






摘要:環(huán)境與能源問題嚴(yán)峻,人們迫切需要開發(fā)一些高效、環(huán)保、穩(wěn)定的光催化劑。鹵氧化鉍(BiOX,X為Cl、Br、I)因其獨(dú)特的層狀結(jié)構(gòu)、優(yōu)異的光學(xué)、電學(xué)性能而受到光催化領(lǐng)域的廣泛關(guān)注。但BiOX存在光吸收不足、電子?空穴(electron-hole,e??h+)快速復(fù)合、載流子濃度有限等問題而限制了它的應(yīng)用。利用碳材料修飾BiOX可以極大地提升BiO X的光催化性能。簡要介紹了BiOX的結(jié)構(gòu)、性質(zhì)、改性方案,碳材料基本類型和性質(zhì),主要綜述了近幾年零維,一維,二維,三維碳材料改性的BiOX光催化劑的研究進(jìn)展,并分析了碳材料對BiOX光催化劑的提升機(jī)制,最后展望了碳材料改性的BiOX所面臨的機(jī)遇和挑戰(zhàn)。
關(guān)鍵詞:鹵氧化鉍;碳材料;改性;光催化性能
中圖分類號:O 6-1文獻(xiàn)標(biāo)志碼:A
Research progress of BiOX photocatalytic materials modified by carbon materials
GUYingying,LONG Anchun,YU Yongchang,GE Xianlong,SONG Yankai,MENG Minfeng,HUShaohua
(School of Materials and Chemistry,University of Shanghai for Science and Technology,Shanghai 200093,China)
Abstract:Due to the severe environmental and energy problems,there is an urgent need to develop some efficient,environmentally friendly and stable photocatalysts.Bismuth oxyhalide(BiOX,X=Cl,Br,I)has attracted extensive attention in the field of photocatalysis because of its unique layered structure,excellent optical and electrical properties.However,due to the insufficient visible light absorption,rapid electron-hole(e?-h+)recombination and limited carrier concentration,the application of BiOX is limited.Carbon material modification can greatly improve the photocatalytic performance of BiOX.This paper briefly introduces the structure,properties,modification scheme of BiOX and the basic types and properties of carbon materials.The research progress of zero-dimensional,one-dimensional,two-dimensional and three-dimensional carbon materials modified BiOX photocatalyst in recent years has been mainly reviewed,and the improvement mechanism of carbon materials on BiOX photocatalyst isanalyzed.Finally,the opportunities and challenges faced by carbon materials modified BiOX are prospected.
Keywords:bismuthoxyhalide;carbonmaterials;modification;photocatalytic performance
世界經(jīng)濟(jì)不斷發(fā)展和人口快速增長,不但使能源和環(huán)境問題嚴(yán)峻,而且使我們的生態(tài)系統(tǒng)遭受了很大程度的破壞。開發(fā)環(huán)境友好型的化石燃料替代品至關(guān)重要[1]。半導(dǎo)體光催化技術(shù)能利用太陽能降解有機(jī)污染物,分解H2O制氫,固定N2和還原CO2等[2-3]。因此,半導(dǎo)體光催化引起了研究者廣泛的研究興趣[3-4]。
BiOX(X=Cl、Br、I)是一種優(yōu)良的半導(dǎo)體光催化材料,具有催化活性高、穩(wěn)定性好、制備工藝簡單、對環(huán)境毒性低等諸多優(yōu)點(diǎn)[5]。BiOX具備優(yōu)異性能主要是源于[Bi2O2]片與雙鹵原子片交織而成的獨(dú)特層狀結(jié)構(gòu)[6],它們之間形成的特殊內(nèi)電場可以有效地分離電子和空穴[7]。然而,需要進(jìn)一步提高BiOX的光生電子和空穴的分離效率以滿足實(shí)際需要。此前,有綜述重點(diǎn)總結(jié)了BiOX的合成、性質(zhì)和應(yīng)用[8]。還有些總結(jié)了BiOX光催化劑性能改性策略,其中包括[9-12]:納米結(jié)構(gòu)控制、異質(zhì)結(jié)結(jié)構(gòu)、非本征元素?fù)诫s、缺陷工程和晶面工程等。即便已有很多改性手段,人們還是尋找更加簡單、成本更加低廉的方法。碳材料結(jié)構(gòu)豐富(包括:0D、1D、2D、3D)、比表面積大、導(dǎo)電性高、導(dǎo)熱性好、光學(xué)性能獨(dú)特和力學(xué)性能優(yōu)異,被廣泛應(yīng)用于光催化領(lǐng)域[13-14]。近年來,很多工作證明了利用碳材料修飾BiOX光催化劑能極大地提高其光催化活性。例如,Zhao等[15]制備了碳量子點(diǎn)(carbon quantum dots,CQDs)修飾的三維花狀CQDs/BiOX復(fù)合材料光催化劑,并對羅丹明B(rhodamine B,RhB)和左氧氟沙星(levofloxacin,LEV)有出色的光催化降解性能。光催化性能提升的原因是:在光誘導(dǎo)下金屬Bi的形成以及CQDs和純BiOX之間的協(xié)同效應(yīng),使CQDs/BiOX具有優(yōu)異的光吸收和電子轉(zhuǎn)移能力。Di等[16]制備了氮摻雜碳量子點(diǎn)(nitrogen doped carbon dots,N-CQDs)修飾的原子級可控的BiOI薄納米片。在可見光和紫外光照射下其光催化活性提高。這歸因于表面構(gòu)造的N-CQDs極大地促進(jìn)表面電荷載流子分離,并進(jìn)一步增加活性物種的濃度。
雖然,部分工作報(bào)道了碳材料改性的BiOX。但是,迄今為止,仍然沒有文章從各類碳材料的角度系統(tǒng)地分析其對BiOX的改性作用。在現(xiàn)有文獻(xiàn)基礎(chǔ)上,本文補(bǔ)充說明了各類碳材料改性的BiOX催化劑最新研究進(jìn)展,并洞悉了碳材料在其中的作用。最后進(jìn)行總結(jié)并對碳材料改性的光催化劑的應(yīng)用前景進(jìn)行展望。
1 BiOX性質(zhì)、制備和改性方法
BiOX(X=Cl、Br、I)的結(jié)構(gòu)如圖1所示,性質(zhì)見表1,制備方法和工藝特點(diǎn)見表2。
可見,BiOX的合成方法很多且有各自的特點(diǎn)。總體來說,沉淀法和水熱法合成條件溫和,是常用的兩種方法。通過這些方法合成的部分BiOX在可見光下表現(xiàn)出很強(qiáng)的光吸收能力,但它們的光生電荷載流子復(fù)合速度快,所以總體來說光催化效率仍然很低,與實(shí)際應(yīng)用還存在一定差距。人們采用碳材料作修飾劑或助催化劑對BiOX進(jìn)行修飾,其光催化性能得到很大改善[26]。
2碳材料基本性質(zhì)及應(yīng)用
碳基材料(carbon-based materials,CBMs)包含廣泛,在材料科學(xué)發(fā)展中有著非常重要的作用。如表3所列,它們分別為[27-28]:CQDs、富勒烯(C60)、石墨烯(graphene,GR)、氧化石墨烯(graphene oxide,GO)、碳納米角(carbon nanohorns,CNHs)、碳納米洋蔥(carbon nano-onions,CNOs)、金剛石納米顆粒(diamond nanoparticles,DNPs)、碳納米纖維(carbon nanofibers,CNFs)、碳納米管(carbon nanotubes,CNTs)以及生物質(zhì)衍生碳材料(biomass derived carbon material,BCM)等。碳材料的核心潛在特征很多,例如:顯著的導(dǎo)電性[29]、超高的光學(xué)性能[30]、熱和力學(xué)性能[31]、化學(xué)穩(wěn)定性[32]、高表面積、低成本以及高度發(fā)達(dá)且可調(diào)的孔隙率[33]。這些特性使它們被應(yīng)用于各領(lǐng)域,如水凈化、催化、氧還原反應(yīng)、清潔能源轉(zhuǎn)換和儲存等。
因此,如何利用碳材料改性BiOX光催化性能的研究已經(jīng)成為BiOX光催化材料研究中的又一關(guān)鍵問題。
3碳材料修飾的BiOX催化劑及應(yīng)用
3.1 0D碳改性的BiOX
0D CQDs有較好的穩(wěn)定性、高的比表面積和好的電荷分離作用,在光催化應(yīng)用領(lǐng)域已經(jīng)贏得了廣泛的關(guān)注。與其他半導(dǎo)體相比,CQDs使電子注入的可能性更大。另外,它的尺寸決定著它的光學(xué)性質(zhì)和催化劑的光子通量。Xia等[34]通過改變CQDs負(fù)載濃度制備了CQDs/BiOX復(fù)合光催化劑。在可見光照射下,使用RhB、環(huán)丙沙星(ciprofloxacin,CIP)和雙酚A(bisphenol-A,BPA)3種不同的污染物來測定所制備的光催化劑活性。結(jié)果證明,質(zhì)量分?jǐn)?shù)為3%的CQDs/BiOBr樣品與其他光催化劑相比顯示出最高的光催化活性。其光催化活性增強(qiáng)是因?yàn)镃QDs加入之后,光催化劑的光吸收增強(qiáng),光生e??h+有更高的分離效率和更快的轉(zhuǎn)移速率。
CQDs除了能改善催化劑的導(dǎo)電性外,也有很多工作利用其上轉(zhuǎn)換發(fā)光效應(yīng)提升BiOX光催化劑性能。Duo等[35]在室溫下通過簡單的水解方法合成了含氧空位的CQDs/BiOBr復(fù)合材料。所得催化劑在可見光下表現(xiàn)出比純BiOBr高得多的光催化活性和穩(wěn)定性。通過光致發(fā)光(photoluminescence,PL)光譜、瞬態(tài)光電流(photocurrent,PC)譜圖、電子自旋共振(electron spin resonance,ESR)、淬滅實(shí)驗(yàn)以及RhB和BPA的降解實(shí)驗(yàn)進(jìn)一步研究了CQDs的作用。結(jié)果表明,CQDs具有良好的長波長可見光和近紅外光吸收特性,CQDs的上轉(zhuǎn)換效應(yīng)通過氧空位中更多的電子轉(zhuǎn)移來促進(jìn)BiOBr光催化過程中超氧自由基(·O2?)的形成。此外,量子點(diǎn)的上轉(zhuǎn)換效應(yīng)可以刷新BiOBr上的氧空位,從而保持BiOBr的光催化穩(wěn)定性。
3.2 1D碳改性的BiOX
CNTs是具有sp2有序結(jié)構(gòu)的1D碳質(zhì)材料,可以通過在光催化劑和CNTs之間產(chǎn)生肖特基結(jié)來確保高導(dǎo)電性。除此之外,其高的電子吸收能力可以顯著降低e??h+復(fù)合率,其良好的吸附性能可以快速吸附反應(yīng)物分子加快反應(yīng)進(jìn)程,這使得它們成為光催化過程的理想材料。此外,CNTs具有大的長徑比、高的電子遷移率和顯著的柔韌性,是提高光催化活性的良好載體材料。當(dāng)光照射BiOX光催化劑時,其較低的費(fèi)米能級,受激電子可以轉(zhuǎn)移到CNTs,并使光生電荷載流子的高度分離,以加速光催化活性。
有研究顯示,半導(dǎo)體和碳的協(xié)同效應(yīng)也可以大大延緩光生e?和h+的復(fù)合,從而顯著提高光催化性能[36]。例如,Weng等[37]合成了由CNTs、碳纖維(carbon fibres,CFs)、BiOCl和BiOI納米片(nanosheets,NSs)復(fù)合的分級結(jié)構(gòu)(CNTs/CFs-NSs)催化劑。與純BiOCl-NSs和BiOI-NSs相比,CNTs/CFs-NSs修飾的的BiOX對甲基橙的光催化降解效率分別提高3倍和2倍。其原因是CNTs沿CFs軸向排列,并形成π-π堆積作用,增強(qiáng)了CNTs的導(dǎo)電性,這有利于電子的收集和傳輸。Nikita等[38]通過水熱法合成了BiOCl與CNTs的復(fù)合材料。如表4結(jié)果所示,CNTs主要通過影響B(tài)iOCl的微晶尺寸,從而影響B(tài)iOCl光催化劑的性能。使用適量的CNTs可以補(bǔ)償BiOCl材料表面性質(zhì)的損失,并改善其性能。這就決定了BiOCl/CNTs復(fù)合材料具有優(yōu)異光催化性能。Ma等[39]水熱法成功地原位制備了多壁碳納米管(multi-walled carbon nanotubes,MWCNTs)修飾的BiOCl復(fù)合材料,并對其進(jìn)行了一系列的研究。以苯酚為模型分子,在紫外光照射下測試了MWCNTs修飾的MWCNTs/BiOCl材料的光催化活性。圖2所示的機(jī)制分析表明,添加相對少量的MWCNTs可以改善BiOCl的光催化活性。其中,MWCNTs的質(zhì)量分?jǐn)?shù)為3%的樣品對苯酚的降解活性最好。該策略使催化劑性能提升的原因可以解釋為MWCNTs促進(jìn)·O2?自由基的有效形成,導(dǎo)致苯酚在MWCNTs/BiOCl材料上的快速衰減。
3.3 2D碳改性的BiOX
在碳的2D材料中,GR是被廣泛使用且最具代表的材料之一。它是一種零帶隙2D半導(dǎo)體材料,具有優(yōu)異的光學(xué)性能,且具有較大的比表面積,可以為反應(yīng)體系提供更多的活性位點(diǎn)。在所有碳材料與催化劑的相互作用中,GR與BiOX之間雜化可以極大地提高催化劑的光催化性能。
Hou等[40]制備了含有大量氧空位的BiOX/rGO異質(zhì)結(jié),具有2D/2D異質(zhì)結(jié)結(jié)構(gòu)的BiOX/rGO提供了更高的比表面積和更大的異質(zhì)界面,并且有規(guī)律地轉(zhuǎn)移光生電子。上述特征的雙重協(xié)同效應(yīng),使BiOX/rGO可以為有機(jī)污染物的光降解提供更多的活性物質(zhì)(h+、·OH?和·O2?)。降解測試表明,在可見光照射下BiOCl/rGO、BiOBr/rGO和BiOI/rGO對RhB的降解率分別是純BiOCl、BiOBr和BiOI的6、3和2倍。
Cai等[41]通過一種新穎的兩步溶劑熱法合成rGO修飾的BiOX納米片。rGO的改性導(dǎo)致BiOX納米片的比表面積顯著增加,并且rGO-BiOX的帶隙減小,光吸收范圍和強(qiáng)度提高,光生載流子分離速率加快,光生e??h+復(fù)合減少。rGO-BiOX光催化性能不但有明顯的改善。此外,rGO改性的樣品還表現(xiàn)出優(yōu)異的穩(wěn)定性,即在幾次循環(huán)后仍保持很高的汞去除效率。
3.4 3D碳改性的BiOX
從結(jié)構(gòu)上看,大多數(shù)生物炭(biochar,BC)的結(jié)構(gòu)為3D結(jié)構(gòu)。BC具有良好的官能團(tuán)、優(yōu)異的導(dǎo)電性和獨(dú)特的光電性質(zhì)[42]。因此,它被用做催化劑或電極的合成[43]。自然界中有許多種類的生物質(zhì)被認(rèn)為是BC的前體,比如:甘蔗渣、稻草、竹葉等[44-45]。一直以來,人們都在探尋環(huán)境友好的前驅(qū)體和探索BC促進(jìn)光催化的機(jī)制。Niu等[46]對餐廚垃圾衍生生物炭(kitchen waste derived biochar,KBC)通過400℃熱處理后,再通過超聲處理和溶劑熱反應(yīng)合成了一系列KBC/BiOX(X=Br,Cl)光催化劑。最佳光催化劑0.15 KBC/BiOBr和0.15 KBC/BiOCl分別在20 min和35 min內(nèi)實(shí)現(xiàn)了甲基橙(methyl orange,MO)的完全光降解。降解機(jī)制如圖3所示,0.15 KBC/BiOBr(2.40 eV)和0.15 KBC/BiOCl(3.00 eV)的估算帶隙能顯著低于BiOBr(2.73 eV)和BiOCl(3.30 eV)的,一方面是電子在界面上傳輸時可能會產(chǎn)生離域。另外一個原因是,KBC的3D結(jié)構(gòu)促進(jìn)了光催化劑的可見光捕獲。
Zhang等[47]采用一種簡單的聚合物熱處理和回流方法,在氮摻雜的三維蜂窩狀石墨碳(nitrogen-doped three-dimensional honeycomb graphite carbon,N-GC)上生長了花狀的BiOCl,從而合成BiOCl/N-GC復(fù)合材料。N-GC分級結(jié)構(gòu)有效地提高了花狀BiOCl的分散性,這增加了催化劑與NOx氣體分子的接觸面積。最終,N-GC的大比表面積,中孔的協(xié)同效應(yīng)和多級結(jié)構(gòu)使BiOCl的(102)面具有合適的NOx吸附能,進(jìn)而其光催化活性被提升。
4結(jié)論及展望
目前國內(nèi)外對改性的BiOX光催化劑的制備與性能提升方面做了大量研究工作,并且積累了豐富的技術(shù)與經(jīng)驗(yàn)。在眾多提升BiOX光催化性能的改性方案中,主要是通過提升光生載流子的分離效率,提高光催化劑的可見或紫外光吸收強(qiáng)度,增加光催化劑活性位點(diǎn)的暴露等方式來實(shí)現(xiàn)。在前者工作基礎(chǔ)上,本文對0D~3D碳材料BiOX改性后的光催化劑性能提升機(jī)制及應(yīng)用領(lǐng)域進(jìn)行了總結(jié)。然而,目前絕大多數(shù)對碳改性的BiOX研究成果與應(yīng)用僅集中在實(shí)驗(yàn)室層面,并且理論研究較為欠缺。在今后的發(fā)展中應(yīng)深入探索BiOX光催化劑與改性材料相互作用的機(jī)制。在進(jìn)一步提升其光催化性能的同時,也要確保碳材料與BiOX類光催化劑的穩(wěn)定性,并逐漸將此類光催化劑推向工程化實(shí)際應(yīng)用。
參考文獻(xiàn):
[1]SINGH P,SUDHAIK A,RAIZADA P,etal.Photocatalytic performance and quick recovery of BiOI/Fe3O4@graphene oxide ternary photocatalyst for photodegradation of 2,4-dintirophenol under visible light[J].Materials Today Chemistry,2019,12:85–95.
[2]WANG H L,ZHANG L S,CHEN Z G,etal.Semiconductor heterojunction photocatalysts:design,construction,and photocatalytic performances[J].Chemical Society Reviews,2014,43(15):5234–5244.
[3]沈淑玲,熊舸.可見光驅(qū)動的Ti基半導(dǎo)體光催化劑的研究進(jìn)展[J].有色金屬材料與工程,2022,43(5):1–12.
[4]QU X F,LIU M H,YANG J Y,etal.A novel ternary TiO2/CQDs/BiOX(X=Cl,Br,I)heterostructure as photocatalyst for water purification under solarirradiation[J].Journal of Solid State Chemistry,2018,264:77–85.
[5]辛艷梅,么聰菲,繆煜清.鉍的特殊性質(zhì)及其在高新技術(shù)領(lǐng)域的應(yīng)用前景[J].有色金屬材料與工程,2020,41(5):38–45.
[6]CASTILLO-CABRERA G X,ESPINOZA-MONTERO P J,ALULEMA-PULLUPAXI P,etal.Bismuth oxyhalide-based materials(BiOX:X=Cl,Br,I)and their application in photoelectrocatalytic degradation of organic pollutants in water:a review[J].Frontiers in Chemistry,2022,10:900622.
[7]SINGH S,SHARMA R,KHANUJA M.A review and recent developments on strategies to improve the photocatalytic elimination of organic dye pollutants by BiOX(X=Cl,Br,I,F(xiàn))nanostructures[J].Korean Journal of Chemical Engineering,2018,35(10):1955–1968.
[8]劉家琴,吳玉程.基于BiOX(X=Cl、Br、I)新型高性能光催化材料的最新研究進(jìn)展[J].無機(jī)材料學(xué)報(bào),2015,30(10):1009–1017.
[9]GNAYEM H,SASSON Y.Hierarchical Nanostructured 3D flowerlike BiOClxBr1-x semiconductors with exceptional visible light photocatalytic activity[J].ACS Catalysis,2013,3(2):186–191.
[10]SHANG M,WANG W Z,REN J,etal.A novel BiVO4 hierarchical nanostructure:controllablesynthesis,growthmechanism,and application in photocatalysis[J].CrystEngComm,2010,12(6):1754–1758.
[11]LOU X,SHANG J,WANG L,etal.Enhanced photocatalytic activity of Bi24O31Br10:constructing heterojunction with BiOI[J].Journal of Materials Scienceamp;Technology,2017,33(3):281–284.
[12]SUN X M,WU J,LI Q F,etal.Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron-hole pairs[J].Applied Catalysis B:Environmental,2017,218:80–90.
[13]姚海偉,王薈琪,蒲卓林,等.二維材料/二氧化鈦復(fù)合材料的光催化研究進(jìn)展[J].材料熱處理學(xué)報(bào),2023,44(2):13-29.
[14]王進(jìn),沈淑玲,楊俊和.碳基材料在電催化還原CO2中的應(yīng)用[J].有色金屬材料與工程,2020,41(4):48–60.
[15]ZHAO Y Y,GUO H X,LIU J,etal.Effective photodegradation of rhodamine B and levofloxacin over CQDs modified BiOCl and BiOBrcomposite:mechanism and toxicity assessment[J].Journal of Colloid and Interface Science,2022,627:180–193.
[16]DI J,XIA J X,JI M X,etal.Bidirectional acceleration of carrier separation spatially via N-CQDs/atomically-thin BiOI nanosheets nanojunctions for manipulating active species in a photocatalytic process[J].Journal ofMaterials Chemistry A,2016,4(14):5051–5061.
[17]XU Y Q,HU X L,ZHU H K,etal.Insights into BiOCl with tunable nanostructures and their photocatalytic and electrochemical activities[J].Journal of Materials Science,2016,51(9):4342–4348.
[18]WANG Y,SHI Z Q,F(xiàn)AN C M,etal.Synthesis,characterization,and photocatalytic properties of BiOBr catalyst[J].Journal of Solid State Chemistry,2013,199:224–229.
[19]LI H Q,JIA Q F,CUI Y M,etal.Photocatalytic properties of BiOI synthesized by a simple hydrothermal process[J].Materials Letters,2013,107:262–264.
[20]SHARMA K,DUTTA V,SHARMA S,etal.Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water:a review[J].Journal of Industrial and Engineering Chemistry,2019,78:1–20.
[21]LI Y,JIANG H Y,WANG X,etal.Recent advances in bismuth oxyhalide photocatalysts for degradation of organic pollutants in wastewater[J].RSC Advances,2021,11(43):26855–26875.
[22]WANG F J,GU Y Y,YANG Z Y,etal.The effect of halogen on BiOX(X=Cl,Br,I)/Bi2WO6 heterojunction for visible-light-driven photocatalytic benzyl alcohol selective oxidation[J].Applied Catalysis A:General,2018,567:65–72.
[23]KOMARNENI S,NOH Y D,KIM J Y,etal.Solvothermal/hydrothermal synthesis of metal oxides and metal powders with and without microwaves[J].Zeitschrift für Naturforschung B,2010,65(8):1033–1037.
[24]XU Z K.Synthesis of BiOCl nanosheets with exposed(010)facets via a facile two-phase reaction and photocatalytic activity[J].Ferroelectrics,2018,527(1):37–43.
[25]HU J Y,JING X P,ZHAI L,etal.BiOCl facilitated photocatalytic degradation of atenolol from water:Reactionkinetics,pathways and products[J].Chemosphere,2019,220:77–85.
[26]NING S B,DING L Y,LIN Z G,etal.One-pot fabrication of Bi3O4Cl/BiOCl plate-on-plate heterojunction with enhanced visible-light photocatalytic activity[J].Applied Catalysis B:Environmental,2016,185:203–212.
[27]SINHA A,DHANJAI,JAIN R,etal.Voltammetric sensing based on the use of advanced carbonaceous nanomaterials:a review[J].Microchimica Acta,2018,185(2):89.
[28]趙曉偉,李昊亮,邱漢迅.高導(dǎo)熱石墨烯/萘甲醇復(fù)合薄膜的制備及其在LED上的應(yīng)用[J].上海理工大學(xué)學(xué)報(bào),2021,43(6):574–579.
[29]DO MINH T,SONG J Z,DEB A,etal.Biochar based catalysts for the abatement of emerging pollutants:a review[J].Chemical Engineering Journal,2020,394:124856.
[30]WANG Q,ZHOU M,ZHANG Y,etal.Large surface area porous carbon materials synthesized by direct carbonization of banana peel and citrate salts for use as high-performance supercapacitors[J].Journal of Materials Science:Materials in Electronics,2018,29(5):4294–4300.
[31]WANG L B,HU X L.Recent advances in porous carbon materials for electrochemical energy storage[J].Chemistry-An Asian Journal,2018,13(12):1518–1529.
[32]RAJAKUMAR G,ZHANG X H,GOMATHI T,etal.Current use of carbon-based materials for biomedical applications-a prospective and review[J].Processes,2020,8(3):355.
[33]SHEN F,XIONG X N,F(xiàn)U J Y,etal.Recent advances in mechanochemical production of chemicals and carbon materials from sustainable biomass resources[J].Renewable and Sustainable Energy Reviews,2020,130:109944.
[34]XIA J X,DI J,LI H T,etal.Ionic liquid-induced strategy for carbon quantum dots/BiOX(X=Br,Cl)hybrid nanosheets with superior visible light-driven photocatalysis[J].Applied Catalysis B:Environmental,2016,181:260–269.
[35]DUO F,WANG Y W,F(xiàn)AN C M,etal.Enhanced visible light photocatalytic activity and stability of CQDs/BiOBrcomposites:theupconversion effect of CQDs[J].Journal of Alloys and Compounds,2016,685:34–41.
[36]GUO W X,ZHANG F,LIN C J,etal.Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange[J].Advanced Materials,2012,24(35):4761–4764.
[37]WENG B C,XU F H,XU J G.Hierarchical structures constructed by BiOX(X=Cl,I)nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange[J].Journal of Nanoparticle Research,2014,16(12):2766.
[38]SHARMA N,VERES B,DHIMAN P,etal.Mechanistic insight of structural and optical properties of BiOCl in the presence of CNTs and investigating photodegradation of phenol by BiOCl/CNT composites[J].RSC Advances,2021,11(59):37426–37435.
[39]MA D M,ZHONG J B,LI J Z,etal.Preparation and photocatalytic performance of MWCNTs/BiOCl:evidence for the superoxide radical participation in the degradation mechanism of phenol[J].Applied Surface Science,2019,480:395–403.
[40]HOU J H,ZHANG T T,JIANG T,etal.Fast preparation of oxygen vacancy-rich 2D/2D bismuth oxyhalides-reduced graphene oxide composite with improved visible-light photocatalytic properties by solvent-free grinding[J].Journal of Cleaner Production,2021,328:129651.
[41]CAI J,XIE Y B,MA C,etal.rGO-modified BiOX(X=Cl,I,Br)for enhanced photocatalytic eradication of gaseous mercury[J].Applied Surface Science,2022,594:153502.
[42]GON?ALVES M G,DA SILVA VEIGA P A,F(xiàn)ORNARI M R,etal.Relationship of the physicochemical properties of novel ZnO/biochar composites to their efficiencies in the degradation of sulfamethoxazole and methyl orange[J].Science of the Total Environment,2020,748:141381.
[43]KASAP H,ACHILLEOS D S,HUANG A L,etal.Photoreforming of lignocellulose into H2 using nanoengineered carbon nitride under benign conditions[J].Journal of the American Chemical Society,2018,140(37):11604–11607.
[44]YE S J,YAN M,TAN X F,etal.Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light[J].Applied Catalysis B:Environmental,2019,250:78–88.
[45]YAN Y,TANG X,MA C C,etal.A 2D mesoporous photocatalyst constructed by the modification of biochar on BiOCl ultrathin nanosheets for enhancing the TC-HCl degradation activity[J].New Journal of Chemistry,2020,44(1):79–86.
[46]NIU L S,HU Y L,HU H P,etal.Kitchen-waste-derived biochar modified nanocomposites with improved photocatalytic performances for degrading organic contaminants[J].Environmental Research,2022,214:114068.
[47]ZHANG Y,SUN B H,JIANG L,etal.Growth of flower-like BiOCl on 3D honeycomb-like N-doped graphitic carbon for greatly enhanced NOx gas sensing performance at room temperature[J].Microporous and Mesoporous Materials,2022,338:111964.
文章編號:2096?2983(2024)02?0001?08 DOI:10.13258/j.cnki.nmme.20230315001
引文格式:顧穎穎,龍安椿,于永昌,等.碳材料改性的BiOX光催化材料的研究進(jìn)展[J].有色金屬材料與工程,2024,45(2):1-8.DOI:10.13258/j.cnki.nmme.20230315001.GU Yingying,LONGAnchun,YUYongchang,et al.Research progress of BiOX photocatalytic materials modified by carbon materials[J].Nonferrous Metal Materials and Engineering,2024,45(2):1-8.