999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE LOGARITHMIC SOBOLEV INEQUALITY FOR A SUBMANIFOLD IN MANIFOLDS WITH ASYMPTOTICALLY NONNEGATIVE SECTIONAL CURVATURE*

2024-03-23 08:02:54東瑜昕林和子陸琳根

(東瑜昕) (林和子) (陸琳根),

1. School of Mathematical Sciences, Fudan University, Shanghai 20043, China;

2. School of Mathematics and Statistics & Laboratory of Analytical Mathematics and Applications(Ministry of Education) & FJKLMAA, Fujian Normal University, Fuzhou 350108, China E-mail: yxdong@fudan.edu.cn; lhz1@fjnu.edu.cn; lulingen@fudan.edu.cn

Abstract In this note, we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality, this inequality contains a term involving the mean curvature.

Key words asymptotically nonnegative sectional curvature; logarithmic Sobolev inequality; ABP method

1 Introduction

The classical logarithmic Sobolev inequality,first proven by Gross[7],is a very useful tool in analysis and geometric evolution problems (cf.[4, 8, 11]).In 2000, Ecker [6] gave a logarithmic Sobolev inequality which holds for submanifolds in Euclidean space.In 2020, using the ABP technique, Brendle [2] established a sharp logarithmic Sobolev inequality for submanifolds in Euclidean space without a boundary.He[3]also gave several Sobolev inequalities for manifolds with nonnegative curvature by using the same technique.Combining the method in [3] with some comparison theorems, the authors of [5] proved some Sobolev inequalities for manifolds with asymptotically nonnegative curvature.In 2021, Yi and Zheng [10] proved a logarithmic Sobolev inequality for compact submanifolds without a boundary in manifolds with nonnegative sectional curvature.In this paper, we generalize the results of [2, 10] to the case where the ambient space has asymptotically nonnegative sectional curvature.This curvature notion was first introduced by Abresch[1].We will use some comparison results for these kinds of manifolds in order to prove our results.Complete manifolds with asymptotically nonnegative sectional curvature belong to the class of complete manifolds with radial sectional curvature bounded from below.Readers may find more general comparison results for manifolds with radial sectional curvature bounded below in [9, 12].

In this section, we follow closely the exposition of [5].Letλ(t) : [0,+∞)→[0,+∞) be a nonnegative and nonincreasing continuous function satisfing that

Recall that a complete noncompact Riemannian manifold (M,g) of dimensionn+pis said to have asymptotically nonnegative sectional curvature if there is a base pointo ∈Msuch that

is not increasing on [0,+∞), and thus we may introduce the asymptotic volume ratio ofMby

Obviously,P(0)=1, andP(t) is a nonnegative decreasing function.

By combining the ABP-method in [2, 3, 10] with some comparison theorems, we obtain a logarithmic Sobolev inequality which holds for submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature as follows:

Theorem 1.1LetMbe a complete noncompact(n+p)-dimensional manifold of asymptotically nonnegative sectional curvature with respect to a base pointo ∈M.Let Σ be a compactn-dimensional submanifold ofMwithout a boundary, and letfbe a positive smooth function on Σ.Then

wherer0= max{d(o,x)|x ∈Σ},His the mean curvature vector of Σ,θis the asymptotic volume ratio ofMgiven by (1.5),b0andb1are defined as in (1.1) and (1.2).

2 Preliminaries

whereθis the asymptotic volume ratio ofManddmax(x,Σ)=max{d(x,y)|y ∈Σ}.

ProofNoting thatr0=max{d(y,o)|y ∈Σ}, using the triangle inequality, we get that

This completes the proof.□

3 Proof of Theorem 1.1

In this section, we assume that the ambient spaceMis a complete noncompact (n+p)-dimensional Riemannian manifold of asymptotically nonnegative sectional curvature with respect to a base pointo ∈M.Let Σ?Mbe a compact submanifold of dimensionnwithout a boundary, and letfbe a positive smooth function on Σ.Letdenote the Levi-Civita connection ofMand letDΣdenote the induced connection on Σ.The second fundamental formBof Σ is given by

for allx ∈Σ.Define the transport map Φr:T⊥Σ→Mby

This completes the proof of Theorem 1.1.□

Conflict of InterestThe authors declare no conflict of interest.

主站蜘蛛池模板: 亚洲人成网址| 国产精品免费p区| 欧美一区二区人人喊爽| 国产成人亚洲综合a∨婷婷| 亚洲三级视频在线观看| 国产精品久久久久久久久kt| 国产一区三区二区中文在线| 国产精品视频免费网站| 日韩黄色大片免费看| 国产一级妓女av网站| 巨熟乳波霸若妻中文观看免费| 欧美另类第一页| 亚洲欧洲日产无码AV| 亚洲午夜综合网| 日韩123欧美字幕| 99re热精品视频国产免费| 国产日韩欧美黄色片免费观看| 久久久久国色AV免费观看性色| 全部免费毛片免费播放| 国产哺乳奶水91在线播放| 亚洲精品少妇熟女| 国产18在线播放| 久青草免费视频| 欧美日韩免费| 国产一区二区三区精品欧美日韩| 欧美五月婷婷| 成人午夜精品一级毛片| 色偷偷一区二区三区| 久久99精品国产麻豆宅宅| 丁香五月激情图片| 中文字幕久久精品波多野结| 欧美成人a∨视频免费观看| 在线五月婷婷| 丁香婷婷久久| 亚洲一区二区三区香蕉| 色欲色欲久久综合网| 免费午夜无码18禁无码影院| 欧美一级在线播放| 无码有码中文字幕| 久久久久亚洲AV成人网站软件| 亚洲欧美日韩另类在线一| aⅴ免费在线观看| 一级毛片高清| 美女国内精品自产拍在线播放| 欧美在线视频不卡第一页| 国产精品lululu在线观看| 国内视频精品| 中国特黄美女一级视频| 久久香蕉国产线| 四虎影视无码永久免费观看| 日本高清免费一本在线观看| 91精品国产一区自在线拍| 亚洲日韩日本中文在线| 亚洲国语自产一区第二页| 国产三级毛片| 久久激情影院| 欧美国产日产一区二区| 亚洲无线视频| 好紧太爽了视频免费无码| 女人av社区男人的天堂| 青青热久麻豆精品视频在线观看| 毛片三级在线观看| 久久久无码人妻精品无码| 91美女视频在线| 日本久久久久久免费网络| 亚洲AV永久无码精品古装片| AV无码无在线观看免费| 国产网友愉拍精品视频| 欧美综合区自拍亚洲综合天堂| 青青草原国产av福利网站| 精品成人一区二区三区电影| 激情午夜婷婷| 欧美黄色网站在线看| 国产在线观看人成激情视频| 国产欧美日韩va另类在线播放| 欧洲在线免费视频| 精品无码专区亚洲| 澳门av无码| 天天色综合4| 熟妇无码人妻| 亚洲欧美激情另类| 国产精品无码AⅤ在线观看播放|