999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

卷積神經(jīng)網(wǎng)絡(luò)在圖像目標(biāo)檢測中的應(yīng)用

2024-01-09 02:58:32
電視技術(shù) 2023年11期
關(guān)鍵詞:分類模型

程 卓

(貴陽職業(yè)技術(shù)學(xué)院,貴州 貴陽 550081)

0 引言

在當(dāng)前互聯(lián)網(wǎng)環(huán)境中,圖像和視頻數(shù)據(jù)的廣泛傳播推動了搜索應(yīng)用和圖像識別算法的不斷發(fā)展。這些算法在圖像標(biāo)注、物體檢測和場景分類等領(lǐng)域取得了重大突破[1]。與此同時,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNN)在多個模式和圖像識別應(yīng)用中得到了高效的應(yīng)用,如手勢識別、人臉識別、物體分類和生成場景描述[2]。這些應(yīng)用的成功整合得益于深度學(xué)習(xí)算法的研究和豐富的開源標(biāo)記數(shù)據(jù)集,如ImageNet、CIFAR 等[3]。

本文的核心目標(biāo)是分析不同類型的預(yù)訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型在物體檢測方面的性能差異,將重點評估AlexNet、GoogleNet(Inception 模型)和ResNet50這3 種CNN 模型。對這3 種神經(jīng)網(wǎng)絡(luò)的圖像檢測性能進(jìn)行詳細(xì)評估和比較,以了解它們在圖像識別過程的能力。

1 評估方法

1.1 CNN 模型結(jié)構(gòu)

本文提到的3 個CNN 模型都包含以下幾個關(guān)鍵層次。這些層次在圖像目標(biāo)識別任務(wù)中扮演不同的角色。

輸入層(Input Layer)是每個CNN 的第一層,接受原始圖像數(shù)據(jù),通常會對輸入圖像進(jìn)行大小調(diào)整,以滿足模型的輸入要求,通常是固定大小的圖像。

卷積層(Convolutional Layers)是CNN 的核心組件,充當(dāng)圖像的過濾器,用來提取圖像中的特征。通過卷積操作,卷積層會在圖像上滑動一些濾波器(卷積核),從圖像中捕捉不同的特征,如邊緣、紋理等。卷積層的輸出通常稱為特征圖,表示圖像中不同位置的特征[4]。

池化層(Pooling Layers)通常緊隨卷積層之后,主要功能是減小特征圖的尺寸,同時保留重要信息。最常見的池化操作是最大池化,保留每個池化窗口中的最大值,從而保持最顯著的特征。

線性整流單元層(ReLU Layers)接在池化層之后,作用是將特征圖中的負(fù)值轉(zhuǎn)換為零,同時保持正值不變,有助于增加網(wǎng)絡(luò)的非線性性,使其能夠?qū)W習(xí)更復(fù)雜的特征和模式。

全連接層(Fully Connected Layers)是CNN 的最后一層,通常用于將高級特征翻譯成與類別標(biāo)簽相關(guān)的輸出。這一層將前面層提取的特征映射到類別的概率分布,通常使用softmax 函數(shù)來獲得預(yù)測概率。全連接層將網(wǎng)絡(luò)的輸出與特定的類別進(jìn)行匹配,以實現(xiàn)圖像目標(biāo)識別[5-6]。

1.2 評估方法步驟

3 個CNN 模型的性能評估具體執(zhí)行步驟如下。

第一,創(chuàng)建訓(xùn)練數(shù)據(jù)集和測試數(shù)據(jù)集。首先,從超級類別的圖像數(shù)據(jù)中選擇一組圖像用于訓(xùn)練和測試。對于AlexNet,這些圖像通常被調(diào)整為(224,244)像素大小。對于GoogleNet 和ResNet50,圖像通常被調(diào)整為(227,227)像素大小。數(shù)據(jù)集隨后被劃分為訓(xùn)練數(shù)據(jù)集和驗證數(shù)據(jù)集兩個部分。訓(xùn)練數(shù)據(jù)集用于模型的訓(xùn)練,驗證數(shù)據(jù)集用于模型性能的評估。

第二,修改CNN 網(wǎng)絡(luò)。對于每個CNN 模型,需要根據(jù)任務(wù)的特定需求來修改模型的結(jié)構(gòu)。通常,最后兩層將被替換為全連接層和分類輸出層。全連接層的大小通常設(shè)置為與訓(xùn)練數(shù)據(jù)集中的類別數(shù)相同,以確保模型能夠進(jìn)行適當(dāng)?shù)姆诸???赡苓€需要調(diào)整全連接層的學(xué)習(xí)率,以加快網(wǎng)絡(luò)訓(xùn)練的速度。

第三,訓(xùn)練網(wǎng)絡(luò)。在此步驟中,需要設(shè)置一些訓(xùn)練選項,包括學(xué)習(xí)率、批量大小以及用于驗證網(wǎng)絡(luò)性能的驗證數(shù)據(jù)。學(xué)習(xí)率用來控制權(quán)重更新的速度,批量大小指定一次性用于更新權(quán)重的訓(xùn)練樣本數(shù)量。驗證數(shù)據(jù)用于定期評估網(wǎng)絡(luò)在不同訓(xùn)練周期中的性能。

第四,測試網(wǎng)絡(luò)的準(zhǔn)確性。使用已經(jīng)微調(diào)的CNN 模型對驗證數(shù)據(jù)集中的圖像進(jìn)行分類。模型將對每個圖像進(jìn)行分類,并輸出類別標(biāo)簽的概率分布。然后,可以計算分類準(zhǔn)確度,即模型正確分類的圖像所占的比例。這個指標(biāo)用來評估模型的性能和精確度,以確定哪個模型在圖像分類任務(wù)中表現(xiàn)得更好。

2 對比測試

2.1 測試數(shù)據(jù)集

CIFAR-100 圖像數(shù)據(jù)集包含多個通用物體圖像的超類別,以及每個超類別的多個子類別。CIFAR-100 數(shù)據(jù)集共有100 個圖像類別,每個類別都有600 張圖像。這600 張圖像分為每個類別的500 張訓(xùn)練圖像和100 張測試圖像,總共有60 000張不同的圖像。

CIFAR-10 數(shù)據(jù)集包含32×32 像素的彩色圖像,分為10 個類別,每個類別有6 000 張圖像,總共有60 000 張圖像,包括50 000 張訓(xùn)練圖像和10 000張測試圖像。數(shù)據(jù)集分為5 個訓(xùn)練批次和1 個測試批次,每個批次包含10 000 張圖像。測試圖像是從每個類別中隨機選擇的。

為了進(jìn)行研究,需要從每個超類別中選擇一些通用類別用于網(wǎng)絡(luò)的訓(xùn)練。本文研究所選的超類別包括床、自行車、公共汽車、椅子、沙發(fā)、摩托車、有軌電車、桌子、火車和衣柜。這些類別將用于訓(xùn)練神經(jīng)網(wǎng)絡(luò),以便進(jìn)行后續(xù)的性能比較。

2.2 測試結(jié)果對比

性能分析是通過在CIFAR-100 和CIFAR-10數(shù)據(jù)集上測試每個CNN 網(wǎng)絡(luò)模型的圖像分類算法進(jìn)行的。表1 和表2 分別顯示了不同CNN 模型在CIFAR-100 和CIFAR-10 測試數(shù)據(jù)集上不同圖像類別的分類準(zhǔn)確性。這兩個表格列出了不同圖像類別以及每個CNN 模型在該類別上正確識別的圖像數(shù)量百分比。

表1 不同CNN 模型在CIFAR-100 測試數(shù)據(jù)集上的分類準(zhǔn)確率 單位:%

表2 不同CNN 模型在CIFAR-10 測試數(shù)據(jù)集上的分類準(zhǔn)確率單位:%

表3 是3 個CNN 模型對自行車的預(yù)測結(jié)果,顯示了3 個網(wǎng)絡(luò)模型對自行車類的預(yù)測準(zhǔn)確性。從表3 可以看到,AlexNet 對自行車類的最高預(yù)測是摩托車,預(yù)測能力稍差。GoogleNet 在預(yù)測過程中表現(xiàn)最佳,ResNet 的預(yù)測結(jié)果性能居中。

表3 不同CNN 模型對CIFAR-100 數(shù)據(jù)集的自行車類別預(yù)測準(zhǔn)確度對比

表4 展示了不同CNN 模型對船類別的結(jié)果,其中每個網(wǎng)絡(luò)的預(yù)測標(biāo)簽和得分顯示了它們對對象的檢測準(zhǔn)確性。對于CIFAR-100 數(shù)據(jù)集的大多數(shù)類別,GoogleNet 通常提供了正確的標(biāo)簽和分類,而ResNet50 在CIFAR-100 類別識別中表現(xiàn)中等。然而,在CIFAR-10 數(shù)據(jù)集上,ResNet50 提供了最佳的分類結(jié)果。這可能是因為大多數(shù)分類器是針對包含簡單、細(xì)微特征的物體類別進(jìn)行訓(xùn)練的,因此網(wǎng)絡(luò)模型可能會在物體的外觀和屬性上產(chǎn)生混淆。

表4 不同CNN 模型對CIFAR-10 數(shù)據(jù)集的自行車類別預(yù)測準(zhǔn)確度對比

觀察所有表格結(jié)果可以看出,不同CNN 模型在不同類別圖像上的分類準(zhǔn)確性存在差異。本文使用以下方法來計算CNN 模型生成的輸入類別的概率分布。這種方法關(guān)注目標(biāo)識別過程中最有可能被識別出的前10 個類別。首先,基于圖像的概率分布,將每個圖像分為前10 個最有可能的類別之一。其次,計算每個圖像在每個目標(biāo)類別下被分類的次數(shù)。利用上述方法進(jìn)行計算獲得的結(jié)果如表5 所示。通過對比可以看出,GoogleNet 和ResNet50 網(wǎng)絡(luò)模型的性能要優(yōu)于AlexNet 模型。

表5 不同CNN 模型對CIFAR-10 數(shù)據(jù)集自行車類別的預(yù)測準(zhǔn)確度對比 單位:%

3 結(jié)語

本文分析了3 種不同的CNN 模型在CIFAR-10和CIFAR-100 數(shù)據(jù)集上的預(yù)測準(zhǔn)確性,提供了詳細(xì)的預(yù)測分析方法,比較了這些網(wǎng)絡(luò)在不同類別物體上的預(yù)測性能。盡管在現(xiàn)實生活中,床、沙發(fā)和椅子等物體是不同且容易識別的,但經(jīng)過訓(xùn)練的網(wǎng)絡(luò)模型仍可能出現(xiàn)混淆和錯誤結(jié)果,因此它們的準(zhǔn)確率有所不同。這些研究結(jié)果有助于深入了解CNN在圖像分類任務(wù)中的性能和適用性。

猜你喜歡
分類模型
一半模型
分類算一算
垃圾分類的困惑你有嗎
大眾健康(2021年6期)2021-06-08 19:30:06
重要模型『一線三等角』
重尾非線性自回歸模型自加權(quán)M-估計的漸近分布
分類討論求坐標(biāo)
數(shù)據(jù)分析中的分類討論
教你一招:數(shù)的分類
3D打印中的模型分割與打包
FLUKA幾何模型到CAD幾何模型轉(zhuǎn)換方法初步研究
主站蜘蛛池模板: 91免费观看视频| 国产精品99一区不卡| 日韩精品视频久久| 国产在线啪| 91网址在线播放| 日韩欧美亚洲国产成人综合| 国产无码精品在线播放| 香蕉色综合| 国产成人喷潮在线观看| 久久国产V一级毛多内射| 欧美一级视频免费| 欧美笫一页| 国产网站在线看| 精品国产美女福到在线直播| 亚洲欧美不卡视频| 亚洲高清免费在线观看| 欧美天天干| 久久久久久尹人网香蕉| 国产极品美女在线观看| 亚洲欧美国产高清va在线播放| 亚洲性日韩精品一区二区| 婷婷中文在线| 天天躁夜夜躁狠狠躁躁88| 狼友视频国产精品首页| 性色生活片在线观看| 亚洲午夜国产精品无卡| 成人国内精品久久久久影院| 无码在线激情片| 亚洲侵犯无码网址在线观看| 久久国产亚洲偷自| 国产一区二区三区在线观看视频| 毛片大全免费观看| 五月婷婷导航| 99九九成人免费视频精品 | 欧美成人免费午夜全| 亚洲人成色77777在线观看| 亚洲无码视频图片| 欧亚日韩Av| 免费看一级毛片波多结衣| 亚洲国产成人麻豆精品| 在线一级毛片| 国产高清在线观看| 国内精品久久久久久久久久影视| 成人噜噜噜视频在线观看| 国产精品综合色区在线观看| 亚洲中文无码h在线观看| 一本综合久久| 亚洲视频二| 免费无码AV片在线观看国产| 国产在线观看一区精品| 亚洲91精品视频| 日本午夜在线视频| 色偷偷av男人的天堂不卡| 69av免费视频| 亚洲AⅤ无码日韩AV无码网站| 国产精品乱偷免费视频| 天天躁日日躁狠狠躁中文字幕| 自拍偷拍欧美日韩| 亚洲 日韩 激情 无码 中出| 久久精品女人天堂aaa| 国内精品伊人久久久久7777人| 一级毛片在线播放| 扒开粉嫩的小缝隙喷白浆视频| 澳门av无码| 波多野结衣在线se| 91视频99| 精品国产美女福到在线不卡f| 国产丰满成熟女性性满足视频| 国产精品入口麻豆| 国产三级国产精品国产普男人| 天堂在线亚洲| 2018日日摸夜夜添狠狠躁| 欧美在线精品怡红院 | 国产成人亚洲毛片| 狠狠色综合网| 日韩国产黄色网站| 欧美国产日韩在线| 亚洲日韩第九十九页| 国产va视频| 思思热精品在线8| 国产美女主播一级成人毛片| 国产97视频在线|