













摘要:【目的】為研究某新款皮卡汽車后橋殼的靜態(tài)特性及輕量化優(yōu)化問題,【方法】采用有限元平臺(tái)仿真與臺(tái)架試驗(yàn)結(jié)合的研究方法。首先,在Hypermesh軟件建立具有高計(jì)算精度的有限元模型;其次,使用ABAQUS仿真平臺(tái)分析了橋殼在滿載工況下的應(yīng)力及位移,確定了危險(xiǎn)截面位置;隨后,通過Optistruct優(yōu)化模塊對(duì)橋殼和鋼板板簧座等零部件進(jìn)行了尺寸優(yōu)化;最后,通過垂直彎曲靜剛強(qiáng)度臺(tái)架試驗(yàn)驗(yàn)證了輕量化優(yōu)化的可靠性?!窘Y(jié)果】有限元分析結(jié)果表明,橋殼的危險(xiǎn)截面位于鋼板板簧座與橋殼連接處,最大應(yīng)力和變形量分別為307.20 MPa和1.440 mm。Optistruct尺寸優(yōu)化后的橋殼重量由59.07 kg降低至52.55 kg,減重率11.04%。應(yīng)力上升至310.10 MPa,但仍小于橋殼材料45鋼的屈服強(qiáng)度355.00 MPa,變形量小于標(biāo)準(zhǔn)1.400 mm。臺(tái)架試驗(yàn)結(jié)果表明,橋殼通過垂直彎曲靜剛強(qiáng)度試驗(yàn),符合汽車驅(qū)動(dòng)橋臺(tái)架試驗(yàn)標(biāo)準(zhǔn)?!窘Y(jié)論】所建立的有限元模型具有較高的準(zhǔn)確性,仿真結(jié)果與臺(tái)架試驗(yàn)結(jié)果高度接近。經(jīng)Optistruct優(yōu)化后的橋殼具有良好的力學(xué)行為表現(xiàn),該模塊在橋殼輕量化優(yōu)化方面具有較高的可靠性。
關(guān)鍵詞:驅(qū)動(dòng)橋殼;有限元;尺寸優(yōu)化;汽車輕量化;臺(tái)架試驗(yàn)
中圖分類號(hào):U463 文獻(xiàn)標(biāo)志碼:A
本文引用格式:黃志超,王嘉璇,胡義華. 基于Optistruct的某皮卡汽車后橋殼輕量化優(yōu)化研究[J]. 華東交通大學(xué)學(xué)報(bào),2024,41(5):10-17.
Research on the Lightweight Optimization of the Rear Axle
Housing of a Pickup Truck Based on Optistruct
Huang Zhichao1, Wang Jiaxuan1, Hu Yihua2
(1. State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China; 2. Jiangxi Jiangling Chassis Co., Ltd., Fuzhou 344000, China)
Abstract: 【Objective】In order to investigate the static characteristics and lightweight optimization of the rear axle housing of a new pickup truck vehicle, 【Method】 a research method combining finite element platform simulation and bench testing was adopted. Firstly, a finite element model with high computational accuracy was established in Hypermesh software. Secondly, the stress and displacement of the axle shell under full load condition were analyzed using ABAQUS simulation platform, and the location of the dangerous cross-section was determined. Subsequently, the dimensional optimization of the axle shell and the steel plate spring seat and other components was carried out through Optistruct optimization module, and then the reliability of the lightweight optimization was verified through vertical bending static stiffness bench test. Finally, the reliability of lightweight optimization was verified by vertical bending static stiffness bench test. 【Result】Finite element analysis results show that the dangerous cross-section of the axle housing is located in the housing steel plate spring seat and housing connection with the maximum stress and deformation of 307.20 MPa and 1.440 mm. Size optimization of the axle housing weight decreases from 59.07 kg to 52.55 kg and the weight reduction rate is 11.04%. The stress rises to 310.10 MPa, but it is still less than the yield strength of 45 steel of the axle housing material, which is 355.00 MPa, and the deformation is less than the standard 1.400 mm. The results of the bench test show that the axle housing passes the vertical bending static stiffness test, and conforms to the standard of the automobile drive axle bench test. 【Conclusion】The established finite element model has high accuracy, and the simulation results are highly close to the results of the bench test. The axle housing optimized by Optistruct has good mechanical behavior performance, and the module has high reliability in axle housing lightweighting.
Key words: drive axle housing; finite element; dimensional optimization; automotive lightweighting; bench test
Citation format: HUANG Z C, WANG J X, HU Y H. Research on the lightweight optimization of the rear axle housing of a pickup truck based on Optistruct[J]. Journal of East China Jiaotong University, 2024, 41(5): 10-17.
【研究意義】驅(qū)動(dòng)橋輕量化是汽車工業(yè)中降低油耗、實(shí)現(xiàn)節(jié)能減排的主要措施之一,更是實(shí)現(xiàn)整車輕量化的重要途徑,對(duì)提高汽車的比功率以及經(jīng)濟(jì)性有重大意義。
【研究進(jìn)展】有限元軟件被廣泛應(yīng)用于汽車零部件的力學(xué)性能校核中[1-3]。針對(duì)驅(qū)動(dòng)橋殼的輕量化問題,國內(nèi)外學(xué)者采用相關(guān)有限元軟件展開研究[4-9]。馮葉陶等[10]以拖拉機(jī)前驅(qū)動(dòng)橋殼為對(duì)象進(jìn)行輕量化研究,在橋殼強(qiáng)度和剛度有較大余量的條件下以橋殼質(zhì)量、變形量最小為優(yōu)化目標(biāo)進(jìn)行輕量化設(shè)計(jì),優(yōu)化后橋殼質(zhì)量減輕7.7%。許文超等[11]為提高驅(qū)動(dòng)橋殼的輕量化水平和道路行駛疲勞可靠性,對(duì)驅(qū)動(dòng)橋殼進(jìn)行6-Sigma穩(wěn)健性多目標(biāo)輕量化設(shè)計(jì)。林榮會(huì)等[12]針對(duì)某重型自卸車驅(qū)動(dòng)橋橋殼輕量化研究過程中出現(xiàn)的橋殼可靠性不受控問題,提出了一種確定性優(yōu)化與穩(wěn)健性擇優(yōu)相結(jié)合的輕量化研究方法。肖鴻飛等[13]基于仿生學(xué)理論對(duì)某型自卸車驅(qū)動(dòng)橋殼后蓋進(jìn)行輕量化設(shè)計(jì),提高了多項(xiàng)橋殼設(shè)計(jì)參數(shù),在提高零件質(zhì)量的同時(shí)實(shí)現(xiàn)降重目標(biāo)。孫遠(yuǎn)敬等[14]通過Isight集成MATLAB建立了某礦用自卸車驅(qū)動(dòng)橋殼在最大側(cè)向力工況下的近似數(shù)學(xué)模型,并利用人工蜂群算法對(duì)橋殼代理模型的迭代求解,實(shí)現(xiàn)橋殼體積減小18.75%以及等效應(yīng)力下降7.23%的優(yōu)化目標(biāo)?,F(xiàn)有研究均采用MATLAB、ABAQUS以及ANSYS等優(yōu)化模塊。Optistruct作為功能強(qiáng)大的優(yōu)化軟件,其應(yīng)用范圍貫穿于工程技術(shù)設(shè)計(jì)的各個(gè)階段,當(dāng)前采用該模塊進(jìn)行驅(qū)動(dòng)橋殼輕量化工作的研究較少。
【創(chuàng)新特色】本文在ABAQUS軟件中分別確定了驅(qū)動(dòng)橋殼的最大應(yīng)力和最大位移以及危險(xiǎn)截面位置。基于Optistruct軟件對(duì)橋殼和鋼板板簧座等零部件進(jìn)行了尺寸優(yōu)化,隨后通過臺(tái)架試驗(yàn)驗(yàn)證了有限元分析結(jié)果。采用多個(gè)有限元軟件同臺(tái)架試驗(yàn)相結(jié)合的研究方法確保該橋殼在設(shè)計(jì)階段具有良好的力學(xué)行為表現(xiàn)?!娟P(guān)鍵問題】驅(qū)動(dòng)橋殼在滿載工況時(shí)符合垂直彎曲靜剛強(qiáng)度校核條件時(shí),通過Optistruct軟件完成輕量化優(yōu)化。
1 橋殼有限元模型
本文采用網(wǎng)格大小為2.0的直角三角形網(wǎng)格單元對(duì)殼單元進(jìn)行劃分,以確保網(wǎng)格的準(zhǔn)確性和計(jì)算效率。Hypermesh中,Qualityidex功能提供了對(duì)于網(wǎng)格質(zhì)量的檢查及優(yōu)化,建立了Ideal,Good,Warn,F(xiàn)ail,Worse共5個(gè)狀態(tài)下的評(píng)價(jià)指標(biāo),Ideal狀態(tài)下的檢查結(jié)果如圖1所示。
Hypermesh對(duì)網(wǎng)格的評(píng)價(jià)指標(biāo)是多樣性的,主要通過評(píng)估最小尺寸、最大尺寸、縱橫比、扭曲度和雅可比矩陣來檢查網(wǎng)格質(zhì)量。最小尺寸通常設(shè)置為2.0,最大尺寸設(shè)置為20.0??v橫比對(duì)三維網(wǎng)格更重要,由單元尺寸在不同方向上的均勻性控制,通常設(shè)置為5。雅可比系數(shù)表示六面體網(wǎng)格偏離正六面體的程度,通常設(shè)置為0.6以提高網(wǎng)格質(zhì)量。共劃分出313 861個(gè)節(jié)點(diǎn),1 354 892個(gè)網(wǎng)格單元。深藍(lán)色的網(wǎng)格為理想狀態(tài)下網(wǎng)格,淺藍(lán)色則為良好狀態(tài)下網(wǎng)格,無紅色網(wǎng)格,即無失效網(wǎng)格。具體標(biāo)準(zhǔn)及各指標(biāo)下的網(wǎng)格情況如表1所示。
如圖2所示,在板簧座中心處,減速器殼螺栓連接處采用RBE2剛性單元進(jìn)行連接模擬。
新建主減速器殼材料QT450,橋殼及鋼板板簧座材料45鋼并設(shè)置屬性。材料的力學(xué)性能和屬性如表2和表3所示。
后橋作為一個(gè)復(fù)雜的裝配體,由眾多零部件構(gòu)成,這些零部件在實(shí)際生產(chǎn)過程中需要通過多種連接方式,如焊接和螺栓連接等,以實(shí)現(xiàn)結(jié)構(gòu)的整體性和功能性。在進(jìn)行有限元計(jì)算時(shí),為了提高計(jì)算效率,通常使用1D單元來模擬這些連接。有限元計(jì)算模型如圖3所示。
2 橋殼靜力學(xué)有限元分析
滿載工況如圖4所示,在橋殼的左右兩側(cè)鋼板板簧座處,施加了大小為22 785.00 N且方向垂直于該平面的力,為了實(shí)現(xiàn)有效的約束和力的傳遞,在左右兩側(cè)建立了1D-COUP_KIN單元,并通過SPC進(jìn)行約束。左側(cè)的約束釋放了自由度2,4,即限制了沿X軸和Z軸方向的平動(dòng),以及沿Y軸和Z軸方向的轉(zhuǎn)動(dòng)。而右側(cè)的約束釋放了自由度4,即限制了沿X軸,Y軸和Z軸方向的平動(dòng),以及沿X軸方向的轉(zhuǎn)動(dòng)。
仿真結(jié)果如圖5所示,橋殼的最大Mises應(yīng)力出現(xiàn)在右側(cè)鋼板板簧座處,為307.20 MPa,這一數(shù)值小于45鋼的屈服強(qiáng)度355.00 MPa。最大變形量為2.262 mm,根據(jù)行業(yè)標(biāo)準(zhǔn)《商用車驅(qū)動(dòng)橋總成》(QC/T 533—2020)(下稱標(biāo)準(zhǔn)),在車橋滿載時(shí),將變形量換算為每米輪距的變形量為1.440 mm。這一數(shù)值高于標(biāo)準(zhǔn)規(guī)定的1.400 mm,因此驅(qū)動(dòng)橋殼垂直彎曲剛度有待進(jìn)一步優(yōu)化。
3 橋殼輕量化優(yōu)化設(shè)計(jì)
輕量化設(shè)計(jì)工作的主要方向有3個(gè),輕量化結(jié)構(gòu)優(yōu)化設(shè)計(jì),輕量化材料,以及采用先進(jìn)輕量化制造工藝,如自沖鉚接、激光焊接、一體式?jīng)_壓等[15]。采用Optistruct軟件中的尺寸優(yōu)化方法,對(duì)橋殼這一驅(qū)動(dòng)橋總成的主要支撐部件進(jìn)行輕量化設(shè)計(jì)優(yōu)化。尺寸優(yōu)化的特點(diǎn)是在保持網(wǎng)格模型不變的前提下,通過調(diào)整三維模型的參數(shù)值來優(yōu)化機(jī)械零部件的有限元模型相關(guān)尺寸參數(shù),如板狀件的厚度、梁的橫截面尺寸等。這一優(yōu)化策略旨在現(xiàn)有材料和制造條件下最大限度地提升驅(qū)動(dòng)橋的輕量化程度。
驅(qū)動(dòng)橋殼尺寸優(yōu)化的相關(guān)參數(shù)如下:
1) 目標(biāo)函數(shù)為
[V=minfx1,x2,x3] " " " "(1)
2) 約束條件為
[δ≤307.2 MPaY≤2.262 mm] " " " "(2)
3) 設(shè)計(jì)變量為
[5.5 mm≤x1≤9.0 mm6.0 mm≤x2≤8.0 mm3.5 mm≤x3≤4.0 mm] " " " "(3)
式中:V為驅(qū)動(dòng)橋殼體積;δ為鋼板板簧座和軸管間的應(yīng)力;Y為橋殼最大變形量;[x1]為鋼板板簧座厚度;[x2]為驅(qū)動(dòng)橋殼厚度;[x3]為殼蓋厚度。
橋殼作為汽車驅(qū)動(dòng)橋總成中最為關(guān)鍵的部件,其形狀復(fù)雜且承載著車身傳遞至驅(qū)動(dòng)橋的載荷,在對(duì)其進(jìn)行優(yōu)化時(shí)需全面考慮多種影響因素。假設(shè)材料結(jié)構(gòu)密度均勻,則驅(qū)動(dòng)橋殼的質(zhì)量與其體積成正比關(guān)系?;谶@一假設(shè),將體積最小化設(shè)定為本次優(yōu)化設(shè)計(jì)的目標(biāo)函數(shù)。同時(shí)設(shè)定收斂容差為0.5%,考慮到橋殼軸管及板簧座部分的質(zhì)量在整體中占據(jù)較大比重,因此在選擇設(shè)計(jì)變量時(shí),將鋼板板簧座的厚度、軸管的厚度以及殼蓋的厚度作為實(shí)現(xiàn)輕量化的設(shè)計(jì)變量。橋殼在滿載工況時(shí)的應(yīng)力和變形量分別為307.2 MPa和2.262 mm,以該組數(shù)據(jù)作為強(qiáng)度約束和剛度約束的基準(zhǔn)條件。
經(jīng)尺寸優(yōu)化計(jì)算得到的驅(qū)動(dòng)橋殼厚度云如圖6所示,鋼板板簧座的厚度從初始的9 mm減小至5.611 mm,橋殼的厚度也從8 mm減小至6.188 mm,而殼蓋的厚度則從4 mm減少至3.882 mm。
利用Hypermesh軟件中的Mass calc模塊對(duì)驅(qū)動(dòng)橋殼的質(zhì)量進(jìn)行了重新計(jì)算,結(jié)果顯示經(jīng)過優(yōu)化后橋殼的質(zhì)量從59.07 kg降低至52.55 kg,實(shí)現(xiàn)了6.52 kg的減重,減重率高達(dá)11.04%,且在整個(gè)優(yōu)化過程中,并未對(duì)驅(qū)動(dòng)橋殼原結(jié)構(gòu)進(jìn)行改變,這證明此次輕量化優(yōu)化設(shè)計(jì)達(dá)到設(shè)計(jì)目標(biāo)。
4 橋殼優(yōu)化后力學(xué)性能校核
為了確保驅(qū)動(dòng)橋殼優(yōu)化結(jié)果的可靠性,需進(jìn)一步通過有限元計(jì)算進(jìn)行強(qiáng)度和剛度驗(yàn)證。
模擬結(jié)果如圖7所示,尺寸優(yōu)化后的橋殼在滿載工況下,最高應(yīng)力集中在板簧座和橋殼的連接處橋殼一側(cè),最大應(yīng)力數(shù)值從原始的307.20 MPa上升至310.10 Mpa。但依然低于橋殼材料45鋼的屈服強(qiáng)度355.00 MPa。位移數(shù)據(jù)表明,優(yōu)化后的橋殼在滿載工況下最大變形量為2.111 mm。該汽車后軸輪距為1 570 mm,根據(jù)式(4)轉(zhuǎn)換為每米輪距最大變形量為1.345 mm。
[2.111÷1 570×1 000=1.345 mm] " " (4)
低于標(biāo)準(zhǔn)中規(guī)定的1.400 mm限制,因此優(yōu)化后的橋殼通過剛強(qiáng)度校核。
5 臺(tái)架試驗(yàn)
汽車在實(shí)際行駛過程中會(huì)經(jīng)過各種不確定的路況,司機(jī)的駕駛不確定性也會(huì)給汽車帶來不同的載荷,橋殼也會(huì)承受著相應(yīng)的斷裂風(fēng)險(xiǎn),橋殼在經(jīng)過有限元分析后還需通過臺(tái)架試驗(yàn)才能進(jìn)入整車路試環(huán)節(jié)。汽車行業(yè)驅(qū)動(dòng)橋試驗(yàn)嚴(yán)格遵循標(biāo)準(zhǔn)執(zhí)行。
試驗(yàn)平臺(tái)和試驗(yàn)樣品的物理布局如圖8所示。在同一批次的樣品橋中隨機(jī)且無差別地選擇了3個(gè)作為試驗(yàn)樣本,用于進(jìn)行橋殼的靜強(qiáng)度和靜剛度臺(tái)架試驗(yàn),以1,2,3分別編號(hào)。
選用屏顯液壓脈動(dòng)疲勞試驗(yàn)機(jī)作為橋殼臺(tái)架試驗(yàn)的主要設(shè)備,以板簧座中心作為施力點(diǎn),以橋殼的輪距處作為支點(diǎn)。靜態(tài)垂直彎曲剛度試驗(yàn)應(yīng)從零負(fù)載到最大負(fù)載依次進(jìn)行,數(shù)值從0加載到滿負(fù)荷軸向負(fù)荷的2.5倍。
在加載過程中,載荷從0逐漸增加到22 785 N,位移傳感器用于記錄測(cè)量點(diǎn)的數(shù)據(jù),而應(yīng)變傳感器用于記錄施加的載荷。
根據(jù)標(biāo)準(zhǔn)規(guī)定,橋殼靜強(qiáng)度試驗(yàn)標(biāo)準(zhǔn)以靜強(qiáng)度后備系數(shù)[Kn]評(píng)定,[Kn]應(yīng)滿足
[Kn=PnPgt;6] " " " " " " (5)
橋殼垂直彎曲剛強(qiáng)度實(shí)驗(yàn)結(jié)果如表4所示,樣品橋殼的每米輪距最大變形量均小于1.400 mm,且后備系數(shù)均大于6,則試驗(yàn)橋通過橋殼垂直彎曲剛強(qiáng)度臺(tái)架試驗(yàn)。
6 結(jié)論
本文對(duì)某新款皮卡汽車的驅(qū)動(dòng)橋殼采用多個(gè)有限元平臺(tái)仿真與臺(tái)架試驗(yàn)相結(jié)合的研究方法校核了其在滿載工況下的力學(xué)性能,采用Optistruct平臺(tái)對(duì)其進(jìn)行輕量化優(yōu)化,得出以下結(jié)論。
1) 基于Hypermesh所建立的有限元前處理模型具有較高的計(jì)算精度,該橋殼危險(xiǎn)截面位置位于鋼板板簧座下與橋殼連接處,優(yōu)化前最大應(yīng)力為307.20 MPa,小于45鋼的屈服強(qiáng)度355.00 MPa。最大變形量為2.262 mm,換算為每米輪距的變形量為1.440 mm,超過標(biāo)準(zhǔn)要求的不大于1.400 mm限定。
2) 經(jīng)Optistruct尺寸優(yōu)化后的橋殼質(zhì)量從59.07 kg降低至52.55 kg,實(shí)現(xiàn)了6.52 kg的減重,減重率達(dá)11.04%,效果顯著。
3) 優(yōu)化后橋殼通過有限元仿真校核,最大應(yīng)力為310.10 PMa,每米輪距的最大變形量為1.345 mm,滿足標(biāo)準(zhǔn)規(guī)定。且進(jìn)一步通過臺(tái)架試驗(yàn)驗(yàn)證,結(jié)果表示Optistruct優(yōu)化平臺(tái)在驅(qū)動(dòng)橋殼輕量化優(yōu)化方面具有較高的可靠性。
參考文獻(xiàn):
[1] " "龔志才, 何柳洋, 付會(huì)鵬, 等. 重型叉車前驅(qū)動(dòng)橋橋殼結(jié)構(gòu)強(qiáng)度研究[J]. 機(jī)電工程, 2021, 38(2): 204-209.
GONG Z C, HE L Y, FU H P, et al. Structural strength for front drive axle housing of heavy-duty forklift[J]. Journal of Mechanical amp; Electrical Engineering, 2021, 38 (2): 204-209.
[2] " "張?zhí)m生, 李楊, 徐超, 等. 基于ANSYS Workbench的驅(qū)動(dòng)橋殼動(dòng)力學(xué)特性仿真與分析[J]. 工具技術(shù), 2021, 55(11): 64-68.
ZHANG L S, LI Y, XU C, et al. Simulation and analysis of dynamic characteristics of drive axle housing based on ANSYS Workbench[J]. Tools Technology, 2021, 55 (11): 64-68.
[3] " "丁文敏. 汽車驅(qū)動(dòng)橋殼性能仿真分析及其改進(jìn)[J]. 機(jī)械設(shè)計(jì)與制造, 2019(9): 269-272.
DING W M. Performance simulation analysis and optimization of a truck drive axle[J]. Machinery Design amp; Manufacture, 2019(9): 269-272.
[4] " "鄭彬, 張俊杰, 李昭. 汽車驅(qū)動(dòng)橋殼靜動(dòng)態(tài)特性分析與多目標(biāo)優(yōu)化研究[J]. 機(jī)電工程, 2020, 37(7): 770-776.
ZHENG B, ZHANG J J, LI Z. Static and dynamic characteristic analysis and multi objective optimization for automobile driving axle housing[J]. Journal of Mechanical amp; Electrical Engineering, 2020, 37 (7): 770-776.
[5] " "PAN Z, YANG C, LIU Z, et al. Accelerated performance optimization of drive axle housings based on the pseudo-damage reservation method[J]. Sustainable Energy Technologies and Assessments, 2022, 53(Part B): 102612.
[6] " "ZHENG B, FU S, LEI J. Topology optimization and multiobjective optimization for drive axle housing of a rear axle drive truck[J]. Materials, 2022, 15(15): 5268.
[7] " "CHEN Y, LIU X, SHAN Y, et al. Lightweight design of drive axle housing based on reliability[J]. International Journal of Vehicle Performance, 2020, 6(3): 294.
[8] " "JIN D, WANG ZZ, WANG J H, et al. Lightweight design and optimization of three-speed electric drive axle[J]. IOP Conference Series: Earth and Environmental Science,2020, 546(5): 052005.
[9] " "王雪梅, 薛振國, 劉玲玲. 基于有限單元法重載車輛驅(qū)動(dòng)橋殼優(yōu)化設(shè)計(jì)[J]. 機(jī)械設(shè)計(jì)與制造, 2021(1): 240-244.
WANG X M, XUE Z G, LIU L L. Optimization design of drive axle housing in heavy-duty vehicle based on finite element method[J]. Machinery Design amp; Manufacture, 2021 (1): 240-244.
[10] "馮葉陶, 廖敏, 張小軍, 等. 丘陵山地拖拉機(jī)前驅(qū)動(dòng)橋殼組件輕量化設(shè)計(jì)與試驗(yàn)研究[J]. 中國農(nóng)機(jī)化學(xué)報(bào), 2021, 42(5): 107-113.
FENG Y T, LIAO M, ZHANG X J, et al. Lightweight design and experimental study on front drive axle housing assembly of tractors in hilly areas[J]. Journal of Chinese Agricultural Mechanization, 2021, 42 (5): 107-113.
[11] "許文超, 王登峰. 基于疲勞壽命的驅(qū)動(dòng)橋殼可靠性與輕量化設(shè)計(jì)[J]. 中國公路學(xué)報(bào), 2020, 33(5): 178-188.
XU W C, WANG D F. Reliability and lightweight design for drive axle housing based on fatigue life[J]. China Journal of Highway and Transport, 2020, 33 (5): 178-188.
[12] "林榮會(huì), 周鵬. 基于穩(wěn)健性擇優(yōu)的自卸車驅(qū)動(dòng)橋橋殼優(yōu)化[J]. 機(jī)械傳動(dòng), 2021, 45(6): 65-70.
LIN R H, ZHOU P. Optimization of driving axle housing of dump truck based on robustness selection[J]. Journal of Mechanical Transmission, 2021,45 (6): 65-70.
[13] "肖鴻飛, 范春利, 許可, 等. 基于仿生學(xué)理論的自卸車驅(qū)動(dòng)橋橋殼優(yōu)化設(shè)計(jì)[J]. 汽車實(shí)用技術(shù), 2019(23): 94-96.
XIAO H F, FAN C L, XU K, et al. Optimization design of dump truck drive axle housing based on bionics theory[J]. Automobile Applied Technology, 2019(23): 94-96.
[14] "孫遠(yuǎn)敬, 郭鷹, 李鑫, 等. 礦用自卸車驅(qū)動(dòng)車橋的橋殼結(jié)構(gòu)優(yōu)化[J]. 遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022, 41(4): 350-354.
SUN Y J, GUO Y, LI X, et al. Optimization of the bridge shell structure of the mining dump truck-driven axle[J]. Journal of Liaoning Technical University(Natural Science), 2022,41 (4): 350-354.
[15] "周澤杰, 黃志超, 李紹杰. AA5052/SPFC440異種金屬自沖鉚接數(shù)值模擬及試驗(yàn)研究[J]. 華東交通大學(xué)學(xué)報(bào),2022, 39(4): 84-93.
ZHOU Z J, HUANG Z C, LI S J. Numerical simulation and experimental study on self-piercing riveted AA5052/SPFC440 dissimilar metals[J]. Journal of East China Jiaotong University, 2022,39 (4): 84-93.
通信作者:黃志超(1971—),男,教授,博士,博士生導(dǎo)師,研究方向?yàn)榘辶线B接。1992年本科畢業(yè)于江西工業(yè)大學(xué),1995年碩士畢業(yè)于南昌大學(xué),2003年博士畢業(yè)于南昌大學(xué)。E-mail: hzcosu@163.com。