999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于輸出系數法的農業面源氮磷排放特征分析

2024-01-06 01:44:20裴德富梁榮昌馬千里趙學敏姚玲愛
中國環境科學 2023年12期
關鍵詞:污染農業

茍 婷,裴德富,2,梁榮昌,佘 磊,楊 珺,馬千里,趙學敏,趙 瑞,姚玲愛*

基于輸出系數法的農業面源氮磷排放特征分析

茍 婷1,裴德富1,2,梁榮昌1,佘 磊1,楊 珺3,馬千里1,趙學敏1,趙 瑞1,姚玲愛1*

(1.生態環境部華南環境科學研究所(生態環境部生態環境應急研究所),廣東 廣州 510535;2.沈陽建筑大學市政與環境工程學院,遼寧 沈陽 110168;3.太原師范學院經濟與管理學院,山西 晉中 030619)

為研究東江源頭區農業面源氮磷負荷情況,利用改進的輸出系數模型(ECM)對2020年東江源頭區農業面源氮磷排放特征進行了探討.結果表明:(1)東江源頭區農業面源污染物總氮(TN)和總磷(TP)負荷量分別是4884.23t/a和591.85t/a, TN污染負荷是TP污染負荷的8.25倍,其中高于源頭區TN平均負荷量的鄉鎮依次為留車鎮?文峰鄉?晨光鎮?南橋鎮?吉潭鎮?丹溪鄉和澄江鎮,高于源頭區TP平均負荷量的鄉鎮依次為晨光鎮?留車鎮?南橋鎮?文峰鄉、丹溪鄉?菖蒲鄉和吉潭鎮.(2)氮磷污染負荷強度與負荷量不同,且表現出一定的空間差異性.污染負荷量較高分別為留車鎮和晨光鎮,但負荷強度最高分別為南橋鎮和菖蒲鄉.TN負荷強度較高的依次為南橋鎮?菖蒲鄉?晨光鎮?留車鎮和項山鄉,均高于源頭區TN平均負荷強度2.88t/(km2×a);TP負荷強度較高的依次為菖蒲鄉?南橋鎮?晨光鎮?丹溪鄉?留車鎮和羅珊鄉,均高于源頭區TP平均負荷強度0.36t/(km2×a).(3)不同污染源類型對氮磷排放的貢獻率不一致,TN污染表現為土地利用>農村生活>畜禽養殖,TP污染表現為畜禽養殖>土地利用>農村生活.其中氮源中土地利用污染占比為37.67%~80.29%,主要分布在長寧鎮?桂竹帽鎮?三標鄉?水源鄉?文峰鄉等;磷源中畜禽養殖污染占比44.75%~70.71%,主要分布在菖蒲鄉?晨光鎮?羅珊鄉?南橋鎮?丹溪鄉?龍廷鄉和留車鎮.東江源頭區各鄉鎮氮磷面源污染特征不同,其治理手段和目標也不盡相同,對于菖蒲鄉?晨光鎮?南橋鎮等需切實解決畜禽養殖規劃性不強,部分養殖戶選址不合理,糞污治理設施普及率和資源化利用水平低等問題;對于留車鎮?澄江鎮?吉潭鎮等應大力推進小型農村污水處理設施建設,完善生活污水處理措施;對于文峰鄉?三標鄉?水源鄉等鄉鎮需制定合理的施肥方案,避免化肥過量施用及利用率低的問題.

改進輸出系數法;農業面源污染負荷;畜禽養殖源;農村生活源;土地利用類型

隨著人口快速增長及經濟、工業迅猛發展,面源污染已成為水污染的重要來源,其中氮磷污染是面源污染的重要組成部分.同時,氮磷也是水生態系統必需的生源要素,過量的氮磷污染會導致水體富營養化加劇和藻類水華頻發,威脅流域水生態安全.據報道,美國的面源污染占污染總量的2/3,其中農業面源污染貢獻率占68%~83%[1].荷蘭的農業面源污染產生的氮、磷污染分別占水污染總負荷的60%和40%~50%[2].在我國,氮?磷污染占水污染的比例已分別達到81%和93%[3].2020年《第二次全國污染源普查公報》顯示,農業面源對水體氮?磷的貢獻率分別高達46.5%和67.2%,且農業面源污染沒有固定的排污口,具有分散性?隱蔽性?累積性和模糊性等特性[4].因此,準確掌握氮磷污染空間分布特征及污染物來源成為治理面源污染的關鍵技術難題[5].

目前研究面源污染最普遍的方法是Johnes[6]等提出的輸出系數模型法(ECM),它是通過一種“黑箱”的方法來對污染物輸入輸出進行模擬,模型主要利用區域水文氣象參數,通過多元線性相關分析建立土地利用類型與污染輸出負荷之間的關系,再基于污染物輸出系數,將不同類型污染源的污染負荷相加,估算流域面源污染負荷總量.但該模型僅適用于降雨均勻的平原地區,具有使用范圍局限的弊端,需要對該模型進行改進.利用引入降雨因子和流域損失系數、以及坡度對徑流流量和流速的影響的方法改進輸出系數模型可以成功提高了污染負荷結果的精度[7-9].引入降雨?地形因子(,)估算西南喀斯特山區的北盤江流域的農業面源污染,結果顯示北盤江流域農業面源氮、磷污染負荷呈現分布不均的特質,污染負荷局部集中,坡度較高和人口密度大的區域負荷量較高[10].利用改進的輸出系數模型對媯水河流域農業面源污染負荷進行估算,并且通過分區、分類、分期的三分法對結果進行闡釋,表明改進輸出系數模型精確度較高[11].以上研究通過對ECM的有效改進,推進了其在農業面源污染負荷估算方面的應用,同時也為其他地區更好的采用ECM核算農業面源污染負荷奠定了基礎.

東江是廣州、深圳、香港及惠州等粵港澳大灣區的重要供水水源,保障了約4600萬人的飲水安全.東江源頭區地處江西省贛州市尋烏縣,以農業活動為主,源頭區排水直接流入東江,不僅影響東江流域水質,而且威脅東江的供水安全.因此無論是從保障東江供水安全的重要性,還是從東江源頭區農業發展的生態經濟性角度考慮,開展東江源頭區的面源污染問題研究均顯得尤為必要.但目前關于東江源頭區面源污染仍沒有相關的研究.因此,本研究通過收集東江源頭區各鄉鎮的人口、畜禽養殖、土地利用和降雨量等數據,采用改進的ECM模型研究東江源頭區氮磷污染問題,有助于準確掌握該地區氮磷面源污染分布特征,進而提出有效的面源污染防治對策.本研究對合理調整東江源頭區農業結構布局、保障東江供水安全及促進粵港澳大灣區的經濟繁榮與民生穩定具有重要的科學意義和社會價值.

1 材料與方法

1.1 研究區域概況

東江源頭區位于江西省東南端尋烏縣(115°21′222~115°54′252E,24°30′402~25°12′102N),居贛、閩、粵三省交界處.境內最大的水系是東江水系,流域面積1974km2,占全縣流域總面積的83.7%.尋烏水是尋烏縣唯一的主河,全長113.4km,流域面積1744km2,占全縣總面積的72.1%,流經三標鄉、水源鄉、澄江鎮、吉潭鎮、文峰鄉、南橋鎮、留車鎮、龍廷鄉8個鄉(鎮).尋烏縣東北?西北與東南部地勢高,且向西南部傾斜,地形以山地丘陵為主,僅沿河兩岸呈狹小谷地,境內以山地為主,山地占總面積的75.62%.該地屬于亞熱帶季風氣候,溫暖濕潤,多年平均氣溫19.1℃,歷年平均降雨量1605.7mm.土壤主要是亞熱帶紅壤區,土地肥力較好.土地利用類型主要有園地和耕地,園地以果園為主;耕地利用方式主要包括水田和旱地.

1.2 數據來源

本研究數據主要來自尋烏縣數字高程模型(DEM)、2013~2020年的氣象數據?2020年的土地利用和社會經濟數據,如表1所列.

表1 研究數據及其來源

1.3 研究方法

1.3.1 輸出系數模型 (1)改進的ECM模型綜合考慮降雨和地形的影響對東江源頭區面源氮磷輸出進行模擬,具體公式如下:

式中:L為第種污染物的輸出量,kg/(hm2·a);為降雨因子;為地形影響因子;E為第種污染物第個污染源的輸出系數,kg/(hm2·a),kg/(人·a)或kg/(只·a);A為流域中第種土地利用類型的面積(hm2)、畜禽養殖數量(頭)或人口數量(人).

(2)降雨因子取值主要通過降水的年際分布差異與空間分布差異共同確定,且流域年降雨量與面源污染氮磷負荷存在一定的相關關系[12-13],可表達為:

考慮到缺少流域內污染物入河的監測數據,參考高田田等[14]在巢湖烔煬河流域的研究成果,建立東江源頭區降雨量與污染負荷之間的關系:

L

TN

=0.0993

r

2

+9.503

r

+216.8,(

R

2

=0.86;

P

<0.05) (3)

L

TP

=0.01146

r

2

+0.3498

r

-16.69,(

R

2

=0.98;

P

<0.05) (4)

根據2013~2020年降雨數據得到東江源頭區多年平均降雨量為562.0mm,由式(2)~(4)計算分析可以得出東江流域2020年TN的降雨影響因子為4.52、TP降水影響因子為4.54.

(3)地形影響因子主要是通過影響徑流量的大小來改變面源TN和TP污染的輸出量[8],其計算公式如下:

通過計算得到東江源頭區地形影響因子為0.68~1.32.如圖1所示.整體呈現流域坡度四周高中間低的趨勢,這與流域四周多以山地丘陵為主地勢較高,僅沿河兩岸呈狹小谷地的現狀吻合.

圖1 東江源頭區DEM(a)和土地利用圖(b)

1.3.2 模型參數的確定 (1)基礎數據的獲取.由于東江源頭區尋烏水流域面積占全縣總面積的72.1%,考慮到數據資料的限制,本文在計算尋烏縣的氮磷面源污染負荷基礎上,使用面積修正法得到東江源頭區流域內的氮磷面源污染負荷.本次研究中農業面源污染源分為農村生活污染源、畜禽養殖污染源及土地利用污染源.具體結果如表2所示.

表2 東江源頭區流域農村人口?牲畜數量及土地利用

(2)土地利用輸出系數的確定一般可采用研究試驗或文獻調研的方法確定[14-15].Beaulac等[16]和Frink[17]通過調查不同土地利用方式下氮磷輸出系數的變化范圍,取其平均值作為所研究流域的輸出系數.由于缺乏研究區域的輸出系數試驗數據,因此本文中尋烏縣各種土地利用類型的輸出系數,參考國內相似自然條件下的其他地區的研究結果而取其平均值確定[10,13,18-26].不同土地利用類型的參考輸出系數和取值結果見表3.

表3 不同土地利用類型的輸出系數取值[kg/(hm2×a)]

注:“-”表示無數據

(3)畜禽養殖和農村生活面源污染物輸出系數分別采用生態環境部發布的排泄系數和人口輸出系數,畜禽養殖業的總氮和總磷輸出系數分別取為各自排泄系數的10%[2].其取值分別見表4.

表4 東江源頭區流域畜禽養殖和農村生活污染輸出系數

2 結果與分析

2.1 東江源頭區氮磷負荷量

根據東江源頭區15個鄉鎮的土地利用、畜禽養殖和農村生活3大類面源數據,計算得出TN和TP污染負荷量,結果見圖2所示.源頭區TN負荷量為4884.23t/a,TP負荷量為591.85t/a,TN負荷量是TP負荷量的8.25倍.TN和TP負荷量分布呈現較大的空間差異性,其中TN負荷量最高的鄉鎮為留車鎮771.43t/a,貢獻率為11.39%,其次為文峰鄉TN負荷量為759.97t/a,貢獻率為11.22%,此外TN負荷量較高的鄉鎮依次為晨光鎮、南橋鎮、吉潭鎮、丹溪鄉和澄江鎮,均高于源頭區TN的平均負荷量451.62t/a;其他鄉鎮TN負荷量相對較低,長寧鎮負荷量最低為41.80t/a,貢獻率為0.62%.TP負荷量最高的鄉鎮為晨光鎮119.38t/a,貢獻率為14.54%;其次為留車鎮TP負荷量為96.56t/a,貢獻率為11.76%,TP負荷量較高的鄉鎮依次為南橋鎮、文峰鄉、丹溪鄉、菖蒲鄉和吉潭鎮,均高于源頭區TP負荷量的均值54.72t/a,其他鄉鎮TP負荷量相對較低,負荷量最低為長寧鎮4.38t/a,貢獻率為0.53%.

圖2 東江源頭區農業面源污染輸出負荷量分布

2.2 東江源頭區氮磷負荷強度

根據東江源頭區TN和TP污染負荷強度的數據分析,農業面源污染的TN負荷強度大于TP負荷強度,前者是后者的8.87倍.各鄉鎮TN和TP負荷強度存在明顯的空間差異性(圖3).TN負荷強度最高的鄉鎮為南橋鎮,負荷強度為5.03t/(km2·a),其他較高鄉鎮依次為菖蒲鄉(4.38t/(km2·a))、晨光鎮(3.52t/ (km2·a))、留車鎮(3.34t/(km2·a))和項山鄉(3.02t/ (km2·a)),均高于源頭區TN平均負荷強度2.88t/ (km2·a),其他鄉鎮均低于源頭區平均負荷強度,桂竹帽鎮排放負荷強度最低為1.82t/(km2·a).不同污染源類型中除菖蒲鄉呈現畜禽養殖負荷強度最高外,其他鄉鎮均呈現土地利用排放強度最高.

TP負荷強度最高的鄉鎮為菖蒲鄉,負荷強度為0.81t/(km2·a),其他負荷強度較高的鄉鎮依次為南橋鎮(0.63t/(km2·a))、晨光鎮(0.57t/(km2·a))、丹溪鄉(0.42t/(km2·a))、留車鎮(0.42t/(km2·a))和羅珊鄉(0.39t/(km2·a)),均高于源頭區TP平均負荷強度0.36t/(km2·a),其他鄉鎮均低于源頭區平均負荷強度,負荷強度最低的為桂竹帽鎮,負荷強度為0.16t/ (km2·a).不同污染源類型呈現部分鄉鎮的畜禽養殖強度較高,依次包括菖蒲鄉、南橋鎮、晨光鎮、羅珊鄉、丹溪鄉和留車鎮,其他鄉鎮則土地利用排放較高(圖4).

圖3 東江源頭區各鄉鎮農業面源污染物總氮?總磷負荷強度

圖4 東江源頭區各鄉鎮不同污染類型的總氮、總磷負荷強度

2.3 不同污染源類型對氮磷污染的貢獻率

東江源頭區不同污染源類型對TN和TP負荷量的貢獻情況如圖5所示.污染源類型對TN的貢獻率整體呈現土地利用>農村生活>畜禽養殖,且土地利用以耕地和林地為主.各鄉鎮污染源類型TN貢獻率中,除菖蒲鄉呈現為畜禽養殖(37.18%)>土地利用(35.56%)>農村生活(27.26%),其他鄉鎮均呈現為土地利用貢獻率最大,占比在37.67%~ 80.29%,其中南橋鎮(36.06%)、晨光鎮(31.10%)、羅珊鄉(24.16%)和丹溪鄉(21.32%)的畜禽養殖>農村生活,且南橋鎮畜禽養殖以牛為主,其他鄉鎮以豬為主;其余10個鄉鎮則表現為農村生活>畜禽養殖,其中農村生活污染較嚴重的鄉鎮有澄江鎮(38.53%)、水源鄉(31.30%)、吉潭鎮(29.74%)和留車鎮(28.64%).

不同污染源類型對TP貢獻率與TN的規律不一致,呈現畜禽養殖>土地利用>農村生活的特點,其中菖蒲鄉、晨光鎮、羅珊鄉、南橋鎮、丹溪鄉、龍廷鄉和留車鎮7個鄉鎮呈現為畜禽養殖污染占主導,占比在44.75%~70.71%,但三標鄉和水源鄉無畜禽養殖污染.土地利用TP貢獻率較大的鄉鎮有8個,依次為桂竹帽鎮、三標鄉、水源鄉、長寧鎮、吉潭鎮、文峰鄉、項山鄉和澄江鎮,占比在40.43%~ 71.75%,另外TP農村生活污染較嚴重的鄉鎮有澄江鎮(38.89%)、水源鄉(37.70%)、吉潭鎮(33.18%)和三標鄉(29.60%).

圖5 東江源頭區不同污染源的氮磷輸出空間分布

3 討論

3.1 流域氮磷污染負荷來源解析

不同區域因其發展方式的差異,面源污染源類型的貢獻率會呈現顯著的時空異質性.已有研究顯示,洱海流域[27]農業面源污染中土地利用對面源污染的貢獻率影響最顯著,TN和TP的排放量均主要來自于種植業;洞庭湖流域[1]面源污染負荷TN的排放負荷來自種植業,而TP的排放負荷主要來自于畜禽養殖.伊通河流域[28]的面源污染不同土地利用類型污染物流失濃度呈現旱田>水田>草地>林地.沱江流域[29]TP污染主要是畜禽養殖,成為影響沱江水環境的首要污染源.此外宋曉明等[30]研究發現湖南省46個區縣TN污染的主要來源為農村生活污水和畜禽養殖,TP污染的主要來源為農村生活污水.

本研究東江源頭區氮磷面源污染負荷主要來源分別為土地利用和畜禽養殖,這與洞庭湖流域[1]、媯水河流域[11]?滇池流域[31]等的研究結果一致,農業種植為農業面源污染TN的主要污染源、畜禽養殖為農業面源污染TP的主要污染源[32-33].究其原因東江源頭區尋烏縣作為農業種植大縣,是我國重要的水果(尤其是柑橘和臍橙)生產基地,種植柑橘和臍橙是當地農民脫貧致富的途徑之一.果樹種植面積的迅速增加導致大量山體遭到開發,坡度大于15°,甚至超過25°的山體用于種植果樹,山體水土流失嚴重,導致土壤中的氮、磷等營養鹽進入地表水體.尋烏縣農區2020年化肥投入強度約為34kg[34],高于全國平均水平22kg[35],且主要以尿素為主,過高的氮素投入和低的作物吸收率導致農田土壤氮的大量累積,土壤中累積的氮素會隨著降雨形成的地表徑流匯入流域中,導致農業種植成為總氮污染的主要來源.另外,資料顯示[36]尋烏縣畜禽以生豬為主,2020年底全縣生豬出欄量為13.5 萬頭,占養殖總量的39.68%,雖已逐步引進大規模養豬場,但農村散養畜禽亦呈加速發展的趨勢,且養殖戶主要位于農村居住區周邊或臨河而建,環保設施不完善,其中28.2%養殖戶未設置污水處理設施,導致畜禽養殖產生的糞污水經簡單處理后直排入河.而且由于豬禽飼料中,總磷的60%~70%是以植酸的形式存在[37],而豬等單胃動物體內缺乏有效降解植酸的消化酶類,對植酸磷的利用率極低,不被消化的植酸磷排出體外導致水環境污染[38],因此畜禽養殖是導致總磷污染的主要來源.

3.2 流域氮磷污染負荷空間解析

雖然東江源頭區農業面源污染以土地利用和畜禽養殖為主,但各鄉鎮氮磷污染負荷存在明顯的空間異質性.其中TN污染負荷高值區主要集中分布在南部的留車鎮、晨光鎮和中部的文峰鄉,TP污染負荷最高值區分布在南部的晨光鎮,其次主要集中在留車鎮、南橋鎮和文峰鄉,而兩者污染的低值區均零散的分布在中部的長寧鎮、北部的水源鄉、南部的龍廷鄉和東部的項山鄉.污染負荷高值區由于農業活動密集導致污染負荷隨之增加[11],但不同鄉鎮的污染類型的貢獻率有所差異.其中留車鎮、澄江鎮、吉潭鎮、水源鄉和丹溪鄉農村生活污染面源污染較嚴重,主要原因是鄉鎮的農村人口數龐大,且對于農村生活污水無集中處理;而菖蒲鄉、晨光鎮、南橋鎮、羅珊鄉和龍廷鄉的畜禽養殖數量較多,由此產生的污染源貢獻率較大,且畜禽養殖結構以大牲畜牛、豬為主;文峰鄉、三標鄉、水源鄉、長寧鎮、桂竹帽鎮由土地利用引起的氮磷負荷最高,主要原因是農業種植面積尤其是耕地面積較大,而土地利用類型中耕地的固氮磷能力較差,耕地化肥利用率不高[39-40],是氮磷流失最主要的土地利用類型,且耕地的氮磷輸出系數為林地的3~4倍.盡管留車鎮的TN污染負荷量和晨光鎮的TP污染負荷量分別呈現最大,但污染強度并不是最高,TN負荷強度最高為南橋鎮,而TP負荷強度最高為菖蒲鄉.因此,在污染防控上,需綜合考慮污染負荷量和負荷強度來進行面源整治.

3.3 流域農業面源污染源控制措施探討

東江源頭區各鄉鎮的污染特征不同,其治理手段和目標有所側重,對于畜禽養殖大鎮菖蒲鄉、晨光鎮、南橋鎮等實施以源頭防控與重點治理相結合,著力改善現有農業生態環境,切實解決畜禽養殖規劃性不強,部分養殖戶選址不合理,污染防治技術體系薄弱,糞污治理設施普及率和資源化利用水平低等問題.資料顯示[37]尋烏縣規模養殖場均采用干清糞方式處理,但養殖戶中僅10%采用干清糞方式,90%采用水沖糞方式處理,而水沖糞的方式存在耗水量大、污水產生量大、舍內有害氣體含量高、產生的污水有機污染物濃度高等問題[41-42],因此改變養殖戶糞肥處理方式,鼓勵養殖戶采用干清糞、機械清糞方式,逐步淘汰水沖糞清糞方式,減少養殖過程中用水量和污水排放壓力的有效途徑.另外由于尋烏縣的畜禽養殖結構以牛和豬為主,建設規模化畜禽養殖場可推廣生物發酵床養殖技術[43],不僅可以提高畜禽的免疫力,降低養殖成本,還可有效的處理畜禽糞污,同時結合源頭區域“柑桔種植優勢區”的特點,建設畜禽養殖-果業開發生態經濟循環圈,按照“資源化?無害化?生態化”的原則,利用資源化治理工程和配套措施處理規模化畜禽養殖有機污染,實現畜禽糞便資源化無害化利用和種植與養殖的良性循環.

對于農村生活污染較嚴重的留車鎮、澄江鎮、吉潭鎮等大力推進小型農村污水處理設施建設,完善生活污水處理措施[31,44-45],如建立沼氣池、垃圾分類站等,杜絕污染物直接進入水體.另外對于山區邊遠鄉鎮如丹溪鄉、三標鄉、桂竹帽鎮等基于人口較少、社會活動水平較低、山地丘陵地形為主的特點,可采取戶用化糞池、沼氣池等進行分散治理,建設污水儲存罐用于冬季儲存,結合農業化肥減量增效、水肥一體化等,引導林果種植?農業合作社、家庭農場等現代農業經營主體將治理后的污水作為有機肥水使用,實現無害化處理、資源化利用.

對于農業種植污染較嚴重的文峰鄉、三標鄉、水源鄉等鄉鎮需制定合理的施肥方案,避免化肥過量施用以及利用率低的問題[46-48],控制旱地總氮徑流流失應側重于降低徑流量和土壤氮含量,而水田則應同時減低徑流量和施氮量,加大推廣節水灌溉技術和循環灌溉方法,將土壤氮作為作物生產的潛在氮源予以再利用,并進一步推廣應用測土配方施肥技術,減少土壤氮過量積累及流失.另外需在深入了解各鄉鎮施肥習慣的基礎上,科學計算化肥施用量,實行以產定肥,平衡施用有機肥?新型肥料以及無機肥[44].提倡應用新型肥料,同時對農藥進行減量控制,優先選擇生物措施或物理措施,合理輪作,減緩污染.

4 結論

4.1 研究期間,東江源頭區農業面源污染物TN和TP負荷量分別是4884.23和591.85t/a,TN負荷量是TP負荷量的8.25倍,不同鄉鎮的污染負荷量呈現較大的空間異質性.TN負荷量較高的鄉鎮依次為留車鎮、文峰鄉、晨光鎮、南橋鎮、吉潭鎮、丹溪鄉和澄江鎮;TP負荷量較高的鄉鎮依次為晨光鎮、留車鎮、南橋鎮、文峰鄉、丹溪鄉、菖蒲鄉和吉潭鎮.

4.2 源頭區氮磷負荷強度與負荷量表現出一定的空間差異性.TN和TP污染負荷量較高分別為留車鎮和晨光鎮,但負荷強度最高分別為南橋鎮和菖蒲鄉.其中TN負荷強度高于源頭區TN平均負荷強度的依次為南橋鎮、菖蒲鄉、晨光鎮、留車鎮和項山鄉;TP負荷強度高于源頭區TP負荷強度均值的依次為菖蒲鄉、南橋鎮、晨光鎮、丹溪鄉、留車鎮和羅珊鄉.

4.3 不同農業面源污染源類型對TN和TP污染負荷的貢獻率不同,其中TN負荷量主要受土地利用影響,且土地利用污染占比為37.67%~80.29%,主要分布在長寧鎮、桂竹帽鎮、三標鄉、水源鄉、文峰鄉等;而TP負荷量主要受畜禽養殖影響,畜禽養殖污染占比44.75%~70.71%,主要分布在菖蒲鄉、晨光鎮、羅珊鄉、南橋鎮、丹溪鄉、龍廷鄉和留車鎮.

4.4 東江源頭區各鄉鎮氮磷面源污染特征不同,其治理手段和目標也不盡相同.對于畜禽養殖大鎮菖蒲鄉、晨光鎮、南橋鎮等以源頭防控與重點治理相結合,切實解決畜禽養殖規劃性不強,部分養殖戶選址不合理,污染防治技術體系薄弱,糞污治理設施普及率和資源化利用水平低等問題;對于農村生活污染較嚴重的留車鎮、澄江鎮、吉潭鎮等大力推進小型農村污水處理設施建設,完善生活污水處理措施;對于農業種植污染較嚴重的文峰鄉、三標鄉、水源鄉等鄉鎮需制定合理的施肥方案,盡量避免化肥過量施用以及利用率低的問題.

[1] Nguyen H H, Recknagel F, Meyer W, et al. Comparison of the alternative models SOURCE and SWAT for predicting catchment streamflow, sediment and nutrient loads under the effect of land use changes [J]. Science of the Total Environment, 2019,662:254-265.

[2] Engebretsen A, Vogt R D, Bechmann M. SWAT model uncertainties and cumulative probability for decreased phosphorus loading by agricultural Best Management Practices [J]. Catena, 2019,175:154- 166.

[3] Cheng X, Chen L D, Sun R H, et al. An improved export coefficient model to estimate non-point source phosphorus pollution risks under complex precipitation and terrain conditions [J]. Environmental Science and Pollution Research, 2018,25(21):20946-20955.

[4] 劉 彬,吳 卿,高輝巧.SWAT模型在香溪河流域非點源污染研究中的應用現狀及進展[J]. 水資源開發與管理, 2018,(11):28-31.

Liu B, Wu Q, Gao H Q. Application progress of SWAT model in non-point source pollution research in Xiangxi River Basin [J]. Water Resources Development and Management, 2018,(11):28-31.

[5] Cheng X, Chen L, Sun R, et al. Identification of regional water resource stress based on water quantity and quality: A case study in a rapid urbanization region of China [J]. Journal of Cleaner Production, 2019,209:216-223.

[6] Johnes P J. Evaluation and management of the impact of land use change on the nitrogen and phosphorus land delivered to surface waters: the export coefficient modelling approach [J]. Journal of Hydrology, 1996,183(3/4):323-349.

[7] 蔡 明,李懷恩,莊詠濤,等.改進的輸出系數法在流域非點源污染負荷估算中的應用[J]. 水利學報, 2004,7(6):40-45.

Cai M, Li H E, Zhuang Y T, et al. Application of modified export coefficient method in polluting load estimation of non-point source pollution [J]. Journal of Hydraulic Engineering, 2004,7(6):40-45.

[8] Ding X W, Shen Z Y, Hong Q, et al. Development and test of the export coefficient model in the upper reach of the Yangtze River [J]. Journal of Hydrology, 2010,383(3):233–244.

[9] 任 瑋,代 超,郭懷成.基于改進輸出系數模型的云南寶象河流域非點源污染負荷估算[J]. 中國環境科學, 2015,35(8):2400-2408.

Ren W, Dai C, Guo H C. Estimation of pollution load from non-point source in Baoxianghe watershed based, Yunnan Province on improved export coefficient model [J]. China Environmental Science, 2015,35(8): 2400-2408.

[10] 賀 赟,楊愛江,陳蔚潔,等.西南喀斯特山區典型流域農業非點源污染負荷及分布特征[J]. 水土保持研究, 2022,29(1):148-152.

He Y, Yang A J, Chen W J, et al. Research on spatial characteristic sand the load of agricultural non-point source pollution in Karst area of southwestern China [J]. Research of Soil and Water Conservation, 2022,29(1):148-152.

[11] 丁 洋,趙進勇,董 飛,等.媯水河流域農業非點源污染負荷估算與分析[J]. 水利水電技術, 2020,51(1):139-146.

Ding Y, Zhao J Y, Dong F, et al. Estimation and analysis of agricultural non-point source pollution load in Guishui River Watershed [J]. Water Resources and Hydropower Engineering, 2020,51(1):139-146.

[12] Chen X, Liu X, Peng W, et al. Non-Point Source Nitrogen and Phosphorus Assessment and Management Plan with an Improved Method in Data-Poor Regions [J]. Water, 2017,10(1):17.

[13] Shen Z, Hong Q, Yu H, et al. Parameter uncertainty analysis of non-point source pollution from different land use types [J]. Science of the Total Environment, 2010,408(8):1971-1978.

[14] 高田田,謝 暉,萬能勝,等.巢湖典型農村流域面源氮磷污染模擬及來源解析[J]. 農業環境科學學報, 2022,41(11):2428-2438.

Gao T T, Xie H, Wan N S, et al. Simulation and source analysis of nonpoint source nitrogen and phosphorus pollution export in a typical agricultural catchment draining to Chaohu Lake [J]. Journal of Agro-Environment Science, 2022,41(11):2428-2438.

[15] 薛利紅,楊林章.面源污染物輸出系數模型的研究進展[J]. 生態學雜志, 2009,28(4):755-761.

Xue L H, Yang L Z. Research advances of export coefficient model for non-point source pollution [J]. Journal of Ecology, 2009,28(4):755- 761.

[16] Beaulac M N, Reckhow K H. Anexamination of land use nutrient export relationships [J]. Water Resource Bulletin, 1982,18(6):1013- 1024.

[17] Frink C R. Estimating nutrient exports to estuaries [J]. Journal of Environmental Quality, 1991,20(4):717-724.

[18] 郝桂珍,宋鳳芝,徐 利,等.基于輸出系數模型的清水河上游農業非點源污染負荷估算[J]. 科學技術與工程, 2020,20(33):13919- 13927.

Hao G Z, Song F Z, Xu L, et al. Estimation of pollution loads from agricultural non-point sources in the upstream of Qingshui River based on export coefficient models [J]. Science Technology and Engineering, 2020,20(33):13919-13927.

[19] 段 揚,蔣洪強,吳文俊,等.基于改進輸出系數模型的非點源污染負荷估算——以嫩江流域為例[J]. 環境保護科學, 2020,46(4):48-55.

Duan Y, Jiang H Q, Wu W J, et al. Estimation of non-point source pollution load based on improved export coefficient model ——a case study of Nenjiang watershed [J]. Environmental Protection Science, 2020,46(4):48-55.

[20] 李政道,劉鴻雁,姜 暢,等.基于輸出系數模型的紅楓湖保護區非點源污染負荷研究[J]. 水土保持通報, 2020,40(2):193-198,325.

Li Z D, Liu H Y, Jiang C, et al. Non-point source pollution load of Hong Feng Lake reserve based on export coefficient model [J]. Bulletin of Soil ang Water Conservation, 2020,40(2):193-198.

[21] 胡富昶,敖天其,胡 正,等.改進的輸出系數模型在射洪縣的非點源污染應用研究[J]. 中國農村水利水電, 2019,(6):78-82,92.

Hu F C, Ao T Q, Hu Z, et al. Applied research on the improved export coefficient model in non-point source pollution in Shehong County [J]. China Rural Water and Hydropower, 2019,(6):78-82,92.

[22] 楊 雯,敖天其,王文章,等.基于輸出系數模型的瓊江流域(安居段)農村非點源污染負荷評估[J]. 環境工程, 2018,36(10):140-144.

Yang W, Ao T Q, Wang W Z, et al. Estimation of pollution loads from rural non-point sources in Qiongjiang River basin (Anju district) based on export coefficient modeling approach [J]. Environmental Engineering, 2018,36(10):140-144.

[23] 荊延德,張華美,孫笑笑.基于輸出系數模型的南四湖流域非點源污染輸出風險評估[J]. 水土保持通報, 2017,37(3):270-274,278.

Jing Y D, Zhang H M, Sun X X. Risk assessment of non-point source pollution in Nansihu Lake basin using output coefficient model [J]. Bulletin of Soil ang Water Conservation, 2017,37(3):270-274,278.

[24] 張 辰,陸建忠,陳曉玲.基于輸出系數模型的云南洱海流域農業非點源污染研究[J]. 華中師范大學學報(自然科學版), 2017,51(1): 108-114.

Zhang C, Lu J Z, Chen X L. Study of pollution from agricultural non-point sources in Lake Erhai watershed in Yunnan province based on export coefficient mode [J]. Journal of Central China Normal University (Natural Sciences), 2017,51(1):108-114.

[25] 李 娜,韓維崢,沈夢楠,等.基于輸出系數模型的水庫匯水區農業面源污染負荷估算[J]. 農業工程學報, 2016,32(8):224-230.

Li N, Han W Z, Shen M N, et al. Load evaluation of non-point source pollutants from reservoir based on export coefficient modeling [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(8):224-230.

[26] 邢寶秀,陳 賀.北京市農業面源污染負荷及入河系數估算[J]. 中國水土保持, 2016,(5):34-37,77.

Xing B X, Chen H. Estimation on agricultural non-point source pollution loads and inflow coefficient of Beijing [J]. Soil And Water Conservation in China, 2016,(5):34-37,77.

[27] 項 頌,吳 越,呂興菊,等.洱海流域農業面源污染空間分布特征及分類控制策略[J]. 環境科學研究, 2020,33(11):2474-2483.

Xiang S, Wu Y, Lv X J, et al. Characteristics and spatial distribution of agricultural non-point source pollution in Erhai Lake Basin and its classified control strategy [J]. Research of Environmental Sciences, 2020,33(11):2474-2483.

[28] 張 正.伊通河流域非點源污染的模擬與預測[D]. 長春:吉林大學, 2014.

Zhang Z. Simulation and prediction of non-point source pollution in Yitong river watershed [D]. Changchun: Jilin University, 2014.

[29] 姚 婧,楊麗君,肖宇婷,等.基于社會-經濟因子修正的沱江流域農業面源總磷污染負荷時空演變研究[J]. 農業環境科學學報, 2022, 41(5):1022-1035.

Yao J, Yang L J, Xiao Y T, et al. Spatial-temporal evolution of agricultural non-point sources of total phosphorus pollution loads in Tuojiang River watershed based on correction of social-economic factors [J]. Journal of Agro-Environment Science, 2022,41(5):1022- 1035.

[30] 宋曉明,柳王榮,姜 珊,等.湖南省農業面源污染與農村水環境質量的響應關系分析[J]. 農業環境科學學報, 2022,41(7):1509-1519.

Song X M, Liu W R, Jiang S, et al. Analysis on response relationship between agricultural non-point source pollution and rural water environmental quality in Hunan Province, China [J]. Journal of Agro-Environment Science, 2022,41(7):1509-1519.

[31] 胡 晴,郭懷成,王雨琪,等.基于改進輸出系數模型的農業源污染物負荷核算[J]. 北京大學學報((自然科學版), 2021,57(4):739-748.

Hu Q, Guo H C, Wang Y Q, et al. Estimation of agricultural non-point source pollution loads based on improved export coefficient model [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021,57(4): 739-748.

[32] 唐肖陽,唐德善,魯佳慧,等.漢江流域農業面源污染的源解析[J]. 農業環境科學學報, 2018,37(10):2242-2251.

Tang X Y, Tang D S, Lu J H, et al. Source apportionment of agricultural nonpoint source pollution in the Hanjiang River Basin [J]. Journal of Agro-Environment Science, 2018,37(10):2242-2251.

[33] Wang J, Wang D, Ni J, et al. Simulation of the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region—based on the improved export coefficient model [J]. Environmental Science: Processes & Impacts, 2015,17(11):1976- 1989.

[34] 尋烏縣統計局.2020年尋烏縣統計年鑒[M]. 贛州:尋烏縣統計局, 2020年.

Statistical yearbook in 2020 of Xunwu County [M]. Ganzhou: Xunwu County Bureau of Statistics, 2020.

[35] 宋紅梅,李廷亮,劉 洋,等.我國近20年主要糧食作物產量?進出口及化肥投入變化特征[J]. 水土保持學報, 2023,37(1):332-339.

Song H M, Li T L, Liu Y, et al. Temporal variation of main grain crops yield, import and export and fertilizer consumption of CHINA in the past 20 years [J]. Journal of Soil and Water Conservation, 2023,37(1): 332-339.

[36] 尋烏縣人民政府.《尋烏縣"十四五"農業面源污染防治規劃》(尋府發〔2022〕21號) [Z].

People’s Government of Xun Wu County. The “14th Five-Year Plan” for the prevention and control of agricultural non-point source pollution in Xunwu County, (Xunfu〔2022〕No.21) [Z].

[37] Reddy N R, Sathe S K, Salunkhe D K. Phytates in legumes and cereals [J]. Advances in food research, 1982,28:1-92.

[38] 李雅楠,余利紅,陳新美,等.來源于Penicillium sp. C1的水產用中性植酸酶基因在畢赤酵母中的表達及性質研究[J]. 生物技術通報, 2020,36(2):134-141.

Li Y N, Yu L H, Chen X M, et al. Expression and characterization of Aquatic Neutral Phytase Gene from Penicillium sp. C1in Pichia pastoris [J]. Biotechnology Bulletin, 2020,36(2):134-141.

[39] 張 晗,歐陽真程,趙小敏,等.江西省不同農田利用方式對土壤碳、氮和碳氮比的影響[J]. 環境科學學報, 2018,38(6):2486-2497.

Zhang H, Ouyang Z C, Zhao X M, et al. Effects of different land use types on soil organic carbon,nitrogen and ratio of carbon to nitrogen in the plow layer of farmland soil in Jiangxi Province [J]. Acta Scientiae Circumstantiae, 2018,38(6):2486-2497.

[40] 李家科,彭 凱,郝改瑞,等.黃河流域非點源污染負荷定量化與控制研究進展[J]. 水資源保護, 2021,37(1):90-102.

Li J K, Peng K, Hao G R, et al. Research progress on quantification and control of non-point source pollution load in the Yellow River Basin [J]. Water Resources Protection, 2021,37(1):90-102.

[41] 劉安芳,阮蓉丹,李廳廳,等.豬舍內糞污廢棄物和有害氣體減量化工程技術研究[J]. 農業工程學報, 2019,35(15):200-210.

Liu A F, Ruan R D, Li T T, et al. Research progress of in-house reduce engineering technology for piggery manure wastes and poisonous gas [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(15):200-210.

[42] 周海賓,丁京濤,孟海波,等.中國畜禽糞污資源化利用技術應用調研與發展分析[J]. 農業工程學報, 2022,38(9):237-246.

Zhou H B, Ding J T, Meng H B, et al. Survey and development analysis of resource utilization technology of livestock and poultry wastes in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022,38(9):237-246.

[43] 劉愛瑜,任二軍,高玉紅,等.冬季發酵床養羊的應用效果研究[J]. 家畜生態學報, 2022,43(5):73-77.

Liu A Y, Ren E J, Gao Y H, et al. Analysis of fattening effect of raising sheep in fermentation bed in winter [J]. Acta Ecologiae Animalis Domastici, 2022,43(5):73-77.

[44] Liu R, Xu F, Zhang P, et al. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT [J]. Journal of Hydrology, 2016,533:379-388.

[45] Yasarer L M W, Lohani S, Bingner R L, et al. Assessment of the soil vulnerability index and comparison with AnnAGNPS in two lower Mississippi River Basin watersheds [J]. Journal of Soil and Water Conservation, 2020,75(1):53-61.

[46] Zuo L, Gao J. Investigating the compounding effects of environmental factors on ecosystem services relationships for Ecological Conservation Red Line areas [J]. Land Degradation & Development, 2021,32(16):4609-4623.

[47] 陶 園,徐 靜,任賀靖,等.黃河流域農業面源污染時空變化及因素分析[J]. 農業工程學報, 2021,37(4):257-264.

Tao Y, Xu J, Ren H J, et al. Spatiotemporal evolution of agricultural non-point source pollution and its influencing factors in the Yellow River Basin [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021,37(4):257-264.

[48] 丘麗清,吳根義,李 想,等.基于等標污染負荷強度的海南省農村面源污染特征研究[J]. 農業資源與環境學報, 2023,40(1):55-63.

Qiu L Q, Wu G Y, Li X, et al. Characteristics of agricultural non-point source pollution in Hainan rural area based on equal standard pollution load intensity [J]. Journal of Agricultural Resources and Environment, 2023,40(1):55-63.

Analysis of nitrogen and phosphorus emissions from agricultural non-point sources based on improved output coefficient method.

GOU Ting1, PEI De-fu1,2, LIANG Rong-chang1, SHE Lei1, YANG Jun3, MA Qian-li1, ZHAO Xue-min1, ZHAO Rui1, YAO Ling-ai1*

(1.South China Institute of Environmental Sciences, Ministry of Ecology and Environment (Research Institute of Eco-environmental Emergency, Ministry of Ecology and Environment), Guangzhou 510535, China;2.School of Municipal and Environmental Engineering, Shenyang University of Architecture, Shenyang 110168, China;3.School of Economics and management, Taiyuan Normal University, Jinzhong 030619, China)., 2023,43(12):6539~6550

To study the nitrogen and phosphorus loadings from agricultural surface sources in the source area of Dongjiang River, the characteristics of nitrogen and phosphorus emissions from agricultural surface sources in the source area of Dongjiang River in 2020 were explored using an improved output coefficient model (ECM). The results show that: (1) the loads of total nitrogen (TN) and total phosphorus (TP) of agricultural surface source pollutants in the source area of Dongjiang River were 4884.23t/a and 591.85t/a, respectively, and the TN pollution load was 8.25 times of the TP pollution load. Among the townships with higher than the average TN load were Liuche Township, Wenfeng Township, Chenguang Township, Nanqiao Township, Jitan Township, Danxi Township and Chengjiang Township, higher than the TP average load of the township were Chenguang, Liuche Township, Nanqiao Township, Wenfeng Township, Danxi Township, Calamus Township and Jitan Township. (2) Nitrogen and phosphorus pollution load intensity and load amount was different, and showed spatial variability. The higher pollution load was Liuche Township and Chenguang Township respectively, but the highest load intensity was Nanqiao Township and Calamus Township respectively. The higher TN load intensity was in the order of Nanqiao Township, Calamus Township, Chenguang Township, Liuche Township and Xiangshan Township, which all higher than the average TN load intensity of 2.88t/(km2×a) in the source area; the higher TP load intensity was in the order of Calamus Township, Nanqiao Township, Chenguang Township, Danxi Township, Liuche Township and Luoshan Township, which all higher than the source area TP average load intensity of 0.36t/(km2×a). (3) The contribution of different source types to nitrogen and phosphorus emissions was not consistent, TN pollution was manifested as land use > rural life > livestock breeding, TP pollution was manifested as livestock breeding > land use > rural life. Among the nitrogen sources, land use pollution accounted for 37.67%~80.29%, mainly distributed in Changning Township, Guizhumat Township, Sanbiao Township, Water Source Township, Wenfeng Township; phosphorus sources of livestock breeding pollution accounted for 44.75%~70.71%, mainly distributed in Calamus Township, Chenguang Township, Luoshan Township, Nanqiao Township, Danxi Township, Longting Township and Liuche Township. Based on different characteristics of nitrogen and phosphorus non-point source pollution in the source area of Dongjiang River, the treatment methods were also different. For the townships were seriously polluted by livestock breeding, which should to solve the problems of poor planning of livestock breeding, unreasonable site selection and low level of resource utilization. The townships were seriously polluted by rural living pollution which should vigorously promote the construction of small rural sewage treatment facilities and improve the living sewage treatment measures. Other townships need to develop a reasonable fertilizer application program to avoid excessive application of chemical fertilizers. This study has important practical significance for improving the continuous emission reduction of agricultural non-point source pollution and ensuring the safety of water supply in Dongjiang River.

improved output coefficient method;agricultural non-point source pollution;livestock breeding sources;rural living sources;land use types

X501

A

1000-6923(2023)12-6539-12

茍 婷,裴德富,梁榮昌,等.基于輸出系數法的農業面源氮磷排放特征分析 [J]. 中國環境科學, 2023,43(12):6539-6550.

Gou T, Pei D F, Liang R C, et al. Analysis of nitrogen and phosphorus emissions from agricultural non-point sources based on improved output coefficient method [J]. China Environmental Science, 2023,43(12):6539-6550.

2023-04-19

廣東省重點領域研發計劃項目(2019B110205004);國家自然科學基金資助項目(41977353);中央級公益性科研院所基本科研業務專項 (PM-zx703-202204-075)

* 責任作者, 高級工程師, yaolingai@scies.org

茍 婷(1988-),女,甘肅白銀人,工程師,碩士,主要從事水污染防治研究.發表論文18篇.gouting@scies.org.

猜你喜歡
污染農業
國內農業
今日農業(2022年1期)2022-11-16 21:20:05
國內農業
今日農業(2022年3期)2022-11-16 13:13:50
國內農業
今日農業(2022年2期)2022-11-16 12:29:47
擦亮“國”字招牌 發揮農業領跑作用
今日農業(2021年14期)2021-11-25 23:57:29
新農業 從“看天吃飯”到“看數吃飯”
今日農業(2021年13期)2021-08-14 01:38:18
什么是污染?
歐盟發布短期農業展望
今日農業(2020年15期)2020-12-15 10:16:11
什么是污染?
堅決打好污染防治攻堅戰
當代陜西(2019年7期)2019-04-25 00:22:18
堅決打好污染防治攻堅戰
主站蜘蛛池模板: 国产女人水多毛片18| 日本国产精品一区久久久| 色偷偷男人的天堂亚洲av| 国产精女同一区二区三区久| 亚洲午夜福利精品无码不卡| 91福利免费| 黄色在线网| 国产精品浪潮Av| 另类欧美日韩| 99久久亚洲综合精品TS| 视频一本大道香蕉久在线播放 | 国模粉嫩小泬视频在线观看| 久久人妻xunleige无码| 亚洲天堂视频在线观看免费| 福利在线免费视频| 人妻丰满熟妇av五码区| 国产草草影院18成年视频| 亚洲国产在一区二区三区| 亚洲天堂视频在线观看免费| 日本欧美成人免费| 国产精品人莉莉成在线播放| 毛片免费试看| 亚洲成a人片| 成人午夜亚洲影视在线观看| 亚洲成a人在线播放www| 亚洲国产精品一区二区第一页免| AV不卡在线永久免费观看| 2021国产精品自产拍在线| 国产在线专区| 五月婷婷综合网| 亚洲成aⅴ人在线观看| 亚洲男人的天堂久久香蕉| 波多野结衣中文字幕一区二区| 亚洲伊人电影| 亚洲成人在线网| 无码一区18禁| 色有码无码视频| 国产好痛疼轻点好爽的视频| 国产欧美日韩视频怡春院| 国产网站免费| 天天操精品| 亚洲小视频网站| 国产91丝袜在线播放动漫| 69国产精品视频免费| 中文字幕在线看视频一区二区三区| 88av在线播放| 亚洲色图欧美视频| 免费A级毛片无码免费视频| 久久熟女AV| 91无码人妻精品一区二区蜜桃| 国产91小视频在线观看| 免费啪啪网址| 国产欧美在线| 亚洲精品无码av中文字幕| 99久久性生片| 97一区二区在线播放| 色哟哟国产精品一区二区| 真人免费一级毛片一区二区| 91久草视频| 无码一区中文字幕| 中文国产成人精品久久| 综合人妻久久一区二区精品 | 免费国产福利| 久久夜色精品国产嚕嚕亚洲av| 性网站在线观看| 伊人成人在线视频| 国产高潮视频在线观看| 伊人久久精品亚洲午夜| 亚洲色婷婷一区二区| 欧美综合中文字幕久久| 国产99视频精品免费观看9e| 日韩免费毛片| 国产精品久久国产精麻豆99网站| 国产精品手机视频| 日本午夜视频在线观看| 2019年国产精品自拍不卡| 欧美日韩亚洲综合在线观看 | 成人一区在线| 亚洲精品片911| 青青草原国产免费av观看| 精品超清无码视频在线观看| 在线欧美日韩|