999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

中間層Ni對TC4/2A14異種金屬攪拌摩擦焊接頭組織和性能的影響

2023-11-21 03:09:10張鑫吳鴻燕陳玉華陳保國
精密成形工程 2023年11期
關(guān)鍵詞:力學(xué)性能焊縫

張鑫,吳鴻燕,陳玉華,陳保國

中間層Ni對TC4/2A14異種金屬攪拌摩擦焊接頭組織和性能的影響

張鑫1,2,吳鴻燕3,陳玉華2*,陳保國1

(1.常州工程職業(yè)技術(shù)學(xué)院 智能制造學(xué)院,江蘇 常州 213164;2.南昌航空大學(xué)航空制造學(xué)院,南昌 330063;3.九江職業(yè)技術(shù)學(xué)院 船舶工程學(xué)院,江西 九江 332007)

添加0.05 mm厚的Ni箔作為中間層,對3 mm厚的TC4鈦合金和2A14鋁合金進(jìn)行攪拌摩擦焊,分析Ni對接頭力學(xué)性能的影響。采用掃描電鏡、EDS能譜及XRD衍射等微觀表征分析方法,對焊接接頭的斷口形貌、成分進(jìn)行分析,探究Ni箔對焊接接頭力學(xué)性能的影響。由于鈦合金和鋁合金存在較大的物理化學(xué)性能差異,Ti/Al異種金屬焊接性較差,界面容易產(chǎn)生TiAl3、TiAl、Ti3Al等金屬間化合物,其中脆性相TiAl3對接頭性能的影響最大,會(huì)導(dǎo)致綜合力學(xué)性能下降。當(dāng)加入中間層材料Ni后,由于Ni與Al晶體結(jié)構(gòu)均屬于面心立方,因此Ni與Al的擴(kuò)散系數(shù)大于Ti與Al的擴(kuò)散系數(shù),Ni和Al之間優(yōu)先形成金屬間化合物且彌散分布于焊縫中,從而縮短了Ti與Al之間的相互擴(kuò)散時(shí)間,減少了TiAl3相的生成。在未添加中間層材料時(shí),接頭平均抗拉強(qiáng)度為237.3 MPa,約為2A14鋁合金母材抗拉強(qiáng)度的56.7%;當(dāng)添加中間層Ni后,對焊縫中金屬間化合物的種類和數(shù)量進(jìn)行了調(diào)控,減少了對性能影響最大的TiAl3相的生成,接頭平均抗拉強(qiáng)度達(dá)到285.3 MPa,為2A14鋁合金母材抗拉強(qiáng)度的68%。

Ti/Al接頭;攪拌摩擦焊;中間層材料;金屬間化合物;力學(xué)性能

鈦鋁異種金屬的連接可以充分發(fā)揮2種金屬的優(yōu)勢,得到的異質(zhì)構(gòu)建不僅具有很好的耐蝕性、耐磨性以及較高的比強(qiáng)度,還能減輕結(jié)構(gòu)重量[1-3],在新能源汽車制造、海洋工程等領(lǐng)域具有廣泛的應(yīng)用[4-5]。由于鈦合金和鋁合金的物理化學(xué)性能存在較大的差異,焊縫中極易形成脆性金屬間化合物而降低接頭力學(xué)性能[6-8]。吳新勇等[9]研究了TC4鈦合金與AA6060鋁合金的激光搭接焊,研究表明,焊縫產(chǎn)生了裂紋,分析認(rèn)為是因?yàn)楹缚p中形成了大量TiAl、TiAl3等金屬間化合物,導(dǎo)致接頭的脆性提高。Jiang等[10]對TC4鈦合金與5083鋁合金進(jìn)行了激光對接焊,結(jié)果發(fā)現(xiàn),在焊后的Ti/Al接頭中同樣出現(xiàn)了裂紋。李永梅等[11]研究表明,焊接過程中的熱輸入會(huì)直接影響焊縫中金屬間化合物的種類和數(shù)量,但是控制熱輸入對工藝的要求較高,這為企業(yè)的實(shí)際生產(chǎn)帶來了不便。為了減少焊接過程中的熱輸入,越來越多的學(xué)者采用電阻點(diǎn)焊、超聲波焊、攪拌摩擦焊等固相焊方法對鈦/鋁連接進(jìn)行研究。高原等[12]對0.2 mm厚的TC4和2A12薄板進(jìn)行了微電阻點(diǎn)焊研究,發(fā)現(xiàn)接頭斷裂形式仍以脆性斷裂為主。朱政強(qiáng)等[13]對0.3 mm厚的6061鋁合金和TC4鈦合金進(jìn)行了超聲波焊接,研究表明,當(dāng)焊接時(shí)間為170 ms、焊接壓力為0.4 MPa時(shí),得到了最大抗裂強(qiáng)度113 N,通過顯微分析發(fā)現(xiàn),焊縫區(qū)域硬度明顯提高,鋁合金和鈦合金區(qū)域元素?cái)U(kuò)散層厚度約為0.4 μm。戈軍委[14]對3 mm的TC4和2A14鋁合金攪拌摩擦焊進(jìn)行了研究,經(jīng)SEM、XRD、TEM分析發(fā)現(xiàn),TiAl3脆性相以Ti/TiAl3/Al相間分布的形式分布在鈦顆?;w或者鈦顆粒與鋁基的交界處,嚴(yán)重影響了接頭的力學(xué)性能。為了控制Ti/Al接頭中的金屬間化合物,越來越多的研究者通過添加過渡材料的方式對金屬間化合物進(jìn)行調(diào)控。陶詩偉[15]、陳紀(jì)宇[16]、倪加明等[17]、張鑫等[18]均通過添加過渡材料的方式得到了性能較高的Ti/Al接頭。本文選擇與Al具有相同晶體結(jié)構(gòu)且具有良好焊接性及綜合性能的Ni作為填充層材料,探討了Ni對金屬間化合物的影響,以期為提高Ti/Al異種金屬接頭性能提供一定的借鑒意義。

1 試驗(yàn)

以200 mm×80 mm×3 mm的2A14鋁合金(T4態(tài))和TC4鈦合金為材料,將0.05 mm箔狀中間層夾置于兩板中間,如圖1所示,將鋁合金置于返回邊[19]。攪拌頭軸肩為18 mm,電火花加工深度為0.55 mm,攪拌針直徑為6 mm,針長為2.6 mm,采用左螺紋。采用Kroll試劑(1 mL HF+1.5 mL HCL+2.5 mL HNO3+ 24 mL H2O)對接頭進(jìn)行腐蝕,并使用裝配有EDS的Quanta 200環(huán)境掃描電子顯微鏡和D8X射線衍射儀對接頭的不同區(qū)域進(jìn)行元素分析和成分分析。

圖1 焊接裝配圖

2 結(jié)果與討論

2.1 試驗(yàn)結(jié)果

不添加任何中間層材料的情況下,對TC4鈦合金和2A14鋁合金進(jìn)行攪拌摩擦焊,當(dāng)轉(zhuǎn)速為375 r/min、焊速為75 mm/min、下壓量為0.2 mm、焊接角度為2°時(shí),接頭的抗拉強(qiáng)度最高,為237.3 MPa,約為2A14鋁合金母材抗拉強(qiáng)度的56.7%。斷口形貌及采樣區(qū)內(nèi)能譜分析結(jié)果如圖2所示。由圖2a可知,斷面光滑平整,未產(chǎn)生韌窩形貌,在Ti-Al金屬間化合物作用下發(fā)生了脆性斷裂。

接頭橫截面宏觀形貌如圖3所示??梢钥闯?,在攪拌針的作用下界面呈弧形不規(guī)則狀,且在“抽吸-擠壓”作用下,鈦顆粒隨攪拌針的旋轉(zhuǎn)以“洋蔥環(huán)”狀分布于焊縫中形成了焊核。由于攪拌摩擦焊屬于固相連接,焊接過程中的溫度較低,熔點(diǎn)較高的中間層Ni未熔化,而是以顆粒狀形態(tài)呈環(huán)狀分布于焊縫中,因此,底部存在未受攪拌針影響而發(fā)生破碎的Ni。

圖2 斷口形貌及采樣區(qū)內(nèi)能譜分析

圖3 接頭橫截面宏觀形貌及各區(qū)域放大圖

斷口的SEM圖如圖4所示。將斷口分為2個(gè)區(qū)域以便于分析:接頭下部區(qū)域E和上部區(qū)域F。由圖4a可知,斷口下部區(qū)域E呈“峽谷”狀,上部區(qū)域F相對平整。由圖4b可以看出,區(qū)域E左側(cè)出現(xiàn)了一條“亮帶”,且“亮帶”與左側(cè)結(jié)合界面處出現(xiàn)了孔洞缺陷,但與右側(cè)金屬結(jié)合致密,此區(qū)域的斷裂表面光滑,屬于脆性斷裂。由圖4b可以看出,斷口部分區(qū)域有明顯的撕裂棱和韌窩,為韌性斷裂。綜上,當(dāng)添加中間層材料Ni后,接頭斷裂方式為韌性+脆性混合斷裂,兼具了一定的韌性和強(qiáng)度,綜合力學(xué)性能較好。

對斷口不同區(qū)域進(jìn)行EDS分析,結(jié)果如圖5所示。由圖5a的能譜分析數(shù)據(jù)可知,“亮帶”含有少量Ti,但主要元素為Ni,說明“亮帶”應(yīng)為夾置于鈦合金和鋁合金中間的Ni,由前文接頭橫截面宏觀形貌分析可知,焊縫底部存在部分未受攪拌針影響而留存于鈦合金和鋁合金中間的Ni,且此部分Ni與鋁合金側(cè)結(jié)合致密,而與鈦合金側(cè)存在缺陷,因此,在進(jìn)行拉伸試驗(yàn)時(shí),Ni與鈦合金側(cè)斷裂,在斷口呈現(xiàn)“亮帶”狀。如圖5b所示,經(jīng)放大后的韌窩淺而小,且韌窩中存在大小不一的顆粒物,由圖5e的能譜結(jié)果可知,韌窩中的顆粒物由Al、Cu、Si、Ti等元素組成,由元素峰值強(qiáng)度可推斷出顆粒物中的Ti元素含量較少,應(yīng)不屬于Ti-Al化合物,母材2A14鋁合金為Al-Cu系鋁合金,主要化學(xué)元素為Al、Cu、Si,故顆粒物應(yīng)是Ti與2A14鋁合金在焊接過程中因受熱量影響而析出的強(qiáng)化相混合物,采樣點(diǎn)2的測試結(jié)果說明非顆粒物為母材鋁。由圖5c可以看出,Ni與Al界面產(chǎn)生了Ti-Al化合物,初步分析應(yīng)為Ti3Al相。Ni帶右側(cè)本應(yīng)為母材鋁,但線掃結(jié)果顯示,Al元素和Ti元素都很少,而Ni元素強(qiáng)度穩(wěn)定,且延伸至母材鋁內(nèi)。這說明加入的中間層材料Ni箔片確實(shí)阻礙了鈦/鋁界面金屬間化合物的產(chǎn)生。由圖5f可知,圖5d中顆粒狀物質(zhì)Ti、Al的原子比約為1︰1,應(yīng)屬于TiAl相,而V為TC4鈦合金的主要合金元素,Cu、Si為2A14鋁合金的主要合金元素,因此,顆粒物應(yīng)為TiAl相與TC4鈦合金的混合物。

圖4 斷口掃描電鏡圖

圖5 斷口形貌及能譜分析

添加中間層Ni后接頭的XRD圖譜如圖6所示??芍?,加入中間層材料Ni后,Ni對金屬間化合物的形成起到了一定的調(diào)節(jié)作用,產(chǎn)生了較多塑性優(yōu)于Ti3Al的TiAl相,在一定程度上提高了接頭的力學(xué)性能。

圖6 添加中間層Ni后接頭XRD圖譜

2.2 調(diào)控機(jī)制分析

Ti-Al二元系統(tǒng)反應(yīng)Gibbs自由能曲線如圖7所示[20-21]??芍?00 K以下時(shí),各相按自由能由高到低的順序依次為:Ti3Al相、TiAl相、TiAl3相、Ti2Al5相、TiAl2相。自由能越高,說明此種化合物越不穩(wěn)定,越容易生成其他相,反之則越穩(wěn)定且越容易獲得。由Ti-Al二元相圖可知,TiAl2和Ti2Al5相為中間產(chǎn)物TiAl相經(jīng)固相反應(yīng)后而獲得的,因此,在Ti和Al原子互擴(kuò)散時(shí),初生相應(yīng)為TiAl3相,這一結(jié)果被Xu等[22]使用的MEHF理論模型所驗(yàn)證,他們計(jì)算出的金屬間化合物形成順序?yàn)門iAl3→TiAl→Ti3Al。

為分析Ni對鈦/鋁接頭金屬間化合物的調(diào)控機(jī)理,假設(shè)焊接過程中被焊工件在厚度方向還未發(fā)生金屬流動(dòng),對攪拌針前沿的一瞬態(tài)進(jìn)行研究。攪拌針前沿瞬態(tài)模型圖如圖8所示。在焊接熱輸入的作用下,可將攪拌針前沿Ti和Al的連接視為擴(kuò)散焊。

圖7 不同Ti-Al金屬間化合物的自由能與溫度關(guān)系曲線

圖8 攪拌針前沿瞬態(tài)模型圖

Askew等[23]研究表明,當(dāng)不同原子之間發(fā)生互擴(kuò)散時(shí),影響擴(kuò)散過程的重要影響因素之一為晶體結(jié)構(gòu),結(jié)構(gòu)越相似則原子互擴(kuò)散越容易。TC4鈦合金為密排六方+體心立方結(jié)構(gòu),而Ni與Al晶體結(jié)構(gòu)均屬于面心立方,說明Ni與Al之間更容易發(fā)生原子互擴(kuò)散,并形成如下的冶金反應(yīng):3Al+Ni→Al3Ni,又由于Al3Ni相不穩(wěn)定,因此發(fā)生Al3Ni+Ni→Al3Ni2反應(yīng)后,形成了穩(wěn)定的Al3Ni2相,且Al3Ni2相被攪拌后彌散分布于焊縫中,增強(qiáng)了接頭強(qiáng)度。在Al和Ni發(fā)生原子互擴(kuò)散的過程中,需要一定的激活能,而當(dāng)攪拌摩擦焊接過程達(dá)到穩(wěn)定狀態(tài)時(shí),接頭中的總能量保持平衡,使Ti和Al原子互擴(kuò)散時(shí)可用的能量減少,即對接頭影響較大的脆硬TiAl3相會(huì)減少。綜上,中間層材料Ni的加入會(huì)使Ni先于Ti與Al生成金屬間化合物,且形成的少量Al-Ni金屬間化合物彌散分布于焊縫中。當(dāng)Ti與Al互擴(kuò)散時(shí),Ti向Al中的擴(kuò)散能力更強(qiáng)[24-25],故在接頭中整體熱能被Al與Ni的互擴(kuò)散消耗的情況下,產(chǎn)生的TiAl3相會(huì)減少。

3 結(jié)論

1)當(dāng)未加入中間層Ni時(shí),接頭的抗拉強(qiáng)度最高為237.3 MPa,約為2A14鋁合金母材抗拉強(qiáng)度的56.7%。加入中間層Ni后,平均抗拉強(qiáng)度為285.3 MPa,達(dá)到2A14鋁合金母材抗拉強(qiáng)度的68%。

2)由于Al與Ni之間的擴(kuò)散系數(shù)較高,因此Al-Ni金屬間化合物優(yōu)先形成,并消耗了部分焊接過程中產(chǎn)生的熱能,導(dǎo)致Ti與Al之間可用的擴(kuò)散能減少,從而減少了脆性TiAl3相的生成。

[1] 張亮, 程琴. Ti-6Al-4V合金鑄件拉伸性能差異原因分析[J]. 精密成形工程, 2018, 10(3): 40-45.

ZHANG Liang, CHENG Qin. Tensile Property Difference of Ti-6Al-4V Alloy Castings[J]. Journal of Netshape Forming Engineering, 2018, 10(3): 40-45.

[2] SANDERS D G, EDWARDS P, CANTRELL A M, et al. Friction Stir Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties[J]. JOM, 2015, 67(5): 1054-1063.

[3] DAVIES P S, WYYNE B P, RAINFORTH W M, et al. Development of Microstructure and Crystallographic Texture during Stationary Shoulder Friction Stir Welding of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2011, 42: 2279-2289.

[4] 于得水, 張巖, 周建平, 等. 鈦合金與鋁合金異種金屬焊接的研究現(xiàn)狀[J]. 焊接, 2020(11): 37-44.

YU De-shui, ZHANG Yan, ZHOU Jian-ping, et al. Research Status of Dissimilar Metal Welding between Titanium Alloy and Aluminum Alloy[J]. Welding & Joining, 2020(11): 37-44.

[5] LI C, LI B, WU Z F, QI X Y, et al. Stitch Welding of Ti-6Al4V Titanium Alloy by Fiber Laser[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 91-93.

[6] CHEN Z W, YAZDANIAN S. Microstructures in Interface Region and Mechanical Behaviors of Friction Stir Lap Al6060 to Ti-6Al-4V Welds[J]. Materials Science & Engineering A, 2015, 634: 37-45.

[7] 許天才, 彭曉東, 姜軍偉, 等. 鈦合金連接異種材料新技術(shù)的研究應(yīng)用[J]. 稀有金屬, 2014, 38(4): 711-719.

XU Tian-cai, PENG Xiao-dong, JIANG Jun-wei, et al. Progress in Welding of Titanium Alloy and Dissimilar Materials[J]. Chinese Journal of Rare Metals, 2014, 38(4): 711-719.

[8] 李立澤, 王少剛, 陳源, 等. 異種鈦合金的焊接研究現(xiàn)狀及發(fā)展趨勢[J]. 焊接技術(shù), 2019, 48(3): 1-7.

LI Li-ze, WANG Shao-gang, CHEN Yuan, et al. Research Status and Development Trend of Dissimilar Titanium Alloy Welding[J]. Welding Technology, 2019, 48(3): 1-7.

[9] 吳新勇, 廖娟, 薛新, 等. 鈦/鋁異種合金脈沖激光焊接接頭裂紋產(chǎn)生機(jī)理[J]. 精密成形工程, 2018, 10(6): 95-101.

WU Xin-yong, LIAO Juan, XUE Xin, et al. Mechanism of Crack Generation in Pulsed Laser Welded Joint of Titanium/Aluminum Dissimilar Alloy[J]. Journal of Netshape Forming Engineering, 2018, 10(6): 95-101.

[10] JIANG P, CHEN R. Research on Interfacial Layer of Laser Welded Aluminum to Titanium[J]. Materials Characterization, 2019, 154: 264-268.

[11] 李永梅, 陳利華, 王延龍, 等. 熱輸入對鈦鋁異種合金激光自熔釬焊接頭組織與力學(xué)性能的影響[J]. 熱加工工藝, 2022, 52(9): 47-50.

LI Yong-mei, CHEN Li-hua, WANG Yan-long, et al. Effect of Heat Input on the Microstructure and Mechanical Properties of Laser Self Fusion Brazed Joints of Titanium Aluminum Heterogeneous Alloys[J]. Hot Working Technology, 2022, 52(9): 47-50.

[12] 高原, 陳玉華, 占字林, 等. Ti/Al異種金屬微電阻點(diǎn)焊接頭力學(xué)性能及顯微組織[J]. 精密成形工程, 2018, 10(4): 90-95.

GAO Yuan, CHEN Yu-hua, ZHAN Zi-lin, et al. Mechanical Properties and Microstructure of Ti/Al Joint of Micro-Resistance Welding[J]. Journal of Netshape Forming Engineering, 2018, 10(4): 90-95.

[13] 朱政強(qiáng), 曾純, 張義福, 等. 鋁鈦異質(zhì)材料超聲波焊接研究[J]. 熱加工工藝, 2011, 40(7): 118-120.

ZHU Zheng-qiang, ZENG Chun, ZHANG Yi-fu, et al. Study on Ultrasonic Welding of Al/Ti Dissimilar Alloys[J]. Hot Working Technology, 2011, 40(7): 118-120.

[14] 戈軍委. Ti/Al異種金屬攪拌摩擦焊接頭組織性能研究[D]. 南昌: 南昌航空大學(xué), 2014: 53-54.

GE Jun-wei. Study on the Microstructure and Mechanical Properties of Friction Stir Welded Joint of Ti/Al Dissimilar Metals[D]. Nanchang: Nanchang Hangkong University, 2014: 53-54.

[15] 陶詩偉. 中間層、工藝參數(shù)及磁場對Al5052-TC4異質(zhì)材料TIG熔釬焊組織與性能影響研究[D]. 重慶: 重慶大學(xué), 2021: 31.

TAO Shi-wei. Study on the Effect of Interlayer, Process Parameters and Magnetic Field on Microstructure and Properties of Al5052-TC4 Heterogeneous Material TIG Welding-Brazing[D]. Chongqing: Chongqing University, 2021: 31.

[16] 陳紀(jì)宇. 鈦合金/鋁合金脈沖激光焊接頭組織與力學(xué)性能研究[D]. 長春: 吉林大學(xué), 2019: 74-84.

CHEN Ji-yu. Study on Microstructure and Mechanical Properties of Pulsed Laser Welded Joint for Titanium Alloy and Aluminum Alloy[D]. Changchun: Jilin University, 2019: 74-84.

[17] 倪加明, 李俐群, 陳彥賓, 等. 鋁/鈦異種合金激光熔釬焊接頭特性[J]. 中國有色金屬學(xué)報(bào), 2007, 17(4): 617-622.

NI Jia-ming, LI Li-qun, CHEN Yan-bin, et al. Characteristics of Laser Welding-Brazing Joint of Al/Ti Dissimilar Alloys[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(4): 617-622.

[18] 張鑫, 陳玉華, 王善林. 工藝參數(shù)對Ti/Zn/Al異種金屬攪拌摩擦焊接頭力學(xué)性能的影響[J]. 稀有金屬材料與工程, 2017, 46(1): 247-251.

ZHANG Xin, CHEN Yu-hua, WANG Shan-lin. Effect of Process Parameters on Mechanical Properties of Ti/Zn/Al Joint Welded by Friction Stir Welding[J]. Rare Metal Materials and Engineering, 2017, 46(1): 247-251.

[19] LI B, ZHANG Z, SHEN Y, et al. Dissimilar Friction Stir Welding of Ti-6Al-4V Alloy and Aluminum Alloy Employing a Modified Butt Joint Configuration: Influences of Process Variables on the Weld Interfaces and Tensile Properties[J]. Materials & Design, 2014, 53: 838-848.

[20] KATTNR U R, LIN J C, CHANG Y A. Thermodynamic Assessment and Calculation of the Ti-Al System[J]. Metallurgical Transactions A, 1992, 23(8): 2081-2090.

[21] JOHNSON K L, KENDALL K, ROBERTS A D. Surface Energy and the Contact of Elastic Solids[J]. Proceeding of the Royal Society of London A: Mathematical, Physcial and Engineering Sciences, 1971, 324(1558): 301-313.

[22] XU L, CUI Y Y, HAO Y L, et al. Growth of Intermetallic Layer in Multi-laminated Ti/Al Diffusion Couples[J]. Materials Science and Engineering: A, 2006, 435: 638-647.

[23] ASKEW J R, WILDE J F, KHAN T I. Transient Liquid Phase Bonding of 2124 Aluminium Metal Matrix Composite[J]. Materials Science and Technology, 1998, 14(9/10): 920-924.

[24] LUO J G, ACOFF V L. Interfacial Reactions of Titanium and Aluminum during Diffusion Welding[J]. Welding Journal, 2000, 79(9): 239-243.

[25] LUO J G, ACOFF V L. Using Cold Roll Bonding and Annealing to Process Ti/Al Multi-Layered Composites from Elemental Foils[J]. Materials Science and Engineering: A, 2004, 379(1): 164-172.

Effect of Ni Interlayer on Microstructure and Properties of TC4/2A14 Dissimilar Metal Joints Welded by Friction Stir Welding

ZHANG Xin1,2, WU Hong-yan3, CHEN Yu-hua2*, CHEN Bao-guo1

(1. School of Intelligent Manufacturing, Changzhou Vocational Institute of Engineering, Jiangsu Changzhou 213164, China; 2. School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China; 3. School of Shipbuilding Engineering, Jiujiang Vocational and Technical College, Jiangxi Jiujiang 332007, China)

The work aims to analyze the effect of Ni on the mechanical properties of the joint by adding 0.05 mm thick Ni foil as interlayer and weld 3 mm thick TC4 titanium alloy and 2A14 aluminum alloy by friction stir welding. Scanning electron microscopy, EDS spectroscopy, and XRD diffraction micro characterization analysis methods were adopted to analyze the fracture morphology and composition of welded joint and explore the effect of Ni foil on the mechanical properties of the welded joint. The weldability of Ti/Al dissimilar metals was poor due to the significant differences in physical and chemical properties between titanium alloy and aluminum alloy, and the intermetallic compounds such as TiAl3, TiAl, and Ti3Al were easily generated at the interface, in which the brittle phase TiAl3had the greatest impact on the joint performance, leading to a decrease in overall mechanical properties. After the interlayer Ni was added, due to the fact that both Ni and Al crystal structures were the face centered cubic structure, their diffusion coefficient with Al was higher than that of Ti and Al, leading to the preferential formation of intermetallic compounds between Ni and Al and their dispersion in the weld seam, thereby reducing the mutual diffusion time between Ti and Al and the generation of TiAl3phase. The average tensile strength of the joint is 237.3 MPa, which is about 56.7% of that of the 2A14 aluminum alloy base material without interlayer material. On the other hand, the type and quantity of intermetallic compounds in the weld seam are regulated, reducing the generation of TiAl3phase that has the greatest impact on performance, and making the average tensile strength of the joint reach 285.3 MPa, which is 68% of the tensile strength of the 2A14 aluminum alloy base material after the interlayer Ni is added.

Ti/Al joint; friction stir welding; interlayer material; intermetallic compounds; mechanical properties

10.3969/j.issn.1674-6457.2023.011.016

TG146.2;TG453+.9

A

1674-6457(2023)011-0140-07

2023-07-26

2023-07-26

國家自然科學(xué)基金(52175326,51865035);江西省科技獎(jiǎng)后備培育項(xiàng)目(20212AEI91004)

National Natural Science Foundation of China (52175326, 51865035); Jiangxi Provincial Science and Technology Award Reserve Cultivation Project (20212AEI91004)

張鑫, 吳鴻燕, 陳玉華, 等. 中間層Ni對TC4/2A14異種金屬攪拌摩擦焊接頭組織和性能的影響[J]. 精密成形工程, 2023, 15(11): 140-146.

ZHANG Xin, WU Hong-yan, CHEN Yu-hua, et al. Effect of Ni Interlayer on Microstructure and Properties of TC4/2A14 Dissimilar Metal Joints Welded by Friction Stir Welding[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 140-146.

通信作者(Corresponding author)

責(zé)任編輯:蔣紅晨

猜你喜歡
力學(xué)性能焊縫
反擠壓Zn-Mn二元合金的微觀組織與力學(xué)性能
Pr對20MnSi力學(xué)性能的影響
云南化工(2021年11期)2022-01-12 06:06:14
基于焊縫余高對超聲波探傷的影響分析
焊縫符號在機(jī)械設(shè)計(jì)圖上的標(biāo)注
TP347制氫轉(zhuǎn)油線焊縫裂紋返修
Mn-Si對ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
山東冶金(2019年3期)2019-07-10 00:54:00
焊縫跟蹤遺傳算法優(yōu)化PID控制仿真研究
機(jī)器人在輪輞焊縫打磨工藝中的應(yīng)用
MG—MUF包覆阻燃EPS泡沫及力學(xué)性能研究
中國塑料(2015年12期)2015-10-16 00:57:14
INCONEL625+X65復(fù)合管的焊接組織與力學(xué)性能
焊接(2015年9期)2015-07-18 11:03:53
主站蜘蛛池模板: 91小视频在线观看免费版高清| 久久99国产视频| 国产精品刺激对白在线| 国产在线观看人成激情视频| 四虎永久免费地址在线网站| 国产成人综合网在线观看| 超清无码熟妇人妻AV在线绿巨人| 婷五月综合| 毛片手机在线看| 中国一级特黄视频| 国产精品部在线观看| 欧美精品影院| 一级毛片不卡片免费观看| 久久一级电影| 国产黄色免费看| 国产精品亚洲а∨天堂免下载| 无码国内精品人妻少妇蜜桃视频| 精品国产香蕉在线播出| 久久精品人人做人人| 超级碰免费视频91| 日韩一级毛一欧美一国产| 黄色污网站在线观看| 国产精品入口麻豆| 97视频在线观看免费视频| 日韩福利视频导航| 亚洲国产精品成人久久综合影院| 国国产a国产片免费麻豆| 国产你懂得| 色视频国产| 国产成人综合在线观看| 国产玖玖视频| 狠狠亚洲婷婷综合色香| 91麻豆精品国产91久久久久| 色综合五月| 国产午夜福利亚洲第一| 欧洲高清无码在线| 亚洲最新地址| 亚洲91精品视频| 一级香蕉视频在线观看| 日韩小视频在线播放| 黄色网在线免费观看| 日韩精品成人在线| 欧美人与性动交a欧美精品| 一级成人a做片免费| 午夜精品久久久久久久99热下载 | a色毛片免费视频| 一区二区三区毛片无码| a毛片在线播放| 国产激爽大片在线播放| 欧美乱妇高清无乱码免费| 在线精品亚洲一区二区古装| 亚洲成人精品久久| 午夜视频免费一区二区在线看| 内射人妻无码色AV天堂| 亚洲天堂日本| 亚洲天堂免费在线视频| 免费人成网站在线高清| 丁香婷婷综合激情| 区国产精品搜索视频| 97se综合| 91网址在线播放| 九九久久精品国产av片囯产区| 人妻少妇久久久久久97人妻| 四虎成人精品| 91久久国产综合精品女同我| 亚洲另类国产欧美一区二区| 久久黄色影院| 四虎精品黑人视频| 91无码人妻精品一区二区蜜桃| 精品久久久久无码| 91福利一区二区三区| 91在线视频福利| 日韩小视频在线播放| 国产福利影院在线观看| 激情午夜婷婷| 伊人久久青草青青综合| 999国内精品视频免费| 国产鲁鲁视频在线观看| 高清无码一本到东京热| 日本欧美中文字幕精品亚洲| 国产精品亚欧美一区二区| 欧美一级在线看|