關基因[PksJ、PksA、PksI、PksF、TES、TES(1)]表達的影響,以BenA作為內參基因,并利用2-??Ct法計算其相對表達量。利用Primer 5軟件設計引物,引物序列見表4。

1.3 數據處理

采用MS office Excel 2021和IBM SPSS Statistics 27軟件對數據進行統計分析,并運用Duncans新復極差法進行多重比較,利用OriginPro 2021作圖并分析。

2 結果與分析

2.1 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2生長的抑制作用

SC5代謝粗提物對ABL2菌落的抑制作用隨著代謝粗提物濃度的增加而逐漸增強(圖2)。與對照(圖2-A)相比,經質量濃度為2.00、1.00、0.50、0.25、0.10、0.05和0.01 mg·mL-1的SC5代謝粗提物處理6 d的ABL2菌落直徑顯著小于對照(圖2-B~H),且不同質量濃度之間存在顯著差異。如表5所示,當培養2 d時,質量濃度為2 mg·mL-1的SC5代謝粗提物對ABL2菌落生長抑制率達到最大值,為90.42%,當SC5代謝粗提物質量濃度大于0.05 mg·mL-1時,隨著培養時間的增加,抑制率趨于平穩。

2.2 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2致病力的影響

結果如圖3所示,經不同濃度的SC5代謝粗提物處理后的ABL2代謝產物致病力隨著濃度的增加而減弱。接種葉片5 d后,經質量濃度為0.01~0.25 mg·mL-1(圖3-A、B)SC5代謝粗提物處理后的ABL2代謝產物的致病力呈降低趨勢,與其他處理相比,經質量濃度為0.50~2.00 mg·mL-1 (圖3-A、B)SC5代謝粗提物處理后的ABL2代謝產物致病力顯著降低,與陽性對照相比分別降低了76.96%、81.94%和80.95%。

2.3 長枝木霉SC5代謝粗提物對極細鏈格孢ABL2毒素產生的影響

結果表明(圖4),SC5代謝粗提物對ABL2菌株ALT、AME、AOH、TeA、ATX-I和TEN毒素含量具有顯著的影響,并且不同時間段的毒素含量存在明顯差異。與對照相比,處理2~8 d后,SC5代謝粗提物對ABL2菌株ALT(圖4-A)和TEN(圖4-D)毒素含量具有顯著的抑制作用,其處理時間段內平均含量分別較對照降低59.74%和84.41%。然而,處理2~8 d后,SC5代謝粗提物對ABL2菌株AME(圖4-B)、AOH(圖4-C)、TeA(圖4-E)和ATX-I(圖4-F)毒素含量具有不同程度的影響,其中在處理2 d后均表現出一定的抑制作用,但是隨著處理時間的增加,其抑制作用不顯著,與對照相比,處理時間段內TeA含量整體呈降低趨勢,ATX-I含量整體呈上升趨勢,AOH和AME含量在處理6~8 d時顯著高于對照。

2.4 產毒相關基因表達分析

結果表明(圖5),SC5代謝粗提物對ABL2菌株產毒相關基因TES、TES(1)、PksJ、PksA、PksF和PksI表達具有顯著的影響,并且不同時間段的表達存在顯著差異。與對照相比,處理2~10 d,SC5代謝粗提物對ABL2菌株TES(圖5-A)、TES(1)(圖5-B)、PksA(圖5-D)和PksI(圖5-F)基因表達量具有顯著的抑制作用,其處理時間段內平均表達量較對照降低了61.35%、65.83%、56.94%和65.19%。然而,處理2~10 d,SC5代謝粗提物對ABL2菌株PksJ(圖5-C)和PksF(圖5-E)基因表達量具有不同程度的影響,其中在處理2~4 d時對PksF表現出一定的抑制作用,但隨著處理時間的增加,抑制作用變為促進作用,而在處理2~8 d時對PksJ表現出一定的抑制作用,但在處理10 d后卻由抑制變為促進。

3 討 論

Liu等[11]發現鏈格孢代謝途徑中與毒素合成相關的聚酮合酶Pks基因會受到肉桂醛的抑制;Yun等[21]證明TAS1可催化異亮氨酸和乙酰輔酶合成TeA;Saha等[22]研究發現PksJ下調會直接抑制AOH和AME的合成,PksB和PksI的下調并不直接影響AOH和AME的合成,而PksH則通過調節PksJ和PksI 的表達來控制AOH和AME的合成。Li等[12]研究發現兩個分別編碼一個非核糖體合成酶和一種細胞色素P450蛋白的基因TES和TES(1),并進一步驗證TES和TES(1)參與Tentoxin合成。目前,利用長枝木霉代謝粗提物抑制極細鏈格孢產毒的研究尚未報道。筆者在本研究中發現0.5 mg·mL-1的SC5代謝粗提物對ABL2菌落生長和代謝產物的致病力有較好的抑制效果,并通過抑制產毒相關基因的表達減少毒素含量。通過分析基因表達量和毒素含量后發現隨著培養時間的增加PksJ表達量呈下調趨勢,同時TeA含量呈下降趨勢,且在第2天、第4天和第6天時顯著低于對照,但在第10天時PksJ表達量高于對照,同時TeA含量也高于對照,表明TeA的合成主要受PksJ調控,這與Liu等[11]的研究結果一致;而PksA的表達量先上升后下降,在第6天時達到最大值,但均顯著低于對照,這與TEN毒素含量的變化趨勢相同,初步推測PksA參與了TEN毒素的生物合成,同時PksI表達量也隨時間的增加呈上調趨勢,但顯著低于對照,且AOH和AME含量隨時間變化呈上升趨勢,在第6天和第8天時卻顯著高于對照,表明PksA和PksI共同參與AOH和AME的生物合成,且PksA在第6天時開始參與調控TEN毒素的生物合成,這與Liu等[11]的研究結果一致,但與Saha等[22]的研究結果略有差異,初步判斷差異的原因是抑菌物質和致病菌的不同;TES和TES(1)表達量與對照相比顯著降低,同時TEN含量(ρ)在第6天達到最大值8.74 ng·mL-1,說明TES、TES(1)主要參與調控TEN的生物合成,這與Li等[12]等的研究結果相同;ATX-I含量呈上升趨勢,在第4天、第6天、第8天和第10天時均顯著高于對照,這與PksF表達情況相似,同時ALT含量呈上升趨勢且顯著低于對照,這與PksI表達情況相似,但PksF和PksI如何調控ATX-I和ALT的生物合成還有待研究。結果表明,SC5代謝粗提物在0.5 mg·mL-1的質量濃度下會抑制ABL2菌落的生長和非寄主選擇性毒素TEN、ALT和TeA的生物合成,從而減少毒素含量,但有關SC5代謝粗提物抑制ABL2菌株毒素合成及其相關基因表達的分子作用機制有待深入研究。

4 結 論

(1)篩選獲得了長枝木霉SC5代謝粗體物對極細鏈格孢ABL2菌株生長抑制作用及其代謝物質致病作用最佳質量濃度為0.5 mg·mL-1,處理6 d后,其對ABL2菌落生長和致病力抑制率分別為38.08%和76.96%。

(2)初步推測SC5代謝粗提物抑制ABL2菌株產毒的機制可能通過抑制ABL2菌株生長同時抑制其產毒相關基因如TES、TES(1)、PksA和PksJ基因的表達,進而降低ALT、TEN和TeA毒素含量,削弱ABL2菌株致病力。

參考文獻References:

[1] ZHANG Q L,XU C R,WEI H Y,FAN W Q,LI T Z. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple[J]. Horticulture Research,2021,8:219.

[2] 鄢海峰,周宗山. 異菌脲與戊唑醇、吡唑醚菌酯復配對蘋果斑點落葉病菌的聯合毒力[J]. 中國果樹,2021(6):19-23.

YAN Haifeng,ZHOU Zongshan. Synergistic interaction of the mixtures of iprodione with pyraclostrobin or tebuconazole on Alternaria alternata f. sp. mali[J]. China Fruits,2021(6):19-23.

[3] LIU B Y,LI Z W,DU J F,ZHANG W,CHE X Z,ZHANG Z R,CHEN P,WANG Y Z,LI Y,WANG S L,DING X H. Loop-mediated isothermal amplification (LAMP) for the rapid and sensitive detection of Alternaria alternata (Fr.) Keissl in apple Alternaria blotch disease with Aapg-1 encoding the endopolygalacturonase[J]. Pathogens,2022,11(11):1221.

[4] HAN X M,XU W J,WANG L X Y,ZHANG R N,YE J,ZHANG J,XU J,WU Y. Natural occurrence of Alternaria toxins in citrus-based products collected from China in 2021[J]. Toxins,2023,15(5):325.

[5] TANG H X,HAN W,FEI S X,LI Y B,HUANG J Q,DONG M F,WANG L,WANG W M,ZHANG Y. Development of acid hydrolysis-based UPLC-MS/MS method for determination of Alternaria toxins and its application in the occurrence assessment in solanaceous vegetables and their products[J]. Toxins,2023,15(3):201.

[6] JI X F,XIAO Y P,LYU W T,LI M L,WANG W,TANG B,WANG X D,YANG H. Probabilistic risk assessment of combined exposure to deoxynivalenol and emerging Alternaria toxins in cereal-based food products for infants and young children in China[J]. Toxins,2022,14(8):509.

[7] ZHU X,CHEN Y Y,TANG X Y,WANG D X,MIAO Y Q,ZHANG J,LI R R,ZHANG L S,CHEN J Y. General toxicity and genotoxicity of altertoxin I:A novel 28-day multiendpoint assessment in male Sprague-Dawley rats[J]. Journal of Applied Toxicology,2022,42(8):1310-1322.

[8] DEL FAVERO G,HOHENBICHLER J,MAYER R M,RYCHLIK M,MARKO D. Mycotoxin altertoxin Ⅱ induces lipid peroxidation connecting mitochondrial stress response to NF-κB inhibition in THP-1 macrophages[J]. Chemical Research in Toxicology,2020,33(2):492-504.

[9] WITTE T E,VILLENEUVE N,BODDY C N,OVERY D P. Accessory chromosome-acquired secondary metabolism in plant pathogenic fungi:The evolution of biotrophs into host-specific pathogens[J]. Frontiers in Microbiology,2021,12:664276.

[10] WENDEROTH M,PINECKER C,VO? B,FISCHER R. Establishment of CRISPR/Cas9 in Alternaria alternata[J]. Fungal Genetics and Biology,2017,101:55-60.

[11] LIU M,XU L C,LIU W J,YU J N,JING G X,LIU H. Cinnamaldehyde regulates the synthesis of Alternaria alternata non-host selective toxins by influencing PKS gene expression and oxidoreductase activity[J]. Industrial Crops and Products,2020,145:112074.

[12] LI Y H,HAN W J,GUI X W,WEI T,TANG S Y,JIN J M. Putative nonribosomal peptide synthetase and cytochrome P450 genes responsible for tentoxin biosynthesis in Alternaria alternata ZJ33[J]. Toxins,2016,8(8):234.

[13] LI J K,LI H,JI S F,CHEN T,TIAN S P,QIN G Z. Enhancement of biocontrol efficacy of Cryptococcus laurentii by cinnamic acid against Penicillium italicum in citrus fruit[J]. Postharvest Biology and Technology,2019,149:42-49.

[14] HOUGH J,HOWARD J D,BROWN S,PORTWOOD D E,KILBY P M,DICKMAN M J. Strategies for the production of dsRNA biocontrols as alternatives to chemical pesticides[J]. Frontiers in Bioengineering and Biotechnology,2022,10:980592.

[15] GUZM?N-GUZM?N P,KUMAR A,DE LOS SANTOS-VILLALOBOS S,PARRA-COTA F I,OROZCO-MOSQUEDA M D C,FADIJI A E,HYDER S,BABALOLA O O,SANTOYO G. Trichoderma species:Our best fungal allies in the biocontrol of plant diseases:A review[J]. Plants,2023,12(3):432.

[16] ABDEL-LATEFF A,FISCH K,WRIGHT A D. Trichopyrone and other constituents from the marine sponge-derived fungus Trichoderma sp.[J]. Zeitschrift Für Naturforschung C,2009,64(3/4):186-192.

[17] MIRONENKA J,R??ALSKA S,SOBO? A,BERNAT P. Trichoderma harzianum metabolites disturb Fusarium culmorum metabolism:Metabolomic and proteomic studies[J]. Microbiological Research,2021,249:126770.

[18] LIU S Y,LO C T,SHIBU M A,LEU Y L,JEN B Y,PENG K C. Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity[J]. Journal of Agricultural and Food Chemistry,2009,57(16):7288-7292.

[19] DESROCHERS N,WALSH J P,RENAUD J B,SEIFERT K A,YEUNG K K C,SUMARAH M W. Metabolomic profiling of fungal pathogens responsible for root rot in American ginseng[J]. Metabolites,2020,10(1):35.

[20] 鄭朋飛,張學勇,孫騫,王楚堃,楊鈺瑩,芮麟,宋來慶,張振魯,由春香. 蘋果花臉癥狀相關基因差異表達的分析[J]. 果樹學報,2023,40(6):1109-1120.

ZHENG Pengfei,ZHANG Xueyong,SUN Qian,WANG Chukun,YANG Yuying,RUI Lin,SONG Laiqing,ZHANG Zhenlu,YOU Chunxiang. Transcriptome sequencing analysis of differentially expressed genes involved in the formation of dapple symptoms in apple fruits[J]. Journal of Fruit Science,2023,40(6):1109-1120.

[21] YUN C S,MOTOYAMA T,OSADA H. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme[J]. Nature Communications,2015,6:8758.

[22] SAHA D,FETZNER R,BURKHARDT B,PODLECH J,METZLER M,DANG H,LAWRENCE C,FISCHER R. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata[J]. PLoS One,2012,7(7):e40564.

主站蜘蛛池模板: 久久精品中文字幕免费| 中文字幕亚洲电影| 国产免费高清无需播放器| 国产美女主播一级成人毛片| 丁香亚洲综合五月天婷婷| 国产不卡一级毛片视频| 亚洲伊人天堂| 91亚洲精选| 欧美国产成人在线| 免费啪啪网址| 99国产在线视频| 日本欧美在线观看| 国产精品亚洲专区一区| 五月天丁香婷婷综合久久| 精品久久久久久久久久久| 国内精自线i品一区202| 亚洲日韩精品伊甸| 亚洲黄色高清| 国产丰满大乳无码免费播放| 欧美午夜视频| 中文字幕色在线| 欧美日韩久久综合| 亚洲全网成人资源在线观看| 国产精品视频白浆免费视频| 毛片基地美国正在播放亚洲| 中文字幕亚洲无线码一区女同| av手机版在线播放| 国产在线观看精品| 亚洲成年网站在线观看| 波多野结衣第一页| 久久天天躁狠狠躁夜夜躁| 日韩精品资源| 亚洲一区二区三区香蕉| 久久综合丝袜长腿丝袜| 自偷自拍三级全三级视频| 国产一级α片| 国产精品 欧美激情 在线播放| 午夜久久影院| 亚洲首页在线观看| 免费观看无遮挡www的小视频| 国产91小视频在线观看| 91九色视频网| 亚洲中文字幕av无码区| 日本不卡在线| 综合色婷婷| 国产午夜看片| 高清久久精品亚洲日韩Av| 亚洲AV成人一区国产精品| 欧美亚洲国产日韩电影在线| 亚洲精品少妇熟女| 亚洲精品波多野结衣| 久久久久无码精品| 亚洲午夜国产精品无卡| 欧美啪啪一区| a毛片在线播放| 色网站在线免费观看| 中国国语毛片免费观看视频| julia中文字幕久久亚洲| 香蕉视频在线精品| 国产成人高精品免费视频| 国产人成在线视频| 亚洲AV无码乱码在线观看代蜜桃| 久久99精品国产麻豆宅宅| 久久美女精品| 美女免费黄网站| 久久午夜夜伦鲁鲁片无码免费 | 无码高潮喷水专区久久| 亚洲精品视频免费观看| 国产屁屁影院| 亚洲成肉网| 精品一区二区久久久久网站| 国内精自视频品线一二区| 久久黄色小视频| 亚洲国产成人超福利久久精品| 91啪在线| 亚洲天堂在线免费| 久久这里只有精品免费| 四虎影视库国产精品一区| 免费在线成人网| 亚洲精品大秀视频| 在线看片中文字幕| 在线观看欧美国产|