999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

新的廣義時滯系統(tǒng)容許性條件

2024-01-01 00:00:00孫欣王瀚萱
關鍵詞:利用系統(tǒng)

摘要:針對廣義時滯系統(tǒng),基于李雅普諾夫第二方法和廣義系統(tǒng)的受限等價變換,結(jié)合積分不等式技術,給出一個線性矩陣不等式(linear matrix inequality,LMI)形式的容許性條件。首先,利用廣義系統(tǒng)的受限等價變換得出廣義時滯系統(tǒng)是正則且無脈沖的;然后,通過選取增廣型LyapunovKrasovskii泛函(LK泛函)和多重積分型LK泛函,引入松弛型LK泛函構建新的LK泛函,利用Jensen積分不等式和Wirtinger積分不等式對LK泛函求導后產(chǎn)生的積分項進行處理,得出廣義時滯系統(tǒng)的穩(wěn)定性條件,進而得到廣義時滯系統(tǒng)的容許性條件;最后,利用MATLAB中的LMI工具箱,通過數(shù)值算例驗證所用方法的可行性和有效性。

關鍵詞:廣義時滯系統(tǒng); 容許性條件; LyapunovKrasovskii泛函; Jensen積分不等式; Wirtinger積分不等式

中圖分類號:O231文獻標志碼:A

doi:10.3969/j.issn.16735862.2024.02.011

CUI Song LYU Yan CHEN Lanfeng SUN Xin, WANG Hanxuan

(1. College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China)

(College of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)

Abstract:Based on Lyapunov′s second method and limited equivalent transformations of descriptor systems, combined with the integral inequality technique, an admissibility condition for descriptor delay systems is given in the form of linear matrix inequality (LMI). Firstly, it is concluded that the descriptor delay system is regular and impulse free by using limited equivalent transformations of descriptor systems. Secondly, a new LyapunovKrasovskii functional (LK functional) is constructed by selecting the augmented LK functional, multiple integral LK functional and introducting the relaxed LK functional, and then, the integral terms producted by derivation of LK functional are dealt with by Jensen integral inequality and Wirtinger integral inequality, respectively. Thus, a stability condition for the descriptor delay system is obtained, correspondingly, an admissibility condition for the descriptor delay system is obtained. Finally, a numerical example is provided to demonstrate feasibility and validity of the proposed method by virtue of LMI toolbox of MATLAB.

Key words:descriptor delay systems; admissibility condition; LyapunovKrasovskii functional; Jensen integral inequality; Wirtinger integral inequality

廣義系統(tǒng),又稱奇異系統(tǒng)、微分代數(shù)系統(tǒng)、廣義狀態(tài)空間系統(tǒng)等[1]。與正常系統(tǒng)相比,廣義系統(tǒng)的形式更加一般,可以更精準地描述一些物理現(xiàn)象,其在許多實際系統(tǒng)中,如電力系統(tǒng)、航空航天系統(tǒng)、社會經(jīng)濟系統(tǒng)中得到了廣泛應用。近年來,學者們對于廣義系統(tǒng)的研究主要集中在穩(wěn)定性分析方面[23]。時滯是工程實際中普遍存在的現(xiàn)象,信息或物質(zhì)的傳遞都會產(chǎn)生時滯,如流體的傳輸、電力的輸送等,但時滯的存在往往會降低系統(tǒng)的性能,甚至使系統(tǒng)變得不穩(wěn)定。因此,研究廣義時滯系統(tǒng)具有重要的理論意義和實用價值。目前,對廣義時滯系統(tǒng)的研究已經(jīng)非常深入,如指數(shù)穩(wěn)定性[4]、魯棒穩(wěn)定性[5]、H∞濾波[6]、滑模控制[7]等。

對廣義時滯系統(tǒng)的研究既要考慮廣義系統(tǒng)的正則性和無脈沖性,又要考慮時滯對系統(tǒng)穩(wěn)定性的影響,難度更大,更具有挑戰(zhàn)性。針對廣義時滯系統(tǒng)容許性問題,為了降低容許性條件的保守性,常采用以下2種方式:1)構造合適的LK泛函,充分利用系統(tǒng)本身的狀態(tài)信息和時滯信息;2)選取合適的積分不等式處理LK泛函求導后產(chǎn)生的積分項,將容許性條件寫成線性矩陣不等式(linear matrix inequality,LMI)形式,便于利用MATLAB求解。構造LK泛函時通常采用簡單型[8]、多重積分型[910]、增廣型[11]、松弛型[1214]等形式。常用的積分不等式主要有Jensen積分不等式、Wirtinger積分不等式、輔助函數(shù)積分不等式等。

1問題描述

2主要結(jié)果

3數(shù)值算例

4結(jié)語

本文通過引入增維的松弛型LK泛函、增廣型LK泛函和多重積分型LK泛函構造了一個新的LK泛函,結(jié)合積分不等式技術,得到了一個新的廣義時滯系統(tǒng)容許性條件。與同類文獻相比,結(jié)論具有較小的保守性,數(shù)值算例說明了結(jié)論的可行性和優(yōu)越性。以后可以考慮設計狀態(tài)反饋控制器或輸出反饋控制器對廣義時滯系統(tǒng)進行容許性控制。

參考文獻:

[1]DAI L Y.Singular control systems[M].New York:SpringerVerlag,1989.

[2]ECHCHARQY A,OUAHI M,TISSIR E H.Delaydependent robust stability criteria for singular timedelay systems by delaypartitioning approach[J].Int J Syst Sci,2018,49(14):29572967.

[3]LUU T H,NAM P T.Stability analysis of singular timedelay systems using the auxiliary functionbased double integral inequalities[J].Int J Syst Sci,2021,52(9):18681881.

[4]LONG S H,ZHONG S M,GUAN H B,et al.Exponential stability analysis for a class of neutral singular Markovian jump systems with timevarying delays[J].J Franklin I,2019,356(12):60156040.

[5]YANG X Y,LI X D,CAO J D.Robust finitetime stability of singular nonlinear systems with interval timevarying delay[J].J Franklin I,2018,355(3):12411258.

[6]ZHOU J,LV Y W,PANG B,et al.H∞ filtering for a class of singular timedelay systems[J].Int J Control Autom,2019,17(12):31313139.

[7]ZHANG Y,ZHANG Q L,ZHANG J Y,et al.Slidingmode control for fuzzy singular systems with timedelay based on vector integral sliding mode surface[J].IEEE T Fuzzy Syst,2020,28(4):768782.

[8]RICHARD J P.Timedelay systems:An overview of some recent advances and open problems[J].Automatica,2003,39(10):16671694.

[9]WANG J D,WANG Z S,DING S B,et al.Refined Jensenbased multiple integral inequality and its application to stability of timedelay systems[J].IEEECAA J Automatic,2018,5(3):758764.

[10]CHEN J,PARK J H,XU S Y.Stability analysis for neural networks with timevarying delay via improved techniques[J].IEEE T Cybernetics,2019,49(12):44954500.

[11]SEURET A,GOUAISBAUT F.Wirtingerbased integral inequality:Application to timedelay systems[J].Automatica,2013,49(9):28602866.

[12]XU S Y,LAM J,ZHANG B Y,et al.New insight into delaydependent stability of timedelay systems[J].Int J Robust Nonlin,2015,25(7):961970.

[13]XU S Y,LAM J,ZHANG B Y,et al.A new result on the delaydependent stability of discrete systems with timevarying delays[J].Int J Robust Nonlin,2014,24(16):25122521.

[14]LIU G B.New results on stability analysis of singular timedelay systems[J].Int J Syst Sci,2017,48(7):13951403.

[15]XU S Y,VAN DOOREN P,STEFAN R,et al.Robust stability and stabilization for singular systems with state delay and parameter uncertainty[J].IEEE T Automat Contr,2002,47(7):11221128.

[16]GU K Q.A further refinement of discretized Lyapunov functional method for the stability of timedelay systems[J].Int J Control,2001,74(10):967976.

[17]SUN J,LIU G P,CHEN J.Delaydependent stability and stabilization of neutral timedelay systems[J].Int J Robust Nonlin,2009,19(12):13641375.

[18]SUN X,ZHANG Q L.Delaydependent robust stabilization for a class of uncertain singular delay systems[J].Int J Innov Comput I,2009,5(5):12311242.

[19]ZHI Y L,HE S P,ZHANG Z M.Further improvement for admissibility analysis of singular timedelay systems[J].IEEE T Syst Man CyS,2022,52(8):48074812.

[20]XU S Y,LAM J,ZOU Y.An improved characterization of bounded realness for singular delay systems and its applications[J].Int J Robust Nonlin,2008,18(3):263277.

【責任編輯:溫學兵】

猜你喜歡
利用系統(tǒng)
Smartflower POP 一體式光伏系統(tǒng)
利用min{a,b}的積分表示解決一類絕對值不等式
利用倒推破難點
WJ-700無人機系統(tǒng)
ZC系列無人機遙感系統(tǒng)
北京測繪(2020年12期)2020-12-29 01:33:58
利用一半進行移多補少
基于PowerPC+FPGA顯示系統(tǒng)
半沸制皂系統(tǒng)(下)
利用數(shù)的分解來思考
Roommate is necessary when far away from home
主站蜘蛛池模板: 精品少妇三级亚洲| 波多野结衣视频网站| 2021精品国产自在现线看| 国产精品女人呻吟在线观看| 99热国产在线精品99| 精品伊人久久久久7777人| 亚洲人精品亚洲人成在线| 国产精品七七在线播放| 日韩人妻无码制服丝袜视频| 在线欧美日韩国产| 国产成人亚洲毛片| 欧美.成人.综合在线| 国产欧美日韩综合在线第一| 亚洲熟女中文字幕男人总站| 国产超碰一区二区三区| 国产精品密蕾丝视频| 呦视频在线一区二区三区| 亚洲视频免费在线| 国产一区二区色淫影院| 成人日韩欧美| 国产精品无码影视久久久久久久 | 最新午夜男女福利片视频| 精品国产免费观看| a色毛片免费视频| 亚洲国产中文精品va在线播放| 久久精品人人做人人爽97| 国产精品自在自线免费观看| 精品亚洲麻豆1区2区3区| 色偷偷男人的天堂亚洲av| 国产乱子伦手机在线| 思思99思思久久最新精品| 97视频免费在线观看| 18禁不卡免费网站| 国产99视频精品免费观看9e| 中文字幕 91| 欧美视频二区| 国产在线一区二区视频| 国产真实乱了在线播放| 玖玖精品视频在线观看| 91视频青青草| 亚洲av无码成人专区| 女人一级毛片| 国产美女一级毛片| 婷婷色在线视频| 色亚洲激情综合精品无码视频| 欧美激情第一欧美在线| 亚洲va精品中文字幕| 欧美精品高清| 日韩乱码免费一区二区三区| 成人va亚洲va欧美天堂| 国产美女91视频| 欧美有码在线| AV不卡国产在线观看| 女人天堂av免费| 国产精品视频3p| 国产激情影院| 亚洲日韩图片专区第1页| 日本黄色a视频| 谁有在线观看日韩亚洲最新视频| 久久青草免费91线频观看不卡| 中文字幕免费播放| 国产欧美性爱网| 午夜爽爽视频| 色哟哟国产成人精品| 国产经典三级在线| 国产福利观看| 日韩美一区二区| 精品国产美女福到在线不卡f| 3p叠罗汉国产精品久久| 丰满人妻一区二区三区视频| 亚洲无码熟妇人妻AV在线| 国产成人亚洲综合A∨在线播放 | 欧美a在线视频| 日韩色图区| 亚洲精品视频免费观看| 六月婷婷精品视频在线观看 | 欧美亚洲国产精品久久蜜芽| 亚洲国产综合精品一区| AV天堂资源福利在线观看| 亚洲91在线精品| 国模粉嫩小泬视频在线观看| 波多野结衣在线一区二区|