陳家婷 白 欣 谷雨杰 張瀟文 郭慧娟 常利芳 陳 芳 張樹偉 張曉軍 李 欣 馮瑞云 暢志堅 喬麟軼
小麥芽期和苗期耐鹽鑒定方法的適用性評價
陳家婷 白 欣 谷雨杰 張瀟文 郭慧娟 常利芳 陳 芳 張樹偉 張曉軍 李 欣 馮瑞云 暢志堅 喬麟軼*
山西農業大學農學院 / 作物遺傳與分子改良山西省重點實驗室 / 農業農村部有機旱作農業重點實驗室(部省共建), 山西太原 030031
耐鹽鑒定是篩選種質和選育耐鹽小麥品種的前提。小麥室內耐鹽鑒定方法較多, 涉及不同生育時期和組織器官。為了評估這些方法在生產上的適用性, 本研究選用北方冬麥區5個耐鹽品種和5個鹽敏感品種為試驗材料, 對基于芽期和苗期的7種耐鹽鑒定方法(涉及27個測試指標)進行實用性評價。結果顯示, 利用小麥種子的發芽相對鹽害率不能區分參試耐鹽品種和鹽敏感品種, 而小麥苗期的葉部鹽害指數、根部Na+和K+流速以及根尖數、根徑、葉片K+含量的相對鹽害率在耐鹽和鹽敏感品種之間差異顯著。綜合回歸分析結果和可操作性, 明確葉部鹽害指數是北方冬麥區適用性較高的耐鹽鑒定方法, 可結合根尖數相對鹽害率、葉片K+含量相對鹽害率或根部Na+和K+流速用于種質篩選或品種選育。本研究從適用程度方面解析和評價了耐鹽鑒定方法, 為小麥耐鹽育種工作提供參考信息。
小麥; 耐鹽鑒定; 方法評價; 芽期; 苗期
小麥作為我國主糧作物, 其產量與國家糧食安全和人民生活水平密切相關。土壤鹽漬化是小麥生產中面臨的主要非生物脅迫之一[1]。以我國北方冬麥區為例, 該區小麥種植面積及總產通常占全國總量的60%以上[2], 然而, 小麥生產區域和濱海鹽堿區(100.5萬公頃)、黃淮海鹽堿區(67萬公頃)等土壤鹽漬化區域存在大面積重疊[3-4], 小麥產量受到嚴重影響。選育小麥耐鹽品種對于充分利用鹽化土地、保障小麥高產穩產意義重大。
耐鹽鑒定是篩選耐鹽種質、選育耐鹽品種的前提。育種工作中通常將小麥在鹽漬化土地中的產量或產量組分作為評價指標, 并成功用于品種選育。但是, 該方法測試周期較長, 試驗田的鹽分在空間(分布不均勻)和時間上(受降水和地下水位影響)都存在變異, 在快速、精確鑒定種質耐鹽性方面具有局限性[5-7]。因此, 室內受控環境條件下的評估結果被認為更有效[8]。
迄今為止, 國內外育種家用于評價小麥種質的室內耐鹽鑒定方法有10余種, 涉及小麥不同生育時期和組織器官[9-12], 然而, 利用上述方法篩選出的耐鹽種質在育種或生產中的適用性普遍不高。由于小麥有Na+外排、組織耐受和氧化脅迫清除等多種耐鹽機制[13], 某種鑒定方法可能選擇出只具有單一耐鹽機制的種質, 而該機制在特定大田環境下只能產生有限的耐鹽表型, 從而降低種質利用價值。例如, 利用芽期鑒定方法篩選出的耐鹽種質在伴隨干旱的鹽堿地中可能無法存活[9]; Na+外排能力強的耐鹽種質在低鹽分鹽堿地中表現出很好的耐鹽性, 但在高鹽分鹽堿地中, 該類種質耐鹽性并不明顯[14]。因此, 一些育種家開始利用當地種質對部分室內鑒定方法開展適用性評價, 如Genc等[15]發現耐鹽堿種質MW#293中的葉片Na+濃度遠高于不耐鹽小麥, 據此不推薦將葉片Na+水平作為育種耐鹽鑒定標準; Cuin等[16]利用耐鹽品種Kharchia 65測試了將根部Na+外排作為鑒定方法的有效性。
在我國, 豆昕桐等[17]以北方冬麥區耐鹽品種濟麥22和鹽敏感品種河農6425為材料, 測試了2個品種受鹽脅迫后在葉綠體熒光參數和抗氧化酶活力等方面的變化及差異, 為小麥耐鹽生理鑒定方法提供了評價依據。然而, 該研究涉及的種質數目較少, 也未鑒定根部或葉部相關的鹽害表型。據此, 本研究選用北方冬麥區5個耐鹽品種和5個不耐鹽的品種[17-26], 對基于芽期和苗期的7種耐鹽鑒定方法進行比較和評價, 以期篩選出適用性較好的室內鑒定指標, 為北方冬麥區耐鹽育種工作提供參考信息。
10個北方冬麥區育成品種(表1)用于耐鹽鑒定。試驗于2022年9月至2023年9月在作物遺傳與分子改良山西省重點實驗室完成。
每份材料取30粒種子置于培養皿中, 處理組加入350 mmol L–1NaCl溶液, 對照組加入等量去離子水, 在20℃恒溫、12 h光/2 h暗條件下萌發7 d后統計種子發芽數, 發芽標準為胚根長≥種子長、胚芽長1/2種子長。試驗重復3次。計算每份材料的發芽相對鹽害率[27]: RSIR-G (relative salt-injury rate for germination, %) = (CK–T)/CK×100%, 式中CK表示對照組發芽率平均值,T表示處理組發芽率平均值。

表1 10個已報道耐鹽性的中國北方冬麥區育成品種
每份材料于室溫萌發后, 挑選胚根約3 cm的種子移入底部剪空的96孔PCR板, 置于培養箱中1/2霍格蘭氏營養液生長, 設置16 h光/8 h暗、22℃/16℃;在幼苗二葉一心期進行鹽脅迫, 設置處理組(含250 mmol L–1NaCl的1/2霍格蘭氏營養液)和對照組(1/2霍格蘭氏營養液)。7 d后, 每份材料選10株長勢一致的小麥植株, 使用MICROTEK根系掃描儀(中晶科技, 上海)掃描小麥根系, 利用whiRHiZO根系分析系統獲得總根長(RtL)、總表面積(RsA)、總體積(RV)、根徑(RD)、根尖數(RTN)和根分叉數(RFN)。試驗重復3次。計算每份材料的根部相對鹽害率: RSIR-RP (RSIR for root phenotypes, %) = (CK–T)/CK×100%。
利用非損傷微測技術(non-invasive micro-test technology, NMT)活體工作站(旭月, 北京)測定小麥根部分生區的Na+和K+流速[28]。將鹽脅迫7 d后的小麥幼苗固定根尖后浸入測試液; 利用液態離子交換劑(LIX)制作Na+或K+微傳感器, 將其調整至距根尖2 μm處; 使用非損傷離子流速檢測軟件imFluxes V2.0在Na+或K+模式下測定對應的根尖離子流速, 持續15 min; 記錄、保存后10 min數據。每份種質測定3個單株。
根據鹽害表型將鹽脅迫7 d后的小麥幼苗葉片劃分為0~4級。0級: 生長正常, 無鹽害癥狀; 1級: 生長基本正常, 有2~3片綠葉, 葉尖變黃、青枯或萎蔫; 2級: 生長受到抑制, 剩2片綠葉或有2片半黃葉; 3級: 生長受害, 僅剩1片綠葉或整株葉片中僅存小部分綠色; 4級: 葉片接近或已經死亡。計算每份材料的鹽害指數[29]: SI-L (salt-injury index of leaf, %) = ∑(0×0+1×1+2×2+3×3+4×4)×100/(4×16),式中0~4分別指0~4級的植株數目, 16指本研究中每個品種所測植株數目。試驗重復3次, 取SI-L平均值。
每份材料取處理組和對照組7 d后的小麥幼苗各10株, 使用電子天平稱取植株地上部(shoot)鮮重(FW-S)和根鮮重(FW-R), 并計算根冠鮮重比(FW- R/S); 再將地上部和根于105℃殺青15 min、65℃烘干至恒定重量后稱重, 得到地上部干重(DW-S)、根干重(DW-R)和根冠干重比(DW-R/S)。計算每份材料特定生物量的相對鹽害率: RSIR-B (RSIR for biomass,%) = (CK–T)/CK×100%。
稱取每份小麥材料在處理組和對照組7 d后的根(root)、莖(stem)、葉(leaf)烘干樣本粉末各0.1 g, 加入10 mL硝酸消解后在120℃下烘干, 用水定容至50 mL制成試樣溶液; 利用原子吸收光譜儀(JENA, 德國)繪制標準曲線后測定試樣溶液Na+或K+的吸光值, 并換算為離子濃度(mg g–1)。試驗重復3次。計算每份材料的離子含量相對鹽害率: RSIR-IC (RSIR for ion content, %) = (CK–T)/CK×100%。
使用茚三酮比色法試劑盒(夢犀生物, 蘇州)測定小麥材料在處理組和對照組7 d后的根(root)和葉(leaf)脯氨酸含量。稱取0.1 g組織樣本加入1 mL提取液于90℃水浴10 min, 取上清冷卻后加入測試液。使用分光光度計在520 nm波長下測定吸光度, 并換算為脯氨酸含量(μg g–1)。試驗重復5次。計算每份材料的脯氨酸含量相對鹽害率: RSIR-P (RSIR for proline content, %) = (T–CK)/T×100%。
采用Microsoft Excel 2010軟件進行數據處理和作圖。利用LSD法分析處理組和對照組之間差異的顯著性, 設<0.05為顯著,<0.01為極顯著。利用回歸分析法評價各個鑒定標準之間的相關性。
參試5個耐鹽品種與5個鹽敏感品種在對照處理下的發芽率無明顯差異(圖1-a); 在受到鹽脅迫后, 耐鹽和鹽敏感品種的發芽率均顯著降低(<0.01), 但兩類品種之間仍無明顯差異(圖1-a)。進一步分析結果顯示, 耐鹽品種和鹽敏感品種之間的發芽相對鹽害率差異不顯著(圖1-b)。
參試耐鹽品種與鹽敏感品種在對照處理下的6個根部指標無明顯差異(圖2-a~f); 在受到鹽脅迫后, 參試品種根部指標數值均呈下降趨勢, 其中, 耐鹽品種的總根長(RtL,<0.05, 圖2-a)、根表面積(RsA,<0.05, 圖2-b)、根體積(RV,<0.01, 圖2-c)、根尖數(RTN,<0.05, 圖2-e)和根分叉數(RFN,<0.01, 圖2-f)差異變化顯著或極顯著, 鹽敏感品種的根尖數(RTN,<0.05, 圖2-e)和根分叉數(RFN,<0.05, 圖2-f)差異變化顯著, 但兩類品種之間無明顯差異(圖2-a)。相對鹽害率計算結果顯示(圖2-g), 耐鹽品種和鹽敏感品種之間的根徑(<0.05)和根尖數(<0.05)差異顯著。

圖1 耐鹽與鹽敏感品種在鹽脅迫下的發芽結果比較
(a) GR: 發芽率; **:<0.01; ****:<0.0001。(b) RSIR-G: 發芽相對鹽害率; T: 耐鹽品種; S: 鹽敏感品種。
(a) GR: germination rate; **:<0.01; ****:<0.0001. (b) RSIR-G: the relative salt-injury rate for germination; T: tolerant varieties; S: sensitive varieties.

圖2 耐鹽與鹽敏感品種苗期根部鹽害表型比較
RtL: 總根長; RsA: 根表面積; RV: 根體積; RD: 根徑; RTN: 根尖數; RFN: 根分叉數; RSIR-RP: 根部表型相對鹽害率。*:< 0.05; **:< 0.01; T: 耐鹽品種; S: 鹽敏感品種。
RtL: root total length; RsA: root surface area; RV: root volume; RD: root diameter; RTN: root tips number; RFN: root forks number; RSIR-RP: the relative salt-injury rate for root phenotypes. *:< 0.05; **:< 0.01; T: tolerant varieties; S: sensitive varieties.
受鹽脅迫7 d后, 參試品種除河農6425外, 其余品種根部都不同程度的外排Na+(圖3-a), 其中,京411和山融3號的Na+外排能力較強; 此外, 所有品種根部的K+都不同程度的內流(圖3-b), 青麥6號和京411對K+的吸收能力較強。從整體來看, 參試耐鹽品種根部的Na+外排能力(<0.001, 圖3-c)和K+吸收能力(<0.0001, 圖3-d)均極顯著高于鹽敏感品種。

圖3 耐鹽與鹽敏感品種在苗期鹽脅迫下的根部離子流速比較
***:< 0.001; ****:< 0.0001; T: 耐鹽品種; S: 鹽敏感品種。
***:< 0.001, ****:< 0.0001; T: tolerant varieties; S: sensitive varieties.
參試品種的苗期葉部鹽害指數測試結果顯示(附表1), 耐鹽品種鹽害指數分別為滄麥6005 (22.50%)、德抗961 (39.19%)、山融3號(40.54%)、青麥6號(42.09%)和小偃60 (51.61%), 平均鹽害指數為39.19%; 鹽敏感品種鹽害指數分別為魯原502 (43.75%)、濟麥20 (55%)、京411 (57.61%)、河農6425 (58.22%)和中麥175 (58.79%), 平均鹽害指數為54.674。耐鹽品種和鹽敏感品種之間的葉部鹽害指數差異顯著(<0.05, 圖4)。
參試耐鹽品種與鹽敏感品種在對照處理下的6個生物量指標無明顯差異(圖5-a~f); 在受到鹽脅迫后,參試品種根和地上部的鮮重和干重數值均呈下降趨勢, 其中, 耐鹽品種的差異變化極顯著(<0.01, 圖5-a, b, d, e), 鹽敏感品種的地上部鮮重(FW-S,<0.05, 圖5-b)差異變化顯著; 而鮮重和干重的根冠比則呈上升趨勢(圖5-c~f)。受鹽脅迫后, 兩類品種之間的生物量指標及其相對鹽害率(圖5-g)無顯著差異。
如圖6所示, 參試耐鹽品種的葉片K+含量顯著低于鹽敏感品種(<0.05, 圖6-c), 在受到鹽脅迫后極顯著升高(<0.01), 與鹽敏感品種鹽脅迫后的葉片K+含量無差異; 兩類品種的其余指標, 如根、莖、葉的Na+含量(圖6-d~f)或K+/Na+含量比(圖6-g~i)等, 則沒有顯著差異。耐鹽品種和鹽敏感品種之間的葉片K+含量相對鹽害率差異顯著(<0.05, 圖6-j)。

圖4 耐鹽與鹽敏感品種葉部鹽害指數測定比較
*:< 0.05; T: 耐鹽品種; S: 鹽敏感品種。
*:< 0.05; T: tolerant varieties; S: sensitive varieties.

圖5 耐鹽與鹽敏感品種在苗期鹽脅迫下的生物量比較
FW-R: 根鮮重; FW-S: 地上部鮮重; FW-R/S: 鮮重根冠比; DW-R: 根干重; DW-S: 地上部干重; DW-R/S: 干重根冠比; RSIR-B: 生物量相對鹽害率。*:< 0.05, **:< 0.01, ***:< 0.001; T: 耐鹽品種; S: 鹽敏感品種。
FW-R: fresh weight of root; FW-S: fresh weight of shoot; FW-R/S: the ratio of FW-R/FW-S; DW-R: dry weight of root; DW-S: dry weight of shoot; DW-R/S: the ratio of DW-R/DW-S; RSIR-B: the relative salt-injury rate for biomass. *:< 0.05; **:< 0.01; ***:< 0.001; T: tolerant varieties; S: sensitive varieties.

(圖6)
a~c: 根、莖、葉中的K+含量; d~f: 根、莖、葉中的Na+含量; g~i: 根、莖、葉中K+與Na+的含量比; j: 離子含量相對鹽害率。*:< 0.05; **:< 0.01; T: 耐鹽品種; S: 鹽敏感品種。
a–c: K+contents in root, stem, and leaf; d–f: Na+contents in root, stem, and leaf; g–i: ratio of K+and Na+contents in root, stem, and leaf; j: the relative salt-injury rate for ion content (RSIR-IC). *:< 0.05; **:< 0.01; T: tolerant varieties; S: sensitive varieties.
參試耐鹽品種與鹽敏感品種在對照處理下的根部和葉部脯氨酸含量無明顯差異; 在受到鹽脅迫后, 參試品種根部脯氨酸含量極顯著上升(<0.01, 圖7-a), 葉部脯氨酸含量也顯著上升(<0.05, 圖7-b), 但耐鹽與鹽敏感品種之間的脯氨酸相對鹽害率無顯著差異(圖7-c)。
合適的耐鹽鑒定方法可以提高種質篩選或品種選育的效率。本研究對7種主要的小麥室內耐鹽鑒定方法進行評價, 所選種質均為北方冬麥區審定品種, 與農家種或野生種相比, 參試品種之間在產量或農藝性狀方面的差異較小, 其耐鹽性在生產上也已得到驗證, 有助于利用其評估耐鹽鑒定方法的適用性。在設置對照組的5種鑒定方法(涉及23個測定指標)中, 參試耐鹽品種與鹽敏感品種的22個表型指標(占96%)在未受到鹽脅迫時無顯著差異(附表1),表明各品種之間的遺傳背景差異對研究結果影響很小。在施加鹽處理7 d后, 參試品種出現預期鹽害表型, 如發芽率下降、葉片發黃、根長度/面積/體積減少、植株總體生物量減少、鮮重根冠比增加、脯氨酸含量增加等, 并且大部分表型之間顯示出正常的相關性, 如根部各鹽害表型之間、地上部與地下部生物量之間、根/莖/葉Na+和K+含量之間, 以及莖部與葉部的Na+含量、植株生物量與Na+含量等(圖8), 這表明本研究中的耐鹽鑒定體系可靠, 測定的數值以及據此計算出的鹽害指數或鹽害率可信。

圖7 耐鹽與鹽敏感品種在苗期鹽脅迫下的不同組織脯氨酸含量比較
a: 根中的脯氨酸含量; b: 葉中的脯氨酸含量; c: 根、葉中脯氨酸含量相對鹽害率(RSIR-P)。*:< 0.05; **:< 0.01; T: 耐鹽品種; S: 鹽敏感品種。
a: proline contents in root; b: proline contents in leaf; c: RSIR-P in root and leaf. *:< 0.05; **:< 0.01; T: tolerant varieties; S: sensitive varieties.

圖8 參試表型之間的回歸分析
左下角為值, 右上角為決定系數2值, 用紅色填充; 在參試耐鹽和鹽敏感品種間差異顯著的表型用藍色標注。
The numbers in the lower left corner are the-values, and the numbers in the upper right corner are the coefficient of determination2values which filled in red. Parameters with significant differences between salt-tolerant and -sensitive varieties tested in this study are marked in blue.
發芽率測定是批量篩選耐鹽種質最為簡單、快速的鑒定方法。然而, 本研究評價結果顯示, 利用發芽相對鹽害率指標不能很好地區分參試耐鹽和鹽敏感品種, 即品種發芽率與其在生產上的耐鹽表現無關。這可能是因為種子萌發和幼苗生長期間的主要生理機制不同, 發芽過程中胚根、胚芽的伸長很大程度上是一個吸水膨脹的物理化學過程, 而隨后的植株生長則是分子生物學過程。所以, 某些種質即使能夠在300 mmol L–1以上的NaCl脅迫中發芽, 但其胚根在這種濃度下無法進一步生長[6]。另外, 北方冬麥區常在每年10月上旬播種小麥, 該時期常有降雨, 或者會在播種之前灌溉耕地來保障底墑, 這能暫時降低鹽漬土中的鹽分, 使耕地的土壤溶液電導率不超過20 dS m–1(大致相當于200 mmol L–1NaCl),種子可以保持較好的發芽率。因此, 對于北方冬麥區而言, 小麥出苗后在鹽漬化土壤中存活可能比種子發芽更為重要, 僅以發芽率作為耐鹽評價指標是不合適的。
根是最早感知鹽脅迫的器官, 根部鹽害表型也被用于評價種質耐鹽性。本研究分析了小麥苗期根系的6個指標, 發現有2個指標的相對鹽害率在參試品種之間差異顯著(圖2-g), 兩者決定系數2= 0.30 (圖8)。第一個是根尖數, 與耐鹽品種相比, 鹽敏感品種在鹽脅迫后根尖數顯著變小, 意味著根數嚴重減少; 第二個是根徑, 參試鹽敏感品種受鹽脅迫后根部直徑減小的程度顯著小于耐鹽品種, 其中, 鹽敏感品種京411、中麥175和濟麥20的根徑相對鹽害率為負值, 即這3個品種的根徑在鹽脅迫后變大。在一些木本植物中也觀察到了鹽脅迫后根系變粗的現象[30-32], 在禾本科作物中則暫無此類報道。然而, 有研究表明鹽分對植株地上部的影響比對根系的影響更為嚴重, 因為根系會通過外排Na+或將其運送到地上部來保持相對恒定的NaCl水平, 因此更應該關注根部在鹽脅迫中的功能, 而不是其表型[33]。本研究結果也顯示了這點, 根系鮮重與根Na+含量幾乎無關(2=0.01,<0.0001), 但與莖和葉Na+含量的2值分別高達0.74 (<0.0001)和0.81 (< 0.0001) (圖8)。結合本文結果和已報道的研究, 我們建議僅將根尖數相對鹽害率作為種質耐鹽鑒定的參考指標。
根部Na+和K+流速最早由澳大利亞研究人員用于鑒定小麥耐鹽性, 大量研究顯示小麥種質外排Na+能力與耐鹽性之間具有很好的相關性[16,34-36]。一般而言, 如果某個種質在長時間鹽脅迫后仍能保持良好的根部外排Na+能力, 則能緩解地上部尤其是葉片受到的離子毒害和氧化脅迫; 同時, 根部會增加對K+的吸收, 并將其作為胞質和液泡中的主要離子滲透物[37], 用以對抗根外部的高鹽滲透脅迫。此外, 每份種質根部Na+和K+流速特性都是相對穩定的, 不易受根系溫度和蒸騰速率影響[6], 這保證了測試結果的穩定性。本研究中, 參試品種受鹽脅迫后, 耐鹽品種根部的Na+外排能力和K+吸收能力均極顯著高于鹽敏感品種, 證實了該方法的適用性。其中, 鹽敏感品種河農6425對Na+和K+的凈流速均表現為內吸, 原因可能是在經過7 d鹽脅迫后, 其根部表皮細胞膜的完整性已被破壞。此外, 另1份鹽敏感品種京411的Na+外排和K+吸收能力強于大部分耐鹽品種, 這表明不能完全依賴于離子流速測定結果來判定耐鹽性。
苗期葉部鹽害指數測定是一種較為直觀和簡便的鑒定方法, 由植株受鹽脅迫后的葉片損傷級別分值經過加權計算獲得。葉片損傷(發黃、萎蔫或干枯)可能由多種原因引起, 首先, 土壤中的高鹽環境會對根系產生滲透脅迫, 造成植株生理性干旱, 導致葉片萎蔫、枯黃; 其次, 土壤中Na+通過非選擇性陽離子通道(non-selective cation channel, NSCC)進入根系, 隨后受蒸騰拉力作用再進入葉片富集。高濃度Na+會與K+等陽離子競爭生化反應結合位點, 導致葉綠素降解, 并抑制大多數酶和蛋白質的正常功能[6,38-39], 造成葉片營養失衡、葉色變黃; 第三, 在受鹽脅迫一段時間后, 葉片內會產生大量的活性氧(ROS), 致使膜結構的完整性被破壞, 生物大分子反應受到影響, 生理代謝紊亂, 加速了葉片衰老枯黃[13]。受長期鹽脅迫后葉片仍能保持綠色、維持正常生長狀態的小麥種質, 往往具有較強的Na+外排能力, 或者較好的Na+耐受性和氧化修復能力。因此, 葉部鹽害指數涉及了Na+外排、組織耐受和氧化脅迫清除這3種主要的小麥耐鹽機制[13], 據其篩選的耐鹽種質在大田環境下可能更為適應。在本研究中, 參試耐鹽和鹽敏感品種之間的葉部鹽害指數差異顯著, 證實了該鑒定方法具有很好的適用性。除此之外, 葉部鹽害指數還具有較高遺傳力, 已被用于正向遺傳學中的群體表型鑒定[40-41]。
生物量相對鹽害率是反映種質耐鹽性的重要指標。在大田環境下, 小麥生物量受到鹽脅迫后顯著下降[7,42-43], 而且鹽敏感種質生物量要比耐鹽種質下降的更多, 即生物量相對鹽害率更高。本研究中參試品種受到鹽脅迫后, 根和地上部的鮮重和干重數值均呈下降趨勢, 與前人已報道的田間鑒定結果相符; 各類生物量的相對鹽害率之間大致呈正相關(圖7), 然而, 這些相對鹽害率在參試耐鹽和鹽敏感品種之間無顯著差異, 這可能是由于用于鑒定的小麥植株苗齡較小(二葉一心), 并且鹽脅迫時間較短(7 d), 致使植株生物量未能表現出顯著差異。有研究選擇了在長期鹽脅迫下生物量差異顯著的品種, 對其開展1周左右的短期鹽脅迫, 然而不同品種之間的地上部生物量幾乎沒有差異[6,44]。鹽處理3~4周被認為是比較合適的脅迫時間[6], 但水培條件下的小麥植株受長時間高鹽脅迫可能無法生存, 因此可以用土培或沙培方式進行低鹽脅迫。最近有研究對種在花盆基質中的小麥幼苗用150 mmol L–1NaCl溶液脅迫4周, 最終耐鹽和鹽敏感種質之間的地上部干重指標顯示出顯著差異[11], 可借鑒該脅迫方法來測定生物量相對鹽害率。
植株不同組織中的Na+和K+含量情況較為復雜。由于NSCC和蒸騰拉力, Na+會進入根部并被運送地上部, 最終在葉片中富集。以往研究顯示小麥耐鹽種質地上部Na+含量比鹽敏感種質低[43,45]。一般情況下, 葉片Na+含量較低的耐鹽種質, 其同為地上部的莖稈中的Na+含量也較低, 而根部則會相對獨立地維持Na+穩態; K+含量則與之相反, 植株會通過“排鈉保鉀”來維持較高的K+/Na+含量比值, 這被認為是耐鹽性的一個關鍵特征[11,33,46-47]。然而, 也有很多研究顯示不同組織K+、Na+含量及其比值與種質耐鹽性并不相關[15,48-50]。出現不同結論的原因之一就是液泡對Na+的區室化。一些種質的組織器官(特別是葉片)雖然Na+含量很高, 但過量Na+會被液泡膜上的Na+/H+逆向轉運蛋白(NHX)利用質子泵(H+-PPase)封存到液泡內[51], 從而緩解高鹽濃度對細胞的離子毒性, 使植株表現出耐鹽性。這就會導致在差異性分析中, Na+和K+含量與耐鹽性相關性不高。本研究中, 參試品種葉片和莖稈的Na+含量、葉片和莖稈的K+/Na+含量比值均呈強相關性, 決定系數分別為0.93和0.81 (圖7), 整體趨勢基本正常, 但耐鹽品種和鹽敏感品種之間僅有葉片K+含量相對鹽害率(RSIR-K+-L)差異顯著, 表明有的參試品種可能對Na+具有較好的液泡封存能力。由于K+與液泡膜PPase活性以及有害離子區室化密切相關[51], 并涉及響應鹽脅迫相關的多個生理生化反應[6,38-39], 因此, 可將RSIR-K+-L作為小麥耐鹽性評價的參考指標。
脯氨酸是調節植物抗逆能力的重要分子, 具有調節細胞滲透壓、清除活性氧等作用[52]。在小麥耐鹽基因功能研究中, 過表達或編輯植株與野生型的脯氨酸含量變化是重要檢測指標之一[28,52-53]。在種質篩選方面, 不同小麥品種的脯氨酸含量在受鹽脅迫后均會有不同程度的提高, 然而, 這種含量變化與耐鹽性不存在顯著相關性[12,14], 與本文研究結果一致。此外, 有研究人員認為, 通過提高脯氨酸含量來增強小麥品種耐鹽性并不是一個理想措施, 因為植株合成高濃度的脯氨酸需要消耗大量能量和有機物, 這會降低籽粒營養物質的積累, 最終影響小麥產量[15,54-55]。因此, 不建議將脯氨酸含量做為篩選小麥耐鹽種質的評價指標。
綜上所述, 每種耐鹽鑒定方法都有其特定優勢, 但也存在局限性。其中, 苗期葉部鹽害指數是小麥3種主要耐鹽機制的綜合反映, 利用該方法篩選的種質在大田環境中的適應性應該較好, 其測定方法也比較簡便, 適合評價或篩選大量小麥種質。此外, 根尖數(RTN)和葉片K+含量(K+-L)的相對鹽害率、根部Na+和K+流速可以作為參考指標。
小麥根尖數、根徑、葉片K+含量的相對鹽害率, 葉部鹽害指數以及根部Na+和K+流速在參試耐鹽和鹽敏感品種之間差異顯著, 葉部鹽害指數是在北方冬麥區適用性較高的耐鹽鑒定方法, 可結合根尖數相對鹽害率、葉片K+含量相對鹽害率或根部Na+和K+流速用于種質篩選或品種選育。
致謝 河北省農業科學院張業倫副研究員提供了滄麥6005種質, 山東省農業科學院劉成研究員提供了山融3號和德抗961種質, 太原師范學院張笑博士在NMT活體工作站操作方面給予了指導, 謹致謝忱。
[1] Safdar H, Amin A, Shafiq Y, Ali A, Yasin R, Shoukat A, Hussan M U, Sarwar M I. A review: impact of salinity on plant growth., 2019, 1: 34–40.
[2] 趙廣才. 中國小麥種植區劃研究(一). 麥類作物學報, 2010, 30: 886–895. Zhao G C. Study on Chinese wheat planting regionalization (I)., 2010, 30: 886–895 (in Chinese with English abstract).
[3] 楊勁松, 姚榮江. 我國鹽堿地的治理與農業高效利用. 中國科學院院刊, 2015, 30(增刊1): 162–170. Yang J S, Yao R J. Management and efficient agricultural utilization of salt-affected soil in China., 2015, 30(S1): 162–170 (in Chinese with English abstract).
[4] 邢錦城, 陳超, 董靜, 劉沖, 朱小梅, 洪立洲. 長江中下游及黃淮冬麥區小麥主栽品種耐鹽性評價. 大麥與谷類科學, 2017, 34(6): 8–13. Xing J C, Chen C, Dong J, Liu C, Zhu X M, Hong L Z. Evaluation of salt tolerance of main wheat cultivars planted in the middle and lower reaches of the Yangtze River and Huang Huai area., 2017, 34(6): 8–13 (in Chinese with English abstract).
[5] Richards R A. Should selection for yield in saline conditions be made on saline or non-saline soils., 1983, 32: 431–438.
[6] Munns R, James R A. Screening methods for salinity tolerance: a case study with tetraploid wheat., 2003, 253: 201–218.
[7] El-Hendawy S E, Hassan W M, Al-Suhaibani N A, Refay Y, Abdella K A. Comparative performance of multivariable agro- physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions., 2017, 8: 435.
[8] Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: where next., 1995, 22: 875–884.
[9] Yu S Z, Wu J H, Wang M, Shi W M, Xia G M, Jia J Z, Kang Z S, Han D J. Haplotype variations in QTL for salt tolerance in Chinese wheat accessions identified by marker-based and pedigree-based kinship analyses., 2020, 8: 1011–1024.
[10] Genc Y, McDonald G K, Tester M. Reassessment of tissue Na+concentration as a criterion for salinity tolerance in bread wheat., 2007, 30: 1486–1498.
[11] Tao R, Ding J, Li C, Zhu X, Guo W, Zhu M. Evaluating and screening of agro-physiological indices for salinity stress tole-rance in wheat at the seedling stage., 2021, 12: 646175.
[12] Masarmi A G, Solouki M, Fakheri B, Kalaji H M, Mahgdingad N, Golkari S, Telesiński A, Lamlom S F, Kociel H, Yousef A F. Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress., 2023, 18: e0282606.
[13] Wang M, Xia G M. The landscape of molecular mechanisms for salt tolerance in wheat., 2018, 6: 42–47.
[14] Tavakkoli E, Fatehi F, Rengasamy P, McDonald G K. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley., 2012, 63: 3853–3867.
[15] Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T. Bread wheat with high salinity and solidity tolerance., 2019, 10: 1280.
[16] Cuin T A, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S. Assessing the role of root plasma membrane and tonoplast Na+/H+exchangers in salinity tolerance in wheat: in planta quantification methods., 2011, 34: 947–961.
[17] 豆昕桐, 王英杰, 王華忠, 岳潔瑜. 耐鹽和鹽敏感型小麥品種對NaCl脅迫的生理響應及耐鹽性差異. 生態學報, 2021, 41: 4976–4992. Dou X T, Wang Y J, Wang H Z, Yue J Y. Physiological response and tolerance difference of two wheat varieties to NaCl stress., 2021, 41: 4976–4992 (in Chinese with English abstract).
[18] Luo Q L, Teng W, Fang S, Li H W, Li B, Chu J F, Li Z S, Zheng Q. Transcriptome analysis of salt-stress response in three seedling tissues of common wheat., 2019, 7: 378–392.
[19] Zhang Y, Liu Z, Khan A A, Lin Q, Han Y, Mu P, Liu Y, Zhang H, Li L, Meng X, Ni Z, Xin M. Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat (L.)., 2016, 6: 21476.
[20] Yu L, Wang W W, Niu L Y, Wang W, Lu L, Wang F Z, Wang L P, Wang Y, Zang X J. A new cultivation technique of Cangmai 6005 for high yield in Cangzhou dry-alkali land., 2018, 10: 68–70.
[21] Shan L, Li C, Chen F, Zhao S, Xia G. A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat., 2008, 31: 1128–1137.
[22] Wang Z Y, Qin X H, Li J H, Fan L F, Zhou Q, Wang Y Q, Zhao X, Xie C J, Wang Z Y, Huang L. Highly reproducible periodic electrical potential changes associated with salt tolerance in wheat plants., 2019, 160: 120–130.
[23] 梁超, 王超, 楊秀風, 張秀田, 王瑋. ‘德抗961’小麥耐鹽生理特性研究. 西北植物學報, 2006, 26: 2075–2082. Liang C, Wang C, Yang X F, Zhang X T, Wang W. Salt-tolerant physiological characters of wheat variety Dekang 961., 2006, 26: 2075–2082 (in Chinese with English abstract).
[24] Ma Q, Zhou H J, Sui X Y, Su C X, Yu Y C, Yang H B, Dong C H. Generation of new salt-tolerant wheat lines and transcriptomic exploration of the responsive genes to ethylene and salt stress., 2021, 94: 33–48.
[25] Guo G F, Ge P, Ma C Y, Li X H, Lü D W, Wang S L, Ma W J, Yan Y M. Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties., 2012, 75: 1867–1885.
[26] Xiong H, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Li J, Liu L. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant., 2017, 7: 2731.
[27] 馬雅琴, 翁躍進. 引進春小麥種質耐鹽性的鑒定評價. 作物學報, 2005, 31: 58–64. Ma Y Q, Weng Y J. Evaluation for salt tolerance in spring wheat cultivars introduced from abroad., 2005, 31: 58–64 (in Chinese with English abstract).
[28] Wang W, Wang W, Wu Y, Li Q, Zhang G, Shi R, Yang J, Wang Y, Wang W. The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance., 2020, 62: 631–651.
[29] 喬麟軼, 張瀟文, 李世姣, 陳芳, 李欣, 郭慧娟, 張樹偉, 常利芳, 張曉軍, 暢志堅. 小偃麥滲入系苗期耐鹽鑒定與分子標記評價. 山東農業科學, 2021, 53(5): 69–73. Qiao L Y, Zhang X W, Li S J, Chen F, Li X, Guo H J, Zhang S W, Chang L F, Zhang X J, Chang Z J. Salt-tolerance identification at seedling stage and molecular marker evaluation of wheat-introgression lines., 2021, 53(5): 69–73 (in Chinese with English abstract).
[30] Kamiab F, Talaie A, Javanshah A, Khezri M, Khalighi A. Effect of long-term salinity on growth, chemical composition and mineral elements of pistachio (cv. Badami-Zarand) rootstock seedlings., 2012, 3: 5545–5551.
[31] Soda N, Ephrath J E, Dag A, Beiersdorf I, Presnov E, Yermiyahu U, Ben-Gal A. Root growth dynamics of olive (L.) affected by irrigation induced salinity., 2017, 411: 305–318.
[32] Tan J L, Ben-Gal A, Shtein I, Bustan A, Dag A, Erel R. Root structural plasticity enhances salt tolerance in mature olives., 2020, 179: 104224.
[33] Tester M, Davenport R. Na+tolerance and Na+transport in higher plants., 2003, 91: 503–527.
[34] Ashraf M, O’Leary J W. Responses of newly developed salt- tolerant genotype of spring wheat to salt stress: yield components and ion distribution., 1996, 176: 91–101.
[35] Rashid A, Querishi R H, Hollington P A, Jones R G W. Comparative responses of wheat cultivars to salinity at the seedling stage., 1999, 182: 199–207.
[36] Poustini K, Siosemardeh A. Ion distribution in wheat cultivars in response to salinity stress., 2004, 85: 125–133.
[37] Walker D J, Leigh R A, Miller A J. Potassium homeostasis in vacuolate plant cells., 1996, 93: 10510–10514.
[38] Isabelle C, Cécile L, Martin B, Hervé S. Molecular mechanisms involved in plant adaptation to low K+availability., 2013, 3: 833–848.
[39] Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homeostasis as a common denominator of plant adaptive responses to environment., 2014, 171: 670–687.
[40] 張瀟文, 李世姣, 張曉軍, 李欣, 楊足君, 張樹偉, 陳芳, 常利芳, 郭慧娟, 暢志堅, 喬麟軼. 小麥品系CH7034中耐鹽QTL定位. 作物學報, 2022, 48: 2646–2654. Zhang X W, Li S J, Zhang X J, Li X, Yang Z J, Zhang S W, Chen F, Chang L F, Guo H J, Chang Z J, Qiao L Y. QTL mapping for salt tolerance in wheat line CH7034., 2022, 48: 2646–2654 (in Chinese with English abstract).
[41] 周升輝, 吳秋紅, 謝菁忠, 陳嬌嬌, 陳永興, 傅琳, 王國鑫, 于美華, 王振忠, 張德云, 王令, 王麗麗, 張艷, 梁榮奇, 韓俊, 劉志勇. 小麥燕大1817×北農6號重組自交系群體在正常和鹽脅迫水培條件下苗期性狀的QTL定位. 作物學報, 2016, 42: 1764–1778. Zhou S H, Wu Q H, Xie J Z, Chen J J, Chen Y X, Fu L, Wang G X, Yu M H, Wang Z Z, Zhang D Y, Wang L, Wang L L, Zhang Y, Liang R Q, Han J, Liu Z Y. Mapping QTLs for wheat seedling traits in RILs population of Yanda 1817 × Beinong 6 under normal and salt-stress conditions., 2016, 42: 1764–1778 (in Chinese with English abstract).
[42] Richards R A, Dennett C W, Qualset C O, Epstein E, Norlyn J D, Winslow M D. Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected ?eld., 1987, 15: 277–287.
[43] Houshmand S, Arzani A, Maibody S A M, Feizi M. Evaluation of salt-tolerant genotypes of durum wheat derived from in vitro and field experiments., 2005, 91: 345–354.
[44] Weimberg R. Solute adjustment in leaves of two species of wheat at two different stages of growth in response to salinity., 1987, 70: 381–388.
[45] Chen Z, Zhou M, Newman I A, Mendham N J, Zhang G, Shabala S. Potassium and sodium relations in salinized barley tissues as a basis of differential salt tolerance., 2007, 34: 150–162.
[46] Cuin T A, Betts S A, Chalmandrier R, Shabala S. A root’s ability to retain K+correlates with salt tolerance in wheat., 2008, 59: 2697–2706.
[47] Oyiga B C, Sharma R C, Baum M, Ogbonnaya F C, Léon J, Ballvora A. Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat., 2018, 41: 919–935.
[48] Davenport R, James R A, Zakrisson-Plogander A, Tester M, Munns R. Control of sodium transport in durum wheat., 2005, 137: 807–818.
[49] Santa-Maria G E, Epstein E. Potassium/sodium selectivity in wheat and amphiploid cross wheat ×., 2001, 160: 523–534.
[50] Meneguzzo S, Navari-Izzo F, Izzo R. NaCl effects on water relations and accumulation of mineral nutrients in shoots, roots and cell sap of wheat seedling., 2000, 156: 711–716.
[51] Gaxiola R A, Rao R, Sherman A, Grisafi P, Alper S L, Fink G R. Theproton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast., 1999, 96: 1480–1485.
[52] Qiu D, Hu W, Zhou Y, Xiao J, Hu R, Wei Q, Zhang Y, Feng J, Sun F, Sun J, Yang G, He G. TaASR1-D confers abiotic stress resistance by affecting ROS accumulation and ABA signalling in transgenic wheat., 2021, 19: 1588–1601.
[53] Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat., 2014, 12: 468–479.
[54] Cuin T A, Tian Y, Betts S A, Chalmandrier R, Shabala S. Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions., 2009, 36: 1110–1119.
[55] Raven J A. Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use energy, nitrogen and water., 1985, 101: 25–77.
附表1 10個參試品種的耐鹽表型數據
Table S1 Phenotype data for salt tolerance of ten tested varieties used in this study

表型Phenotype耐鹽品種 Salt-tolerant varieties鹽敏感品種 Salt-sensitive varieties 小偃60XY60青麥6號QM6滄麥6005CM6005山融3號SR3德抗961DK961中麥175ZM175魯原502LY502京411J411河農6425HN6425濟麥20JM20 發芽率CK (%)97.0098.00100.00100.00100.00100.00100.00100.0083.75100.00 Germination rateNaCl (%)53.6141.3174.4262.3161.7762.6238.3641.0619.1483.75 RSIR (%)44.7357.8525.5837.6938.2337.3861.6458.9477.1516.25 總根長CK (cm)73.6434.2645.2365.8462.4433.1535.2334.2652.6778.66 Root total lengthNaCl (cm)37.7622.6230.9132.5643.2022.3016.6726.2731.5733.99 RSIR (%)48.7233.9831.6550.5430.8132.7552.6823.3140.0756.79 根表面積CK (cm2)7.535.146.4510.254.134.334.904.597.7711.00 Root surface areaNaCl (cm2)3.052.954.084.923.253.822.303.604.604.83 RSIR (%)59.5242.6836.7151.9721.4411.8253.0621.6540.8956.03 根體積CK (cm3)0.080.060.070.130.070.050.050.050.090.12 Root volumeNaCl (cm3)0.030.030.040.060.040.030.030.040.050.06 RSIR (%)62.4450.0541.8553.7542.0230.1053.3319.5941.9255.43 根徑CK (mm)0.420.480.460.500.420.420.450.430.470.45 Root diameterNaCl (mm)0.420.410.420.480.310.420.430.440.460.45 RSIR (%)7.7314.058.332.3525.99–1.113.73–1.051.57–0.40 根尖數CK91.5056.0045.6089.2082.3043.2053.0079.60109.60114.40 Root tips numberNaCl53.3230.6023.6644.0050.3521.2416.2044.6245.6041.40 RSIR (%)41.7345.3648.1150.6738.8250.8469.4343.9558.3963.81 根分叉數CK63.5245.3335.8072.8055.3149.2035.6753.0051.0080.00 Root forks numberNaCl9.0124.4018.9539.0032.1914.9015.0039.4041.2023.40 RSIR (%)95.8146.18–21.2346.4341.80–37.6857.9425.6619.2270.75 離子流速Ions-fluxK+-flux(pmol cm–2 s–1)–215.06–240.00–67.11–120.38–166.78–46.65–67.03–176.05–181.43–195.29 Na+-flux(pmol cm–2 s–1)607.06448.07792.541589.41385.65523.28347.251922.13–89.79102.16 葉部鹽害指數Salt-injury index of leaves (%)51.6142.0922.5040.5439.1958.7943.7557.6158.2255.00 根鮮重CK (mg)76.9861.44142.5790.9392.9839.9496.3385.70111.04196.58 Fresh weight of rootNaCl (mg)43.6239.2243.4748.5647.5131.7349.9043.0661.2866.26 RSIR (%)43.3436.1769.5146.6048.9020.5648.2049.7544.8166.29 地上部鮮重CK (mg)251.52194.36512.82422.36345.26171.30230.67338.74315.58621.13 Fresh weight of shootNaCl (mg)120.98108.78190.32151.66152.8690.7369.60153.30159.23183.51 RSIR (%)51.9044.0362.8964.0955.7347.0469.8354.7449.5470.46 鮮重根冠比CK (%)30.6131.7725.4621.5127.3423.1930.9224.3135.2131.47 Ratio of FW-R/FW-SNaCl (%)36.0536.3222.8132.0332.1631.9634.4828.0939.2738.48 RSIR (%)–17.79–14.3310.41–48.90–17.65–37.83–11.50–15.54–11.51–22.28 根干重CK (mg)28.8034.5816.8521.6725.484.6123.9320.1221.8064.66 Dry weight of rootNaCl (mg)12.334.457.3719.1611.965.515.009.087.6010.43 RSIR (%)57.1887.1356.2611.5853.04–19.5179.1154.8765.1483.87 地上部干重CK (mg)71.4042.7166.4851.3757.9910.7192.67142.5578.05182.83 Dry weight of shootNaCl (mg)24.9317.2225.3135.5626.4610.2117.80106.4024.5233.96 RSIR (%)65.0859.6861.9330.7854.374.6780.7925.3668.5881.43
(續附表1)

表型Phenotype耐鹽品種 Salt-tolerant varieties鹽敏感品種 Salt-sensitive varieties 小偃60XY60青麥6號QM6滄麥6005CM6005山融3號SR3德抗961DK961中麥175ZM175魯原502LY502京411J411河農6425HN6425濟麥20JM20 干重根冠比CK (%)40.3442.4725.3944.7955.3343.7125.8366.0827.7628.19 Ratio of DW-R/DW-SNaCl (%)49.4725.6829.1852.5152.2954.0828.0915.2530.8630.88 RSIR (%)–22.6339.53–14.92–17.235.51–23.73–8.7676.93–11.16–9.54 根中K+含量CK (mg g–1)7.658.268.177.607.147.607.867.147.766.69 K+ contents in rootNaCl (mg g–1)8.048.047.868.567.747.058.847.198.746.42 RSIR (%)–5.022.683.74–12.72–8.397.23–12.46–0.74–12.633.99 莖中K+含量CK (mg g–1)25.2423.2526.3824.4824.2526.2524.5924.8725.7726.07 K+ contents in stemNaCl (mg g–1)25.8724.8725.4526.6927.8225.1925.1326.3825.0526.92 RSIR (%)–2.50–6.983.52–9.05–14.764.05–2.19–6.092.81–3.23 葉中K+含量CK (mg g–1)27.3326.6429.4728.4327.6330.4827.6729.4430.6631.99 K+ contents in leafNaCl (mg g–1)29.9829.3530.7531.9931.2430.0330.3529.4730.1531.01 RSIR (%)–9.67–10.18–4.32–12.53–13.071.46–9.69–0.111.653.06 根中Na+含量CK (mg g–1)4.645.245.174.034.334.515.635.124.394.07 Na+ contents in rootNaCl (mg g–1)4.915.015.074.714.844.715.814.374.964.31 RSIR (%)–6.004.242.05–17.09–11.98–4.59–3.3414.67–12.92–5.98 莖中Na+含量CK (mg g–1)2.803.203.262.592.602.433.343.422.902.68 Na+ contents in stemNaCl (mg g–1)2.853.252.682.352.783.163.483.092.932.42 RSIR (%)–1.97–1.7217.829.29–6.85–29.84–4.169.48–1.009.50 葉中Na+含量CK (mg g–1)2.282.442.261.882.131.722.652.352.042.28 Na+ contents in leafNaCl (mg g–1)2.562.661.721.562.362.532.752.182.031.72 RSIR (%)–12.11–8.9424.0617.24–10.55–47.12–4.007.310.5424.82 根中K+與Na+的含量比CK1.651.581.581.891.651.691.401.391.771.65 Ratio of K+ and Na+contents in rootNaCl1.641.601.551.821.601.501.521.651.761.49 RSIR (%)0.92–1.631.723.743.2011.30–8.82–18.070.269.41 莖中K+與Na+的含量比CK9.027.278.109.449.3310.797.367.288.889.75 Ratio of K+ and Na+contents in stemNaCl9.077.659.5211.3410.027.977.228.538.5411.12 RSIR (%)–0.52–5.17–17.40–20.22–7.4026.101.89–17.203.77–14.06 葉中K+與Na+的含量比CK11.9910.9213.0415.1312.9617.7510.4512.5115.0214.01 Ratio of K+ and Na+contents in leafNaCl11.7311.0417.9120.5713.2611.8911.0213.5114.8518.06 RSIR (%)2.18–1.14–37.37–35.98–2.2733.02–5.47–8.001.12–28.95 根中脯氨酸含量CK (μg g–1)25.2030.6618.2816.5824.9320.3336.9110.3124.1822.15 Proline contents in rootNaCl (μg g–1)964.23570.92521.75338.13251.10625.37708.36436.70347.56184.11 RSIR (%)97.3994.6396.5095.1090.0796.7594.7997.6493.0487.97 葉中脯氨酸含量CK (μg g–1)11.4614.682.7814.7945.0729.6232.2528.803.631.05 Proline contents in leafNaCl (μg g–1)1555.031457.10297.47437.31534.29363.77381.59669.70934.291821.49 RSIR (%)99.2698.9999.0696.6291.5691.8691.5595.7099.6199.94
RSIR: 相對鹽害指數。
RSIR: relative salt-injury rate for germination.
Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages
CHEN Jia-Ting, BAI Xin, GU Yu-Jie, ZHANG Xiao-Wen, GUO Hui-Juan, CHANG Li-Fang, CHEN Fang, ZHANG Shu-Wei, ZHANG Xiao-Jun, LI Xin, FENG Rui-Yun, CHANG Zhi-Jian, and QIAO Lin-Yi*
College of Agriculture, Shanxi Agricultural University / Shanxi Key Laboratory of Crop Genetics and Molecular Improvement / Key Laboratory of Sustainable Dryland Agriculture (co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Taiyuan 030031, Shanxi, China
Salt tolerance identification is the premise of screening germplasm and breeding salt-tolerant wheat varieties. There are many methods for testing salt tolerance of wheat indoor, involving different growth stages and tissues or organs. In order to evaluate the applicability of these methods in production, we selected five salt-tolerant varieties and five salt-sensitive varieties from the Northern Winter Wheat Production Area of China to compare seven identification methods (involving 27 parameters) for the responses to salt stress of wheat at germination and seedling stages. The results showed that the relative salt-injury rate for germination of grains could not distinguish the tolerant- and sensitive-varieties, while the salt-injury index of leaf, the Na+and K+fluxes of root, and the relative salt-injury rates for root tip number, root diameter as well as leaf K+content of seedlings were significantly different between the tolerant- and sensitive-varieties. Based on the results of regressive analysis and operability, the salt-injury index of leaf was considered to be an appropriate method for identifying salt tolerance that with high applicability in the Northern Winter Wheat Production Area, which can be used for germplasm screening or variety breeding by integrating the relative salt-injury rate for root tip number or leaf K+content, and the Na+or K+flux of root. This study analyzed and evaluated the salt tolerance identification methods from the aspect of application, and provide reference information for salt tolerance breeding in wheat.
wheat; salt-tolerance identification; method evaluation; germination stage; seedling stage
10.3724/SP.J.1006.2024.31049
本研究由中央引導地方科技發展資金項目(YDZJSX2022A046), 山西省回國留學人員科研資助項目(2021-070)和山西農業大學博士科研啟動項目(2021BQ39)資助。
This study was supported by the Science and Technology Development Foundation of Central Guides Local Government Project (YDZJSX2022A046), the Research Project Supported by Shanxi Scholarship Council of China (2021-070), and the Shanxi Agricultural University Research Project for Doctor (2021BQ39).
喬麟軼, E-mail: linyi.qiao@sxau.edu.cn
E-mail: chenjiating111@126.com
2023-08-31;
2024-01-12;
2024-01-29.
URL: https://link.cnki.net/urlid/11.1809.S.20240126.1749.002
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).