














摘" 要:針對極化SAR(Polarimetric SAR,PolSAR)影像在復雜地形區域中存在嚴重的地形效應問題,該文將極化方位角(Polarisation Orientation Angle,POA)、有效散射面積(Effective Scattering Area,ESA)及角度效應(Angular Variation Effect,AVE)校正方法應用到PolSAR影像的分類中,并針對AVE校正提出一種n值確定方法。首先,對預處理后的SAR數據進行POA校正,對校正結果進行地理編碼;其次,進行基于投影角的ESA校正;然后,基于訓練樣本確定AVE校正中的n值,進而實現AVE校正;最后,利用GF-3 PolSAR影像進行基于復Wishart分類器的分類實驗。研究結果表明,POA校正前后變化不明顯;ESA校正可實現約3 dB的校正效果,總體分類精度提升約9.42%;此外,選用受地形影響最大的林地n值進行AVE校正得到的結果最好,總體分類精度較ESA階段而言提升約8.2%。
關鍵詞:角度效應;監督分類;極化SAR;地形輻射校正;圖像分類
中圖分類號:TP755" " " 文獻標志碼:A" " " " " 文章編號:2095-2945(2023)28-0006-06
Abstract:In order to solve the problem of serious terrain effect in the classification of land cover types in complex terrain areas of polarimetric SAR(PolSAR) images, this paper analyzes the Polarisation Orientation Angle (POA), Effective Scattering Area (ESA) and Angular Variation Effect(AVE) correction and other terrain radiation correction methods are applied to the classification of PolSAR images, and an n-value determination method is proposed for AVE correction to improve the classification accuracy. Firstly, the preprocessed SAR data undergoes polarization orientation angle (POA) correction, followed by the geographical encoding of the corrected results. Secondly, a projection angle-based effective scattering area (ESA) correction is applied to account for terrain effects. Subsequently, the \"n\" value crucial for angular variation effect (AVE) correction is determined through analysis of training samples, enabling the subsequent implementation of AVE correction. Finally, classification experiments are conducted on PolSAR imagery using a complex Wishart classifier to validate the proposed approach. The results show that the change before and after POA correction are not obvious. ESA correction can achieve the correction effect of about 3 dB, resulting in an overall classification accuracy improvement of about 9.42%. In addition, the AVE correction results were best obtained by selecting the n-value of the forest land most affected by topography, and an increase of about 8.2% in the ESA stage of the overall classification accuracy.
Keywords:angle effect; supervise classification; polarimetric SAR; terrain radiation correction; image classification
較傳統合成孔徑雷達(Synthetic aperture radar,SAR)數據而言,極化SAR(Polarimetric SAR,PolSAR)數據因其能夠提供更為豐富的目標散射信息,而在地物分類及參數反演等方面得到廣泛應用。然而,由于SAR斜距成像的幾何方式易受地形起伏的影響,導致極化狀態、地物后向散射系數發生改變,以及因局部入射角變化而產生的角度效應,進而影響到PolSAR影像分類。在以上地形輻射效應中,極化狀態改變可通過極化方位角(Polarisation Orientation Angle,POA)校正予以補償[1];地物后向散射系數變化可采用有效散射面積(Effective Scattering Area, ESA)校正方法進行校正,常見的校正方法有局部入射角法[2]、表面傾角法[3]、投影角法[4]及面積積分法[5-6]等,眾多學者研究表明基于投影角的校正方法效果更優[7];而局部入射角變化產生的角度效應影響,可通過進一步的角度效應(Angular Variation Effect, AVE)校正來加以消除?!?br>