王果 劉耀婷 王家保 李煥苓



摘? ? 要:【目的】探究氨基酸對荔枝愈傷組織增殖及體胚誘導的影響。【方法】采用L9(34)正交設計,分別在妃子笑荔枝愈傷組織繼代及體胚誘導階段添加不同氨基酸,比較其對愈傷組織增殖及體胚誘導的影響。【結果】在愈傷組織增殖階段培養基中添加氨基酸均顯著提高愈傷組織增殖率,最優處理為基礎繼代培養基添加0.1 g·L-1 γ-氨基丁酸+0.2 g·L-1谷氨酰胺,愈傷組織增殖率為初始接種量的14.04倍。與對照相比,氨基酸處理組的胚性愈傷組織淡黃,顆粒較小,細胞呈橢圓形,細胞質濃厚,多為正在分裂狀態;非胚性愈傷組織淺白,水漬嚴重,著生于頂部或者邊緣,易于剔除。在愈傷組織增殖階段培養基中添加γ-氨基丁酸、谷氨酰胺和丙氨酸對后續的體胚發生及萌發影響極顯著(p<0.01),最優配方為基礎繼代培養基添加0.3 g·L-1 γ-氨基丁酸 + 0.4 g·L-1谷氨酰胺+0.05 g·L-1丙氨酸,每克愈傷組織可獲得461個體胚,77株組培苗。在體胚發生階段培養基中添加氨基酸,獲得的體胚發生及萌發最優配方為基礎誘導培養基添加0.3 g·L-1 γ-氨基丁酸+0.4 g·L-1谷氨酰胺+0.05 g·L-1丙氨酸,每克愈傷組織可獲得270個體胚,72株組培苗。【結論】氨基酸可調節愈傷組織胚性,提高愈傷組織增殖率,促進體胚發生及萌發。
關鍵詞:荔枝;愈傷組織;體胚發生;體胚萌發;氨基酸
中圖分類號:S667.1 文獻標志碼:A 文章編號:1009-9980(2023)11-2466-11
Study on the optimization of amino acids on proliferation of calli and somatic embryogenesis in Litchi chinensis ‘Feizixiao
WANG Guo1, LIU Yaoting1, 2, WANG Jiabao1*, LI Huanling 1
(1Environments and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences/Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, P.R. China, Danzhou 571737, Hainan, China; 2College of Tropical Crops, Hainan University, Haikou 570228, Hainan, China)
Abstract: 【Objective】 Clonal propagation is an essential tool in biotechnology and breeding programs. Among the available clonal propagation methods, somatic embryogenesis is the most attractive technique for the large-scale propagation of plants and the long-term conservation of different embryogenic cell lines without changing their initial characteristics. Additionally, somatic embryogenesis is an ideal system for cell biology and molecular studies, including the study of the cell cycle, cell division, cell differentiation, and for understanding different genetic and epigenetic mechanisms for gene expression and phenotypic variation in plants. However, for many species, in vitro clonal propagation is currently difficult or inefficient. The low efficiency of somatic embryo induction is among the major problems hampering efficient regeneration and limiting practical applications. Therefore, high-quality somatic embryo production is one of the most important factors for using somatic embryogenesis protocols in commercial propagation and breeding programs. Litchi (Litchi chinensis Sonn.) is one of the treasure fruits cultivated in the south of China. Breeding elite litchi varieties with resistance to diseases is very important to the litchi industry. Many studies on the somatic embryogenesis of litchi have been reported. However, there has been no detailed report on the the effect of amino acids on callus proliferation and somatic embryo induction in litchi. The study aimed to investigate the effects of amino acids on the efficiency of somatic embryogenesis in Feizixiao litchi and apply these findings to improve the protocol for the induction of somatic embryos.【Methods】 The calli Feizixiao litchi were used as materials, the effects of different amino acids on callus proliferation, somatic embryogenesis and regeneration were studied using an L9(34) orthogonal experiment.【Results】 The results showed that the effects of glutamine (Gln) and γ-aminobutyric acid (GABA) on the callus morphology and proliferation rate were significant (p<0.01), while the effect of alanine (Ala) was not significant. The effects of the three amino acids on the proliferation rate of callus were in the order of Gln>GABA>Ala. The method of the callus proliferation was established. The optimal medium for the callus proliferation was: MS + 1 mg·L-1 2,4-D + 0.1 g·L-1 GABA + 0.05 g·L-1 Ala. After 20 days of culture, the proliferation rate of callus was 14.04 times as many as that of the control. Compared with the control group, the boundary between embryogenic callus and non-embryogenic calli in the amino acid treatment was clear and easy to distinguish.The embryogenic calli were granular and light yellow, while the non-embryonic calli were pale, heavily water stained, and was located at the top or edge and was easy to pick out. The callus cells treated with amino acids were elliptical with a dense cytoplasm and were mostly dividing. The callus cells on the control medium were divided into clumps. The effects of the Gln, GABA, and Ala on somatic embryogenesis and germination were significant (p<0.01). The effects of the three amino acids on the induction of somatic embryos and germination were in the order of Gln>GABA>Ala. The optimal treatment regimen was YA5: MS + 1 mg·L-1 2,4-D + 0.3 g·L-1 GABA + 0.2 g·L-1 Gln. The optimized program used for somatic embryo induction produced 477 embryos per gram of calli, and most of the somatic embryos were deformed curved monocotyledon embryos, while the smaller somatic embryos were dicotyledonous or polycotyledon embryos. The second medium for inducting somatic embryos was YA6 (MS + 1 mg·L-1 2,4-D + 0.3 g·L-1 GABA + 0.4 g·L-1 Gln + 0.05 g·L-1 Ala) with the induction number of 461 embryos per gram of calli, and the forms of the somatic embryos on YA6 were different, including globular embryos, clumped embryos, dicotyledonous embryos, and polycotyledon embryos. The best medium for inducing somatic embryos was the YA6 treatment, through which 77 regenerations were obtained per gram of callus, followed by the YA11 (MS + 1 mg·L-1 2, 4-D + 0.3 g·L-1 GABA + 0.4 g·L-1 Gln + 0.1 g·L-1 Ala) and YA5 treatments with 62 and 60 regenerations per gram of calli, respectively. The somatic embryo greening and germination in the amino acid treatments occurred later than that in the control. The regeneration appeared in the form of multiplying bud spots, the stems was bright green, the stem tips were bright white and bright green, and the somatic bodies were mostly light green with some red color. In the control, the somatic embryos were larger and thicker, and the stems were about 1.5 cm in length. The effects of the Gln, GABA, and Ala on the somatic embryogenesis and germination were significant (p<0.01). The effects of the three amino acids on the induction of somatic embryos were in the order of GABA>Gln>Ala. The effects of the three amino acids on the regeneration were in the order of Gln>GABA>Ala. The optimal treatment regimen (YAE6) for the somatic embryogenesis and germination was as follows: MS + 1 mg·L-1 2,4-D + 0.3 g·L-1 GABA + 0.4 g·L-1 Gln + 0.05 g·L-1 Ala with 270 embryos and 72 regenerations per gram of calli.【Conclusion】 The optimal amino acid treatment regimen for the callus proliferation was the same as that for the embryo induction, but the number of somatic embryos and germinations during the course of the callus proliferation were higher than that during the course of the somatic embryogenesis stage, indicating that the mechanism of the promotion of the somatic embryogenesis by amino acids might be related to the regulation of the embryogenic callus.
Key words:Litchi (Litchi chinensis Sonn.); Callus; Somatic embryogenesis; Somatic embryo germination; Amino acid
收稿日期:2023-05-11 接受日期:2023-08-21
基金項目:國家重點研發計劃(2019YFD1000900);財政部和農業農村部:國家現代農業產業技術體系資助(CARS-32)
作者簡介:王果,女,助理研究員,碩士,主要從事果樹生物技術育種工作。E-mail:wanglucai@sina.com
*通信作者 Author for correspondence. E-mail:fdabo@163.com
荔枝(Litchi chinensis Sonn.)是原產于我國南方的大宗特色水果,營養豐富、味甜肉脆,素享“中華之珍品”美譽,深受消費者喜愛[1]。近年來,荔枝產業發展對優質新品種的需求不斷上升。在組織培養技術的基礎上,轉基因育種具有育種周期短、可實現性狀的快速定向改良等優點,已經成為荔枝新品種選育的主要途徑[2-3]。但荔枝組織培養中普遍存在基因型依賴,以及體胚誘導效率低、萌發成苗難等問題[4-5],嚴重阻礙荔枝生物技術的育種進程。因此,急需優化荔枝體胚發生體系,提高體胚發生及萌發效率。
大量研究表明,氨基酸可作為信號或能源物質,參與植物的各種生理生化反應,調節植物的生長發育[6]。黃雪松等[7]在荔枝核中檢出丙氨酸(alanine,Ala)的含量最高,崔珊珊[8]、彭穎等[9]等指出γ-氨基丁酸(γ-aminobutyric acid,GABA)和Ala是妃子笑等主栽荔枝品種果汁中的主要氨基酸。Pescador等[10]發現谷氨酰胺(glutamine,Gln)和天冬酰胺(asparagine,Asn)是雪蓮合子胚形成過程中的主要氨基酸,Gln、GABA和谷氨酸(glutamicacid,Glu)在雪蓮體胚發生時含量較高。孫小玲[11]從基因轉錄水平分析了44個與氨基酸代謝相關基因在小麥成熟胚脫分化過程中的差異表達,發現34個基因均上調表達,9個基因均下調表達,而1個基因以下調表達為主,表明氨基酸相關基因在細胞增殖、分化和組織結構功能重建階段發揮作用。Rahmouni等[12]發現3.42 mmol·L-1的Gln、Asn或Ala等9種氨基酸可促進橡木次生胚形成與增殖,但胱氨酸(cystine,Cys)等10種氨基酸抑制次生胚形成。Raharjo等[13]在添加0.4 g·L-1 Gln的培養基上誘導荔枝營養梢幼葉獲得胚性愈傷組織,Das等[5]在荔枝體胚萌發時添加0.45 g·L-1 Gln獲得組培苗。關于氨基酸對荔枝離體再生的研究鮮見報道,筆者在本研究中以妃子笑荔枝愈傷組織為材料,在培養基中添加不同濃度的氨基酸,從愈傷組織結構及其增殖率、體胚發生及萌發數量等方面進行觀察,探索氨基酸對荔枝愈傷組織增殖及體胚發生的影響,以期為揭示氨基酸在荔枝組織培養中的功能提供更多依據,也為建立荔枝高效體胚發生體系與生物技術育種研究開辟新的途徑。
1 材料和方法
1.1 材料
供試材料為妃子笑荔枝愈傷組織,于2015年3月采用花藥誘導獲得,在基礎繼代培養基M3(MS[14]+ 1 mg·L-1 2, 4-D)和繼代培養基M4上(MS + 1 mg·L-1 2, 4-D + 0.5 mg·L-1 KT + 5 mg·L-1 AgNO3)以30 d為1個周期交替繼代保存[15]。
1.2 方法
1.2.1? ? 在繼代培養基中添加氨基酸對愈傷組織增殖、體胚發生及體胚萌發的影響? ? 將胚性愈傷組織分別接種到添加不同氨基酸的繼代培養基上。愈傷組織繼代培養基采用3因素3水平正交試驗設計,以M3為基本培養基(對照組),添加GABA(0.1、0.3、0.5 g·L-1)、Gln(0、0.2、0.4 g·L-1)、Ala(0、0.05、0.10 g·L-1)各3個水平,共9組,編號依次為YA1~YA9。培養20 d后,將愈傷組織分別接種于基礎體胚誘導培養基T3(以MS為基本培養基,添加0.1 mg·L-1 NAA+5 mg·L-1 KT)上,培養7周后記錄體胚發生情況,計算每克愈傷組織誘導獲得的體胚數量。
上述獲得的體胚在以MS為基本培養基、添加1 mg·L-1 ABA+0.5 mg·L-1 IAA的成熟培養基(編號為C19)上成熟8周,置于萌發培養基(1/2 MS+1 mg·L-1 GA3,編號R7)上萌發,8周后統計每克愈傷組織的體胚萌發數量及并進行形態觀察等。
1.2.2? ? 在體胚誘導培養基中添加不同氨基酸對體胚發生和萌發的影響? ? 將在M3上繼代增殖20 d的愈傷組織接種到添加不同氨基酸的體胚誘導培養基上,體胚誘導培養基采用3因素3水平正交試驗設計,以T3為基本培養基(對照),添加GABA(0.1、0.3、0.5 g·L-1)、Gln(0、0.2、0.4 g·L-1)、Ala(0、0.05、0.10 g·L-1)各3個水平,共9組,編號依次為YAE1~YAE9。培養7周后記錄體胚發生數量及形態。
體胚成熟與萌發同1.2.1。
1.2.3? ? 愈傷組織增殖率及形態觀察? ? 上述培養了20 d后的愈傷組織,經清水法及甲醛-乙酸-乙醇(FAA)固定后采用蘇木精染色法觀察愈傷組織細胞形態,同時按下式計算增殖率[16]:
愈傷組織增殖率/倍=(20 d時愈傷組織量-愈傷組織初始接種量)/愈傷組織初始接種量。
1.2.4? ? 數據統計分析? ? 所有試驗均重復2批次。每批次每處理各15皿,以每5皿為1個重復。采用DPS軟件對數據進行單因素方差分析(One-way ANOVA)和Duncans多重比較。描述性統計值用2批6次重復的平均值表示。
2 結果與分析
2.1 在繼代培養基中添加氨基酸對愈傷組織增殖的影響
由表1可知,氨基酸處理組的愈傷組織增殖率都顯著高于對照。其中愈傷組織增殖率最高的是處理組YA1(MS + 1 mg·L-1 2, 4-D + 0.1 g·L-1 GABA),增殖量是初始接種量的13.10倍。
由圖1和圖2可知,添加氨基酸處理組的愈傷組織狀態與對照存在明顯差異。與對照相比,氨基酸處理組的胚性愈傷組織顆粒較細小,YA2的愈傷組織最細小,呈砂狀;YA8和YA9有原胚分化(圖1,綠框);胚性愈傷組織顏色淡黃,與非胚性愈傷組織界限明顯,較易辨別;非胚性愈傷組織淺白,水漬化嚴重,且著生于頂部或者邊緣,易于剔除(圖1,紅框)。氨基酸處理組的愈傷組織細胞呈橢圓形,細胞質濃厚,多為正在分裂狀態(圖2),而對照培養基的愈傷組織細胞已分裂成團。
2.2 在繼代培養基中添加氨基酸對體胚誘導及萌發的影響
在氨基酸處理組增殖的愈傷組織誘導的體胚發生效率及狀態存在明顯差異(表1,圖3),其中YA1、YA2、YA7和YA9的體胚發生數量顯著低于對照,而YA4、YA5、YA6和YA8的體胚發生數量顯著高于對照。體胚發生數量最高的是YA5(MS + 1 mg·L-1 2, 4-D + 0.3 g·L-1 GABA + 0.2 g·L-1 Gln),每克愈傷組織產生體胚數量高達477個。YA5上產生的較大體胚多為形態畸形的彎曲單子葉胚,較小的體胚為雙子葉胚(圖3,綠框)或多子葉胚(圖3,紅框)。處理組YA6(MS + 1 mg·L-1 2, 4-D + 0.3 g·L-1 GABA + 0.4 g·L-1 Gln + 0.05 g·L-1 Ala)上產生的體胚數量次之,每克愈傷組織產生461個體胚,體胚不同步,有球狀胚、團狀胚、雙子葉及多子葉胚。
將上述所得體胚經成熟后轉到萌發培養基上,發現氨基酸處理組的體胚呈現部分紅色(圖4-A,紅框),在光下轉綠及萌發的時間比對照晚約20 d,所得再生苗多為淺綠色。對照組上的體胚體積較大較厚,莖段長約1.5 cm。處理組YA1和YA7上的體胚全無萌發,僅長根。YA2、YA4和YA9上的體胚萌發數量較少,顯著低于對照;YA3、YA5、YA6和YA8上的體胚萌發數量顯著高于對照。體胚萌發數量最高的是YA6(MS + 1 mg·L-1 2, 4-D + 0.3 g·L-1 GABA + 0.4 g·L-1 Gln + 0.05 g·L-1 Ala),每克愈傷組織體胚萌發數量高達77株,萌發體胚多簇生0.2 cm莖段,主莖長平均為1.2 cm。
由愈傷組織增殖階段正交試驗結果的極差分析(表2)可知,GABA和Gln對愈傷組織的增殖作用影響較大,存在極顯著差異(p<0.01),而Ala的影響不顯著。水平優選愈傷組織增殖的組合為0.10 g·L-1 GABA + 0.20 g·L-1 Gln(編號YA10)。3種氨基酸對體胚發生及萌發作用存在極顯著差異(p<0.01),3個影響因素的主次關系是:GABA>Gln>Ala。水平優選體胚發生及萌發的組合為0.30 g·L–1 GABA + 0.40 g·L-1 Gln + 0.10 g·L-1Ala(編號為YA11)。
2.3 優選的增殖培養基對愈傷組織增殖、體胚誘導及萌發的影響
優選的組合YA10(愈傷組織增殖率水平優選)、YA11(體胚發生及萌發水平優選)與最佳處理組YA1(愈傷組織增殖率最高)、YA5(體胚發生數量最多)和YA6(體胚萌發數最多)的結果(表3,圖5)表明,氨基酸處理組的愈傷組織增殖率顯著高于對照。其中YA10上的愈傷組織增殖率最高,其次依次為YA11、YA1、YA5和YA6。YA5和YA6上的體胚發生數量較高,每克愈傷組織可分別產生462、456個體胚,與對照及其他氨基酸處理組差異顯著。YA6、YA11及YA5,體胚萌發數與對照差異顯著,其中YA6上的體胚萌發數最高,每克愈傷組織可獲得76株組培苗,其次依次是YA11、YA5,可分別獲得62、60株組培苗。
2.4 在體胚誘導培養基中添加氨基酸對體胚誘導和萌發的影響
在體胚誘導階段添加氨基酸,體胚發生效率存在明顯差異(表4,圖6),YAE6上的體胚發生數量高于對照;而其余處理組上產生的體胚數量都遠低于對照,YAE1、YAE2、YAE4、YAE8和YAE9上全無乳白體胚發生,僅有個別透明體胚產生,愈傷組織漸長全褐,尤其是YAE1上的愈傷組織全褐黑,褐變最嚴重。YAE3、YAE5及YAE7同時有乳白體胚及透明體胚產生,愈傷組織少量生長。YAE6上體胚多為單、雙及多子葉胚,體胚比對照大,大小在0.5~1.3 cm。
氨基酸處理組的體胚萌發效率與體胚誘導效率呈正比,YAE6每克愈傷組織可獲得72株組培苗,顯著高于對照及其他處理。組培苗多為簇生莖,主莖較高,平均1.5 cm,根系茂盛,主根長約2.5 cm。YAE3和YAE5體胚萌發數量均低于對照,差異顯著。YAE7上僅有一個體積較小的體胚出現芽點,無根生長,且體胚漸褐。
由表5分析可知,3種氨基酸對體胚發生及萌發的作用差異顯著(p<0.01),其中GABA和Gln的影響較大。水平優選體胚發生及萌發的組合為0.30 g·L-1 GABA + 0.40 g·L-1 Gln + 0.05 g·L-1 Ala,即處理組YAE6。
3 討 論
較多研究表明,在植物組織培養中添加氨基酸可改善愈傷組織狀態,促進體胚發生及萌發。Kong等[17]研究表明添加0.1 g·L-1 Gln、0.1 g·L-1 精氨酸(Arginine,Arg)和0.088 g·L-1 Asn的氨基酸混合物促進椰子愈傷組織形成,尤其是脯氨酸(proline,Pro)對脆性胚性愈傷組織的形成至關重要。Gleeson等[18]也指出Pro在脅迫條件下刺激了落葉松、云杉和橡樹等胚性培養物的生長。Carlsson等[19]證明Gln促進云杉原胚性細胞團的生長。這與本研究結果一致,氨基酸促進荔枝胚性愈傷組織增殖,且添加氨基酸處理組的胚性愈傷組織與非胚性愈傷組織狀態差異明顯,更易于區分。
氨基酸在植物離體再生中的作用因品種而異,品種不同、氨基酸種類及濃度不同都極大影響著植物的再生效率。Kumar等[20]發現Gln明顯促進了天竺葵體胚發生。Daniel等[21]發現絲氨酸(serine,Ser)、Pro或Gln都促進秋葵體胚成熟及萌發,氨基酸組合[0.3 g·L-1 Gln+0.4 g·L-1 酪蛋白水解物(casein hydrolysate,CH)]上成熟的體胚萌發數更高,獲得的植株葉片更大更綠。Ashok等[22]比較了不同濃度的5種氨基酸(Gln、甘氨酸、Arg、Asn和Cys)對2個黃瓜品種花藥體胚發生和植株再生的影響,發現氨基酸濃度過高或者太低都不能提高體胚產量,合適濃度的氨基酸混合液作用效果最佳。Pintos等[23]研究指出3種氨基酸(Gln、Arg和Asn)組合或單獨添加GABA都可促進橡樹體胚生長,體胚質量及大小都增加,但單獨添加這3種氨基酸對體胚的誘導與對照組相比沒有明顯差異。Maruyama等[24]研究了不同濃度氨基酸混合液對日本雪松體胚成熟的影響,發現2倍的氨基酸混合液(2 g·L-1 Glu,1 g·L-1 天冬氨酸,0.5 g·L-1 Arg,0.158 g·L-1 瓜氨酸,0.152 g·L-1 鳥氨酸,0.11 g·L-1 賴氨酸,0.08 g·L-1 Ala)作用效果最佳,明顯促進體胚成熟,成熟子葉胚效率提高27倍以上。Asthana等[25]比較了不同濃度Gln對三葉無患子愈傷組織的體胚發生效率和結節狀胚性結構的誘導率,發現0.2 g·L-1 Gln作用效果最好,但在培養基中添加0.5 g·L-1 Gln或CH反而顯著抑制了櫟結節狀胚性結構誘導率及次生胚發生效率的提高[26]。本研究中,筆者根據荔枝種子及果肉中氨基酸含量,首次分別在愈傷組織增殖及體胚發生過程中添加含3種主要氨基酸的不同混合液(0.30 g·L-1 GABA、0.4 g·L-1 Gln及0.05 g·L-1 Ala),發現2個階段不同氨基酸組合均顯著促進荔枝體胚發生及萌發。這些結果的不一致可能是植物種類、氨基酸種類及濃度、培養系統不同所導致的。
4 結 論
外源氨基酸促進荔枝愈傷組織增殖及體胚發生,GABA和Gln在愈傷組織增殖及胚性保持中起重要作用。在愈傷組織增殖或體胚誘導階段添加0.30 g·L-1 GABA + 0.40 g·L-1 Gln + 0.05 g·L-1 Ala,2個階段每克愈傷組織獲得的體胚及組培苗數量分別為461個、77株,270個、72株。在愈傷組織增殖過程中添加氨基酸的體胚發生效果優于在體胚誘導階段添加,說明氨基酸促進體胚發生的機制可能與胚性愈傷組織的調控關系更大。
參考文獻 References:
[1] HU G B,FENG J T,XIANG X,WANG J B,SALOJ?RVI J,LIU C M,WU Z X,ZHANG J S,LIANG X M,JIANG Z D,LIU W,OU L X,LI J W,FAN G Y,MAI Y X,CHEN C J,ZHANG X T,ZHENG J K,ZHANG Y Q,PENG H X,YAO L X,WAI C M,LUO X P,FU J X,TANG H B,LAN T Y,LAI B,SUN J H,WEI Y Z,LI H L,CHEN J Z,HUANG X M,YAN Q,LIU X,MCHALE L K,ROLLING W,GUYOT R,SANKOFF D,ZHENG C F,ALBERT V A,MING R,CHEN H B,XIA R,LI J G. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars[J]. Nature Genetics,2022,54(1):73-83.
[2] DAS D K,RAHMAN A. Expression of a bacterial chitinase (ChiB) gene enhances antifungal potential in transgenic Litchi chinensis Sonn. (cv. Bedana)[J]. Current Trends in Biotechnology and Pharmacy,2010,4(3):820-833.
[3] WANG S J,WANG G,LI H L,LI F,WANG J B. Agrobacterium tumefaciens-mediated transformation of embryogenic callus and CRISPR/Cas9-mediated genome editing in ‘Feizixiao litchi[J]. Horticultural Plant Journal,2023,9(5):947-957.
[4] WANG G,LI H L,WANG S J,SUN J H,ZHANG X C,WANG J B. In vitro regeneration of Feizixiao litchi (Litchi chinensis Sonn.)[J]. African Journal of Biotechnology,2016,15(22):1026-1034.
[5] DAS D K,RAHMAN A,KUMARI D,KUMARI N. Synthetic seed preparation,germination and plantlet regeneration of Litchi (Litchi chinensis Sonn.)[J]. American Journal of Plant Sciences,2016,7(10):1395-1406.
[6] GALILI G,AVIN-WITTENBERG T,ANGELOVICI R,FERNIE A R. The role of photosynthesis and amino acid metabolism in the energy status during seed development[J]. Frontiers in Plant Science,2014,5:447.
[7] 黃雪松,陳杰. 測定荔枝核中的游離氨基酸[J]. 氨基酸和生物資源,2007,29(2):11-14.
HUANG Xuesong,CHEN Jie. Determination of free amino acids in Litchi stone[J]. Amino Acids & Biotic Resources,2007,29(2):11-14.
[8] 崔珊珊,胡卓炎,余愷,李雅萍,林文祥,余小林. 不同產地妃子笑荔枝果汁的氨基酸組分[J]. 食品科學,2011,32(12):269-273.
CUI Shanshan,HU Zhuoyan,YU Kai,LI Yaping,LIN Wenxiang,YU Xiaolin. Amino acid composition of Feizixiao Litchi juice from different geographic origins[J]. Food Science,2011,32(12):269-273.
[9] 彭穎,周如金. 不同品種荔枝果汁氨基酸和糖類的測定與分析[J]. 中國食品添加劑,2017(4):173-177.
PENG Ying,ZHOU Rujin. Determination and analysis of amino acids and sugars in different types of Litchi juice[J]. China Food Additives,2017(4):173-177.
[10] PESCADOR R,KERBAUY G B,ENDRES L,DE FREITAS FRAGA H P,GUERRA M P. Synthesis and accumulation of free amino acids during somatic and zygotic embryogenesis of Acca sellowiana (O. Berg.) Burret[J]. African Journal of Biotechnology,2013,12:3455-3465.
[11] 孫小玲. 氨基酸代謝相關基因在小麥成熟胚脫分化過程中的表達研究[D]. 鄭州:河南農業大學,2009.
SUN Xiaoling. Expression analysis of genes related to the metabolism of amino acids during dedifferentiating mature wheat embryos[D]. Zhengzhou:Henan Agricultural University,2009.
[12] RAHMOUNI S,EL ANSARI Z N,BADOC A,MARTIN P,EL KBIACH M L,LAMARTI A. Effect of amino acids on secondary somatic embryogenesis of Moroccan cork oak (Quercus suber L.) tree[J]. American Journal of Plant Sciences,2020,11(5):626-641.
[13] RAHARJO S H T,LITZ R E. Somatic embryogenesis and plant regeneration of Litchi (Litchi chinensis Sonn.) from leaves of mature phase trees[J]. Plant Cell,Tissue and Organ Culture,2007,89(2):113-119.
[14] MURASHIGE T,SKOOG F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum,1962,15(3):473-497.
[15] 賴鐘雄. 龍眼生物技術研究[M]. 福州:福建科學技術出版社,2003:67-70.
LAI Zhongxiong. Research of the longan biotechnology[M]. Fuzhou:Fujian Science & Technology Publishing House,2003:67-70.
[16] 王果,劉耀婷,李煥苓,李芳,王樹軍,王家保. 外源多胺對荔枝愈傷組織增殖及體胚發生的作用[J]. 果樹學報,2021,38(12):2135-2147.
WANG Guo,LIU Yaoting,LI Huanling,LI Fang,WANG Shujun,WANG Jiabao. Effects of exogenous polyamine application on callus proliferation and somatic embryogenesis in Litchi chinensis ‘Feizixiao[J]. Journal of Fruit Science,2021,38(12):2135-2147.
[17] KONG E Y Y,BIDDLE J,KALAIPANDIAN S,ADKINS S W. Coconut callus initiation for cell suspension culture[J]. Plants,2023,12(4):968.
[18] GLEESON D,LELU-WALTER M A,PARKINSON M. Influence of exogenous L-proline on embryogenic cultures of larch (Larix leptoeuropaea Dengler),sitka spruce [Picea sitchensis (Bong.) Carr.] and oak (Quercus robur L.) subjected to cold and salt stress[J]. Annals of Forest Science,2004,61(2):125-128.
[19] CARLSSON J,SVENNERSTAM H,MORITZ T,EGERTSDOTTER U,GANETEG U. Correction:Nitrogen uptake and assimilation in proliferating embryogenic cultures of Norway spruce-investigating the specific role of glutamine[J]. PLoS One,2018,13(1):e0191208.
[20] KUMAR V,MOYO M,VAN STADEN J. Somatic embryogenesis of Pelargonium sidoides DC.[J]. Plant Cell,Tissue and Organ Culture,2015,121(3):571-577.
[21] DANIEL M A,DAVID R H A,CAESAR S A,RAMAKRISHNAN M,DURAIPANDIYAN V,IGNACIMUTHU S,AL-DHABI N A. Effect of l-glutamine and casein hydrolysate in the development of somatic embryos from cotyledonary leaf explants in okra (Abelmoschus esculentus L. Monech)[J]. South African Journal of Botany,2018,114:223-231.
[22] ASHOK K H G,MURTHY H N. Effect of sugars and amino acids on androgenesis of Cucumis sativus[J]. Plant Cell,Tissue and Organ Culture,2004,78(3):201-208.
[23] PINTOS B,MANZANERA J A,BUENO M A. Oak somatic and gametic embryos maturation is affected by charcoal and specific aminoacids mixture[J]. Annals of Forest Science,2010,67(2):205.
[24] MARUYAMA T E,UENO S,MORI H,KANEEDA T,MORIGUCHI Y. Factors influencing somatic embryo maturation in Sugi [Japanese Cedar,Cryptomeria japonica (Thunb. ex L. f.) D. Don][J]. Plants,2021,10(5):874.
[25] ASTHANA P,RAI M K,JAISWAL U. Somatic embryogenesis from sepal explants in Sapindus trifoliatus,a plant valuable in Herbal soap industry[J]. Industrial Crops and Products,2017,100:228-235.
[26] MART?NEZ M T,SAN JOS? M C,VIEITEZ A M,CERNADAS M J,BALLESTER A,CORREDOIRA E. Propagation of mature Quercus ilex L. (Holm Oak) trees by somatic embryogenesis[J]. Plant cell,Tissue and Organ Culture,2017,131:321-333.