999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

既有鐵路曲線橋線路偏心對列車安全運行的影響分析

2023-11-17 08:06:48藺鵬臻曾繼鑫薛多輝李早陽
鐵道建筑 2023年10期
關鍵詞:橋梁

藺鵬臻 曾繼鑫 薛多輝 李早陽

1.蘭州交通大學 甘肅省道路橋梁與地下工程重點實驗室, 蘭州 730070; 2.蘭州交通大學 土木工程學院, 蘭州 730070;3.中國鐵路蘭州局集團有限公司 定西工務段, 甘肅 定西 743000

既有鐵路線路由于修建年代等原因,在山區峽谷地帶存在大量小半徑曲線橋梁,由于輪軌動力相互作用使得線路偏心移位。線路維修養護時,往往只注重曲線平面幾何尺寸的調整,而線橋中心線是否吻合常被忽視,導致許多小橋線路偏心超限[1]。因此,橋上線路偏心是維修養護的重要任務之一,也是橋梁技術狀態評定的一項重要指標。針對橋梁偏心問題國內外各學者進行了一定的研究。李軍等[2]針對重載鐵路的曲線橋梁偏心超限,建立可自動得出偏心超限整治方案的計算模型,對曲線橋梁偏心超限進行整治和管理,并且在實際線路中得到應用。楊育林等[3]對重載鐵路特大橋的偏心原因和整治方法進行研究,分析對比了整治前后各種檢測數據并取得了顯著效果。李曉光[4]研究比選曲線鋼梁橋偏心整治方案,提出了用偏角法撥正曲線以整治橋梁偏心的方法。楊云飛等[5]根據既有橋梁的現狀,介紹了曲線橋梁偏心計算方法并確定了允許撥道量。劉華朋等[6]研究了鐵路曲線橋梁的偏心布置問題,發現選擇合適的預設偏心可以減小梁軌之間的作用力,還可減小橋梁結構的內力。李添悅、高誠、張瑞歡等[7-9]研究了線路偏心和道砟厚度的測量方案和技術,確保線路偏心及道砟厚度滿足設計要求。文穎等[10]研究了列車作用下有砟軌道中線與橋梁中線偏心發展機理,得到橋上有砟軌道結構參數對有砟軌道-橋梁偏心的影響規律。Perrin 等[11]提出了一種基于軌道幾何隨機建模與列車剛體建模耦合的方法,分析軌道幾何可變性與列車動力學和穩定性之間的復雜聯系。韓治平等[12]對一座重載鐵路線上的曲線橋梁進行研究,從梁體的振動幅度、振動加速度等方面對橋梁的運營性能進行評估分析,發現梁軌偏心超限會對橋梁的承載力產生一定影響。

目前,關于橋梁偏心的研究集中于施工中誤差控制、運營期線路調整等方面,關于偏心對車橋系統的振動特性影響、安全性評價等方面的研究不足。

本文以既有線鐵路曲線橋為研究對象,結合橋梁偏心實測結果,基于車-橋耦合動力學理論,研究脫軌系數、輪重減載率、輪軸橫向力等車輛運行安全性指標的影響規律,以及偏心作用對橋梁振動特性的影響。

1 工程概況

既有線下行多跨簡支T 梁橋的跨徑布置為(24 +7 × 32 + 24) m,全長272 m。橋梁位于半徑800 m、緩和曲線長150 m、圓曲線長290 m、曲線超高120 mm 的曲線線路中。橋梁按切線布置,曲線均衡速度為88 km/h。經現場實測2020 年3 月2 日至19 日,線梁偏心最大值從第1 跨到第9 跨分別為309.0、115.5、88.5、87.5、102.0、104.0、85.0、111.0、116.5 mm。TG/GW 103—2018《普速鐵路橋隧建筑物修理規則》規定:運營橋上線路中線與梁跨設計中線的偏差,鋼梁不應大于50 mm,圬工梁不應大于70 mm;行車速度大于120 km/h區段,鋼梁、圬工梁均不應大于50 mm。由此可見該橋梁已經出現偏心超限的問題,超限最嚴重的為第1 跨梁端。

現場調研表明該線路主要運行HXD1、HXD1C 型貨運電力機車,以及HXD3D、SS7E型客運電力機車,線路設計最高允許速度為120 km/h。

2 車-橋耦合動力分析模型及評定標準

2.1 車-橋動力相互作用分析模型

車-橋耦合動力分析模型由車輛子系統、橋梁子系統、輪軌接觸模型、橋軌相互作用關系組成[13]。車輛子系統、橋梁子系統分別采用多體系統動力學理論和有限元理論建立運動方程,將車輛子系統和橋梁子系統通過輪軌接觸關系、橋軌相互作用關系組成整個耦合時變系統,通過數值方法迭代求解,軌道不平順則作為兩個子系統共同的激勵[14]。

車輛子系統運動方程為

式中:Mv、Cv、Kv分別為車輛子系統各自由度的質量、阻尼和剛度矩陣;xv、v分別為車輛子系統各自由度的位移、速度、加速度矩陣和荷載列陣。

橋梁子系統振動方程為

式中:Mb、Cb、Kb分別為橋梁子系統各自由度的質量、阻尼和剛度矩陣;xbFb分別為橋梁子系統各自由度的位移、速度、加速度矩陣和荷載列陣。

2.2 分析模型建立及驗證

采用多體系統動力學軟件Universal Mechanism建立列車模型,以SS7E型電力機車牽引25T客車為例,SS7E機車采用Co-Co軸式,整備質量126 t,前后車鉤距22.016 m,轉向架中心距11.57 m,固定軸距(2.15 +2.15) m。全車由1 個車體、2 個構架、6 個輪對、12 個軸箱、6 個牽引電機共計27 個剛體組成。車體、構架、輪對考慮6 個自由度,軸箱僅考慮1 個自由度,全車共計66 個自由度,1、2、3 軸電機同向。25T 型客車采用CW-200K或SW-220K型轉向架,車長25.5 m,轉向架中心距18 m。本文25T 客車按CW-200K 型轉向架建立,全車由1 個車體、2 個構架、4 個輪對、8 個軸箱共計15個剛體組成。車體、構架、輪對考慮6 個自由度,軸箱僅考慮1 個自由度,全車共計50 個自由度。整列車的懸掛、牽引系統采用非線性力元模擬。

橋梁系統采用有限元軟件ANSYS 建立動力學分析模型,通過固定界面模態綜合法理論求解得到系統的質量、剛度矩陣,阻尼矩陣通過Rayleigh 阻尼設定。通過輪軌關系和橋軌關系實現車輛系統與橋梁系統的耦合。車-橋耦合動力分析模型如圖1所示。

圖1 車-橋耦合動力分析模型

為驗證本文車輛模型的正確性,采用文獻[15]中仿真及實測數據對SS7E 型客運機車進行驗證。機車以85 km/h通過半徑為800 m 曲線線路時,車輛運行安全性指標仿真結果與文獻結果對比見表1。其中。本文仿真軌道不平順采用我國三大干線軌道譜[15]。由表1 可知,輪軸橫向力、輪重減載率、脫軌系數與文獻實測差值比分別為11.19%、10.53%、18.18%,與文獻計算值差值比分別為5.65%、5.00%、1.56%,本文仿真計算結果與文獻實測、仿真結果基本一致,說明本文建立的車輛模型精度高,可供后續仿真分析使用。

表1 SS7E型電力機車安全性指標對比

為驗證本文采用的車-橋耦合分析方法正確性,對文獻[15]實測結果進行驗證。25T 客車以不同速度通過32 m 簡支T 梁時,橋梁跨中豎向、橫向位移實測值與計算值對比見圖2,其中軌道激勵采用我國三大干線譜。可知,橋梁豎向位移仿真計算值與實測值一致,而速度102 ~ 108 km/h時橋梁橫向位移仿真計算值略低于實測值,其他速度段內基本一致。這可能是文獻試驗時正處于春運期間,導致車輛重量有所差別。總體上,本文建立的車-橋耦合分析模型可用于后續偏心計算仿真分析。

圖2 車-橋耦合位移計算值與實測值對比

為對比分析偏心作用對車-橋耦合系統的影響,在車-橋耦合分析模型中不考慮偏心作用時按設計線路進行計算,考慮偏心作用時將線路實際偏心疊加至設計線路后進行計算。輪軌激勵采用美國6級譜反演生成[16]。

2.3 車輛安全性評定標準

根據該既有線路設計年代及線路運行車輛等因素,結合GB 5599—1985《鐵道車輛動力學性能評定和試驗鑒定規范》,脫軌系數限值取1.2進行評定。

GB 5599—1985 規定輪重減載率合格時的評定值為0.65、安全時為0.60。在大秦鐵路脫軌試驗及鄭武線高速試驗中,動態輪重減載率限值取0.9,能夠保證行車安全[17]。因此,本文對該既有線評定輪重減載率限值取0.9。

對于采用彈性扣件的軌道,根據日本新干線設計標準、歐美鐵路試驗結果,GB 5599—1985 一般取0.4倍輪重作為輪軌橫向力限值。因此,本文采用該值進行評定,機車及客車限值分別為84、60 kN。

3 線路偏心對車輛動力響應的影響分析

3.1 線路偏心作用

SS7E 型電力機車牽引25T 客車以曲線均衡速度88 km/h通過該曲線橋梁結構時,機車和客車的第一輪對輪重減載率、脫軌系數、輪軌橫向力等車輛安全性指標的時程曲線分別見圖3、圖4。

圖3 SS7E機車第一輪對車輛安全性指標時程曲線

圖4 25T客車第一輪對車輛安全性指標時程曲線

由圖3、圖4 可知:①線路偏心作用對車輛運行安全性指標產生極大的影響,輪軌橫向力增長最明顯,輪重減載率次之,最后為脫軌系數。機車與客車輪軌橫向力、機車脫軌系數均超過限值。②SS7E機車以均衡速度通過時,第一輪對輪重減載率從0.42 增加至0.88,增長109.52%,第一輪對外軌的脫軌系數從0.65 增加到1.35,增長107.69%,第一輪對外軌的輪軌橫向力從69.9 kN 增加到219.8 kN,增長214.45%。③25T 客車以均衡速度通過時,第一輪對輪重減載率從0.14 增加至0.43,增長207.14%,第一輪對外軌的脫軌系數從0.27 增加到0.96,增長255.55%,第一輪對外軌的輪軌橫向力從21.56 kN 增加到97.49 kN,增長352.18%。

3.2 行車速度

為研究偏心作用下不同行車速度對于車輛動力響應,SS7E 機車牽引25T 客車以速度60 ~ 120 km/h 通過曲線橋梁,統計車輛安全性指標最大值,如圖5所示。

由圖5(a)可知:①當不考慮線路偏心作用時,SS7E機車輪重減載率隨速度增大而增大,而25T 客車隨速度增大先減小后增大,即小于曲線均衡速度時隨速度增大而減小,大于均衡速度后隨速度增大而增大。當考慮線路偏心作用后,無論機車還是客車,輪重減載率均隨速度增大而增大。②由于SS7E 機車軸重比25T 客車大,在相同速度時其輪重減載率明顯大于25T 客車,當車輛以速度120 km/h 通過曲線時SS7E機車輪重減載率達0.57,而25T 客車僅為0.31,當考慮線路偏心后,SS7E機車已達到1.00,即輪軌分離,而25T 客車僅為0.72,未超過0.9 限值,因此若以輪重減載率為安全評判指標,應以機車輪重減載率作為衡量參數,此時行車速度應控制在100 km/h 以內。③考慮線路偏心后,SS7E機車輪重減載率增長率隨速度增大先增大后減小,速度為60 ~ 70 km/h時SS7E機車輪重減載率增長率略高于25T 客車,但速度大于70 km/h 后25T 客車增長率明顯大于SS7E 機車,速度為100 km/h時SS7E機車、25T 客車增長率最大值分別為101.66%、217.18%。

由圖5(b)可知:①當不考慮線路偏心作用時,速度為60 ~ 120 km/h,車輛的脫軌系數基本保持不變,該速度區間內,SS7E 機車、25T 客車脫軌系數分別為0.65 ~ 0.69、0.27 ~ 0.28,表明SS7E機車牽引25T 客車通過曲線段時,軌道不平順對脫軌系數的影響較小。②當考慮線路偏心作用后,脫軌系數隨速度的增大而增大,且速度對脫軌系數影響較大,增長明顯,速度為60 ~ 120 km/h,SS7E 機車、25T 客車脫軌系數分別為1.11 ~ 1.46、0.81 ~ 1.02。③考慮線路偏心作用后,脫軌系數增長率隨速度的增大先增大后減小,在速度為110 km/h時達到最大,且25T 客車增長率大于SS7E 機車,SS7E機車和25T客車增長率最大值分別為111.89%、282.62%。

由圖5(c)可知:①無論SS7E 機車還是25T 客車,輪軌橫向力均隨速度的增大而增大,且SS7E機車輪軌橫向力大于25T 客車。②不考慮線路偏心作用時,速度為60~120 km/h,SS7E 機車、25T 客車輪軌橫向力分別為59.55 ~ 81.53、18.40 ~ 25.81 kN,當考慮線路偏心作用后,SS7E 機車、25T 客車輪軌橫向力分別為125.17 ~ 326.11、66.98 ~ 129.85 kN,SS7E機車增長率明顯大于25T 客車。③當考慮線路偏心作用后,輪軌橫向力增長率隨速度增大而增大,且25T 客車明顯大于SS7E機車。當速度為120 km/h 時,SS7E機車、25T 客車增長率分別為299.98%、403.19%。由此可見,機車輪軌橫向力明顯大于客車,且線路偏心對機車影響大,而過大的輪軌橫向力會引起扣件破壞、鋼軌磨損,同時過大的輪軸橫向力會引起軌排橫移、線路動態失穩。因此,對于線路偏心應更加關注輪軸橫向力。

4 線路偏心對橋梁振動特性的影響

4.1 線路偏心作用

為了研究偏心對橋梁振動特性的影響,以SS7E機車牽引25T 客車通過半徑為800 m 曲線橋梁,計算得到考慮偏心作用及不考慮偏心作用下的橋梁振動響應及橋墩振動響應。以圖1 曲線橋梁為分析對象,車輛以均衡速度通過時,橋梁各跨振動響應見圖6。

圖6 橋梁各跨振動響應

由圖6(a)可知:①無論是否考慮線路偏心作用,T梁內側梁、外側梁橫向位移基本相同,外側梁略大于內側梁。②線路偏心對橋梁橫向位移影響較大,由于不同橋跨的線路偏心值不同,各跨因偏心導致的位移增量不同。③對于24 m 梁,第9 跨橋梁橫向位移增加最大,增量0.342 mm,增長率163.76%;對于32 m 梁,第5 跨橋梁橫向位移增加最大,增量0.427 mm,增長率74.56%。

由圖6(b)可知:①無論是否考慮線路偏心作用,T梁內側梁的豎向位移大于外側梁。②對比考慮線路偏心作用前后橋梁的豎向位移,線路偏心對橋梁豎向位移影響較小,最大增量僅為0.046 mm,增長率為0.58%。③由于內側梁、外側梁豎向位移不同,梁體在橫向發生豎向扭轉,因此可用內側梁、外側梁的豎向位移差(Δδ)與內側梁、外側梁的橫向間距的比值(Δy)來表征豎向扭轉率,即Δδ/Δy× 1 000‰。經計算,第1跨(24 m梁)由0.029‰增至0.120‰,第4跨(32 m梁)由0.034‰增至0.085‰,過大的豎向扭轉意味著內外側梁位移差較大,導致跨中橫隔板發生剪切破壞,從而降低橋梁的橫向穩定性。

由圖6(c)可知:①無論是否考慮線路偏心作用,20 Hz 強迫振動下,T 梁內側梁、外側梁橫向加速度基本相同,僅個別梁跨線路偏心作用導致橋梁橫向振動加速度增大。②對于24 m 梁,第9 跨橫向加速度增加最大,增量為0.146 m/s2,增長率30.46%;對于32 m梁,第5跨橫向加速度增加最大,增量為0.024 m/s2,增長率7.63%。

由圖6(d)可知:①無論是否考慮線路偏心作用,20 Hz 強迫振動下,T 梁內側梁、外側梁豎向加速度具有一定差別,且這種差異現象不因考慮線路偏心而改變。該差異現象是由線路豎向不平順引起。②線路偏心作用可導致橋梁豎向加速度增大,主要在第1、9跨,對第2—第8跨影響較小。第1跨增加最多,增量為0.152 m/s2,增長率52.57%。

由圖6(e)可知:線路偏心可導致橋墩橫向位移增大,其中9#墩增幅最大,增量為0.674 mm,增長率193.15%,其次為5#墩,增量為0.321 mm,增長率57.60%。

由圖6(f)可知:除5#、6#墩外,線路偏心可導致橋墩橫向加速度增大,1#墩增幅最大,增大0.108 m/s2,增長率48.10%,其次為8#墩,增大0.034 m/s2,增長率12.69%。

4.2 行車速度

為了研究偏心工況下列車以不同速度通過橋梁時的橋梁振動特性,以橋梁跨中位移響應、墩頂橫向位移響應為指標進行研究。以圖1中第5跨梁、5#墩為例,SS7E 機車牽引25T 客車以速度60 ~120 km/h 通過曲線橋梁,統計橋梁振動響應最大值,見圖7。根據內側梁、外側梁豎向位移的位移差與內側梁、外側梁的橫向間距(對應數值為2.2 m)之比,計算不同速度下第5跨梁豎向扭轉率,如圖8所示。

圖7 橋梁各指標響應隨速度變化曲線

圖8 第5跨梁豎向扭轉率隨速度變化曲線

由圖7(a)可知:①無論是否考慮線路偏心,橋梁橫向位移隨速度增加先減小后增大,在不考慮線路偏心時,T 梁內側梁、外側梁位移基本相同,最大相差0.014 mm,而在考慮線路偏心后,隨速度增加,內側梁、外側梁橫向位移的偏差隨速度增大而增大,速度120 km/h 時,位移偏差達到最大值(0.794 mm)。②為了進一步分析內外側梁位移的不均等性,將考慮線路偏心時的內(外)側梁橫向位移與不考慮偏心時的內(外)側梁橫向位移作差,定義為內(外)側梁橫向位移差,并將橫向位移差與不考慮線路偏心時的橫向位移的比值定義為橫向位移差比,以此衡量線路偏心作用對橫向位移的影響程度。可知,內側梁和外側梁的橫向位移差均隨速度增大而增大,但橫向位移差比先增大后減小,當速度為120 km/h 時,內側梁和外側梁位移差均達到最大值(0.789 mm),90 km/h 時橫向位移差比達到最大值,內側梁和外側梁橫向位移差比分別為81.67%、79.27%。

由圖7(b)、圖8 可知:①無論是否考慮線路偏心,內側梁隨速度增大而減小,而外側梁隨速度增大而增大,即內外側梁豎向位移差絕對值隨速度先減小后增大,在速度為120 km/h 時位移差達到最大值,內側梁、外側梁位移差分別為0.655、0.535 mm,此規律與圖8中梁的豎向扭轉率變化規律相同。②隨著速度的增大,內側、外側兩片梁從向曲線內側扭轉逐漸變化為向曲線外側扭轉(扭轉率正值表示向曲線內側扭轉),但在小于均衡速度,考慮偏心時扭轉率大于不考慮偏心時,而大于均衡速度后,考慮偏心時扭轉率小于不考慮偏心時。③對比不同速度下T 梁內側梁、外側兩片梁在考慮線路偏心作用的影響可知,線路偏心對內外側梁豎向位移影響較小。考慮偏心后內側梁位移最大值僅增加0.041 mm,外側梁位移最大值減小0.045 mm,這是由于本橋線路偏心是向內側偏心。

由圖7(c)可知:①無論是否考慮線路偏心,墩頂橫向位移隨速度增加先減小后增大;②考慮線路偏心后,不同速度下墩頂橫向位移均增大,但增長幅值與速度并無明顯規律。速度在60 ~120 km/h 變化時5#墩墩頂橫向位移最大增量為0.228 mm。

5 結論

1)對于既有線曲線橋,線路偏心對車輛的輪重減載率、脫軌系數、輪軌橫向力均影響極大,對輪軌橫向力影響最大,輪重減載率次之,最后為脫軌系數,且對機車的影響大于客車。對于偏心線路,應以輪軌橫向力作為衡量指標,防止過大的輪軌橫向力導致扣件破壞、軌排橫移。

2)當車輛以不同速度通過偏心曲線橋梁時,輪重減載率、脫軌系數、輪軌橫向力均隨速度的增大而增大,且輪軌橫向力增長率最大,輪重減載率次之,最后為脫軌系數。

3)與無線路偏心橋梁相比,車輛行駛在偏心線路橋梁時,橋梁的位移、加速度響應及墩頂橫向位移、加速度均增大;線路偏心對橋梁位移影響較大,對加速度影響較小,且對橋梁的橫向位移及墩頂橫向位移影響比橋梁垂向位移明顯。

4)車輛以不同速度通過偏心曲線橋梁時,橋梁跨中橫向位移及墩頂橫向位移均隨速度先減小后增大。對于橋梁豎向位移,T梁內側梁隨速度增大而減小,外側梁隨速度增大而增大。

猜你喜歡
橋梁
一種橋梁伸縮縫防滲水裝置
工程與建設(2019年4期)2019-10-10 01:45:56
手拉手 共搭愛的橋梁
句子也需要橋梁
加固技術創新,為橋梁健康保駕護航
中國公路(2017年11期)2017-07-31 17:56:30
無人機在橋梁檢測中的應用
中國公路(2017年10期)2017-07-21 14:02:37
高性能砼在橋梁中的應用
現代鋼橋制造對橋梁鋼的更高要求
焊接(2016年8期)2016-02-27 13:05:15
城鄉建設一體化要注重橋梁的建筑設計
南昌54座橋梁進行兩個月的夏季體檢
橋梁伸縮縫損壞因素與加固
主站蜘蛛池模板: 77777亚洲午夜久久多人| 日韩精品一区二区三区大桥未久| 2021亚洲精品不卡a| 国产精品污污在线观看网站| 午夜毛片福利| 四虎成人在线视频| 精品少妇人妻一区二区| 欧美一道本| 99re在线视频观看| 刘亦菲一区二区在线观看| 亚洲男女在线| 中日无码在线观看| 国产99精品视频| 亚洲中文字幕无码mv| 亚洲天堂免费| 国产女人在线| 国产男人的天堂| 国产国拍精品视频免费看 | 亚洲AV无码一区二区三区牲色| 99热最新网址| 精品自窥自偷在线看| 久久一级电影| 欧美高清三区| 直接黄91麻豆网站| 亚洲成a人片7777| 国产成人综合日韩精品无码不卡| 香蕉精品在线| 免费无码网站| 日本人又色又爽的视频| 亚洲AV无码乱码在线观看代蜜桃 | 久久天天躁狠狠躁夜夜2020一| 色婷婷综合激情视频免费看| 国产人成乱码视频免费观看| 亚洲欧美激情小说另类| 国产农村精品一级毛片视频| 国产在线高清一级毛片| 草草影院国产第一页| 亚洲欧美日本国产综合在线| 在线免费观看a视频| 5388国产亚洲欧美在线观看| 久操线在视频在线观看| 国产精品蜜芽在线观看| 久久这里只有精品国产99| 性视频久久| 在线视频一区二区三区不卡| 亚洲精品国产精品乱码不卞| 丁香六月激情婷婷| 国产打屁股免费区网站| 日韩激情成人| 精品视频第一页| 国产成人你懂的在线观看| 最新日韩AV网址在线观看| 国产不卡国语在线| 欧美日韩国产一级| 中文字幕色站| 福利在线不卡一区| 亚洲国产亚洲综合在线尤物| 亚洲精品色AV无码看| 久草性视频| 2021国产乱人伦在线播放| 亚洲国产精品无码久久一线| 精品综合久久久久久97| 久久www视频| 国产在线自乱拍播放| 亚洲AV色香蕉一区二区| 国产精品第一区| 天堂岛国av无码免费无禁网站 | 日韩在线2020专区| 欧美在线视频不卡第一页| 亚洲欧洲综合| 欧美黄色网站在线看| 国产精品成人一区二区不卡| 亚洲美女高潮久久久久久久| 中文精品久久久久国产网址| 丁香六月激情婷婷| 亚洲午夜国产精品无卡| 好吊日免费视频| 亚洲欧美另类日本| 国产JIZzJIzz视频全部免费| 亚洲国产中文精品va在线播放| 久久a毛片| 国产一级毛片yw|