999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

壓電光協(xié)同作用下m-Bi2O4對磺胺甲基嘧啶的催化降解研究

2024-01-01 00:00:00朱佳威陳浩軒劉鳳玲郭照冰仇鵬翔
南京信息工程大學學報 2024年4期
關鍵詞:分析

摘要 采用簡單的水熱法制備m-Bi2O4,并利用XRD、XPS、SEM、TEM、UV-vis DRS、PFM等表征手段對樣品結構、形貌、表面價態(tài)以及壓電光催化性能進行分析.以磺胺甲基嘧啶(SM)為模擬污染物,測試了材料的壓電光催化活性.結果表明,與BaTiO3和BiOCl相比,m-Bi2O4表現(xiàn)出了較高的催化性能.在壓電光協(xié)同作用60 min后,對SM的降解效率高達96.46%.通過改變光的波長條件,證實m-Bi2O4在光能減弱條件下仍具有較高的催化活性.此外,通過活性自由基捕獲實驗證實反應體系中產生了高氧化活性的超氧自由基以及少量羥基自由基和單線態(tài)氧,并提出了一種可能的壓電光催化機理.

關鍵詞m-Bi2O4;磺胺甲基嘧啶;壓電光催化;光催化

中圖分類號TB332;O643.36

文獻標志碼A

0引言

近年來,抗生素濫用造成的水污染問題引起了全世界的廣泛關注.磺胺甲基嘧啶(SM)是養(yǎng)殖和畜牧用量最大的抗生素[1-2].大部分磺胺類抗生素在動物體內不能被完全吸收,未吸收的部分通過排泄的方式直接進入生態(tài)系統(tǒng),對生態(tài)系統(tǒng)造成潛在威脅.

1實驗部分

1.1試劑和儀器

1.2樣品的制備及表征

1.2.1四氧化二鉍的制備

1.2.2材料表征方法

采用X射線衍射(XRD)分析晶體結構;采用掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)分析樣品形貌;采用X射線光電子能譜(XPS)分析催化劑官能團結構和元素組成;采用紫外-可見分光光度計(UV-vis)分析光吸收性能;采用壓電響應力顯微鏡(PFM)分析樣品壓電特性;Mott-Schottky圖由電化學工作站(CHI660E)測定,其中Ag/AgCl和Pt片分別作為參比電極和對電極.

1.2.3壓電光催化活性實驗

2結果和討論

2.1樣品的XPS與XRD分析

2.2樣品的形貌分析

2.3樣品的PFM分析

2.4樣品的光學性能分析

2.5壓電光催化降解SM

2.6光的波長對降解SM的影響

2.7壓電光催化降解機理討論

3結論

參考文獻

References

[1]BaranW,Adamek E,Ziemian'ska J,et al.Effects of the presence of sulfonamides in the environment and their influence on human health[J].Journal of Hazardous Materials,2011,196:1-15

[2]WangL L,Jiang S F,Huang J,et al.Oxygen-doped biochar for the activation of ferrate for the highly efficient degradation of sulfadiazine with a distinct pathway[J].Journal of Environmental Chemical Engineering,2022,10(6):108537

[3]馬瑞霄,周浩,張燕輝.RGO-ZnO光催化降解抗生素及還原Cr(Ⅵ)的研究[J].工業(yè)水處理,2021,41(3):53-56MA Ruixiao,ZHOU Hao,ZHANG Yanhui.RGO-ZnO photocatalytic antibiotics degradation and Cr (Ⅵ) reduction[J].Industrial Water Treatment,2021,41(3):53-56

[4]蔡博華,鄒偉,朱雪梅,等.PVA/SiO2@BiOBr納米纖維的制備及其光催化性能[J].工業(yè)水處理,2022,42(6):140-145CAI Bohua,ZOU Wei,ZHU Xuemei,et al.Fabrication of PVA/SiO2@BiOBr nanofibers and their photocatalytic characteristics[J].Industrial Water Treatment,2022,42(6):140-145

[5]GaoC M,Wei T,Zhang Y Y,et al.A photoresponsive rutile TiO2 heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution[J].Advanced Materials,2019,31(8):e1806596

[6]Chen Y,Deng X M,Wen J Y,et al.Piezo-promoted the generation of reactive oxygen species and the photodegradation of organic pollutants[J].Applied Catalysis B:Environmental,2019,258:118024

[7]WangZ L.Piezopotential gated nanowire devices:piezotronics and piezo-phototronics[J].Nano Today,2010,5(6):540-552

[8]Yin X,Wu W,Zhang F S,et al.Synergetic effect of piezoelectricity and heterojunction on photocatalytic performance[J].Journal of Photochemistry and Photobiology A:Chemistry,2020,400:112661

[9]Tang Q,Wu J,Chen X Z,et al.Tuning oxygen vacancies in Bi4Ti3O12nanosheets to boost piezo-photocatalytic activity[J].Nano Energy,2023,108:108202

[10]Gao H C,Zhang Y G,Xia H Y,et al.In situ generation of H2O2 over Ce-doped BaTiO3 catalysts for enhanced piezo-photocatalytic degradation of pollutants in aqueous solution[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2023,663:131030

[11]Chen P,Zhang Q X,Zheng X S,et al.Phosphate-modified m-Bi2O4 enhances the absorption and photocatalytic activities of sulfonamide:mechanism,reactive species,and reactive sites[J].Journal of Hazardous Materials,2020,384:121443

[12]Liu M M,Liu G,Liu X M,et al.One-pot synthesis of m-Bi2O4/Bi2O4-x/BiOCl with enhanced photocatalytic activity for BPA and CIP under visible-light[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,643:128772

[13]Cheng D,Teng M Q,Chen Y F,et al.In-situ construction of high-efficiency phase-transition induced m-Bi2O4/Bi4O7 surface heterojunction photocatalysts and mechanism investigation[J].Journal of Physics and Chemistry of Solids,2021,152:109947

[14]LyuY,Xu Z L,Nakane K,et al.A nanocrystalline oxygen-deficient bismuth oxide as an efficient adsorbent for effective visible-light-driven photocatalytic performance toward organic pollutant degradation[J].Journal of Colloid and Interface Science,2018,531:463-472

[15]Wang W J,Chen X Q,Liu G,et al.Monoclinic dibismuth tetraoxide:a new visible-light-driven photocatalyst for environmental remediation[J].Applied Catalysis B:Environmental,2015,176/177:444-453

[16]Zhou X F,Sun Q W,Zhai D,et al.Excellent catalytic performance of molten-salt-synthesized Bi0.5Na0.5TiO3 nanorods by the piezo-phototronic coupling effect[J].Nano Energy,2021,84:105936

[17]YangY,Hoffmann M R.Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment[J].Environmental Science & Technology,2016,50(21):11888-11894

[18]Lu S S,Liu F L,Qiu P X,et al.Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization:towards practical application[J].Chemical Engineering Journal,2020,379:122382

[19]Wang Y J,Bai X J,Pan C S,et al.Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4[J].Journal of Materials Chemistry,2012,22(23):11568-11573

[20]SubramanianV,Wolf E E,Kamat P V.Catalysis with TiO2/gold nanocomposites:effect of metal particle size on the Fermi level equilibration[J].Journal of the American Chemical Society,2004,126(15):4943-4950

[21]ZhangM,Bai X J,Liu D,et al.Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position[J].Applied Catalysis B:Environmental,2015,164:77-81

[22]Li X,Wu Q,Hussain M,et al.Sodium alkoxide-mediated g-C3N4 immobilized on a composite nanofibrous membrane for preferable photocatalytic activity[J].RSC Advances,2022,12(24):15378-15384

[23]WangY B,Jiang Y,Zhao Y X,et al.Design strategies of perovskite nanofibers electrocatalysts for water splitting:a mini review[J].Chemical Engineering Journal,2023,451:138710

[24]Xie K F,Xu S Y,Xu K,et al.BiOCl heterojunction photocatalyst:construction,photocatalytic performance,and applications[J].Chemosphere,2023,317:137823

[25]Lyu L,Yu G F,Zhang L L,et al.4-phenoxyphenol-functionalized reduced graphene oxide nanosheets:a metal-free Fenton-like catalyst for pollutant destruction[J].Environmental Science & Technology,2018,52(2):747-756

[26]Xia D H,Shen Z R,Huang G C,et al.Red phosphorus:an earth-abundant elemental photocatalyst for green bacterial inactivation under visible light[J].Environmental Science & Technology,2015,49(10):6264-6273

[27]Xia D H,Lo I M C.Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation[J].Water Research,2016,100:393-404

[28]Feng Y W,Li H,Ling L L,et al.Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field[J].Environmental Science & Technology,2018,52(14):7842-7848

Catalytic degradation of sulfamethazine by m-Bi2O4 via synergistic piezoelectric-light effect

ZHU Jiawei1CHEN Haoxuan1LIU Fengling1GUO Zhaobing1QIU Pengxiang1

1School of Environmental Science and Engineering/Jiangsu Key Laboratory of Atmospheric Environment Monitoring and

Pollution Control/Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,

Nanjing University of Information Science & Technology,Nanjing 210044,China

AbstractIn this paper,we prepare m-Bi2O4 via a simple hydrothermal method,and analyze its structure,morphology,surface valence and piezoelectric photocatalytic performance using characterization methods such as XRD,XPS,SEM,TEM,UV-vis DRS and PFM.Furthermore,we test the piezoelectric photocatalytic activity of the material using sulfamethazine (SM) as a simulated pollutant.The results show that m-Bi2O4 outperforms BaTiO3 and BiOCl in catalytic performance,indicated by its high SM degradation efficiency (96.46%) after 60 min of synergistic piezoelectric-light action,and m-Bi2O4 still holds high catalytic activity under weakening light energy.In addition,superoxide radicals with high oxidation activity and a small amount of hydroxyl radicals and singlet oxygen have been captured in the reaction system.We also propose a possible mechanism of piezoelectric photocatalysis.

Key wordsm-Bi2O4;sulfamethazine (SM);piezoelectric photocatalysis;photocatalysis

猜你喜歡
分析
禽大腸桿菌病的分析、診斷和防治
隱蔽失效適航要求符合性驗證分析
電力系統(tǒng)不平衡分析
電子制作(2018年18期)2018-11-14 01:48:24
電力系統(tǒng)及其自動化發(fā)展趨勢分析
經濟危機下的均衡與非均衡分析
對計劃生育必要性以及其貫徹實施的分析
GB/T 7714-2015 與GB/T 7714-2005對比分析
出版與印刷(2016年3期)2016-02-02 01:20:11
網購中不良現(xiàn)象分析與應對
中西醫(yī)結合治療抑郁癥100例分析
偽造有價證券罪立法比較分析
主站蜘蛛池模板: 小蝌蚪亚洲精品国产| 9久久伊人精品综合| 啪啪啪亚洲无码| 成·人免费午夜无码视频在线观看 | 成人亚洲视频| 欧美亚洲日韩不卡在线在线观看| 国产精品hd在线播放| 国产精品无码一区二区桃花视频| 91精品专区国产盗摄| 国产一区二区网站| 欧美精品v欧洲精品| 中文毛片无遮挡播放免费| 草草影院国产第一页| 日韩高清成人| 久久亚洲美女精品国产精品| 亚洲无码视频图片| 人妻中文久热无码丝袜| 日韩在线2020专区| 国产91蝌蚪窝| 潮喷在线无码白浆| 国产午夜福利亚洲第一| 99视频在线免费看| 日韩欧美中文在线| 日本黄色a视频| 欧美特级AAAAAA视频免费观看| 中文字幕丝袜一区二区| 国产日韩久久久久无码精品| 九九热视频在线免费观看| 成人久久精品一区二区三区| 亚洲色欲色欲www在线观看| 亚洲区第一页| 久久夜夜视频| 精品久久人人爽人人玩人人妻| 亚洲av日韩综合一区尤物| 51国产偷自视频区视频手机观看| 在线观看视频一区二区| 18禁不卡免费网站| 亚洲日本韩在线观看| 在线欧美国产| 91年精品国产福利线观看久久| 国产一级做美女做受视频| 老司机精品99在线播放| 免费jjzz在在线播放国产| 亚洲熟妇AV日韩熟妇在线| 91免费片| 久久久久久高潮白浆| 亚洲精品色AV无码看| 免费中文字幕在在线不卡| 亚洲一欧洲中文字幕在线| 99视频在线免费观看| 国产精品思思热在线| 天天摸夜夜操| 亚洲AV色香蕉一区二区| 国产乱人伦AV在线A| 一级黄色网站在线免费看| 国产午夜不卡| 亚洲精品国产综合99久久夜夜嗨| 欧美高清国产| 2020亚洲精品无码| 欧美精品黑人粗大| 中文字幕无码av专区久久| 免费看的一级毛片| 特级aaaaaaaaa毛片免费视频| 亚洲成网777777国产精品| 日本免费一级视频| 2024av在线无码中文最新| 免费一看一级毛片| 欧美成一级| 国产精品欧美日本韩免费一区二区三区不卡 | 在线无码av一区二区三区| 亚洲综合色区在线播放2019| 日韩欧美在线观看| 亚洲美女一级毛片| 香蕉视频在线精品| av午夜福利一片免费看| 成AV人片一区二区三区久久| 欧美成人综合视频| 欧美一区二区人人喊爽| 欧美在线一二区| 亚洲日本中文字幕天堂网| 精品国产免费人成在线观看| 无码免费的亚洲视频|