高麗冰,陳剛,王晶,齊廣海,張海軍,邱凱,武書庚
不同籠養方式對雞蛋蛋黃風味的影響

1農業農村部動物產品質量安全飼料源性因子風險評估實驗室/農業農村部飼料生物技術重點開放實驗室/中國農業科學院飼料研究所,北京 100081;2中國農業大學農業農村部設施農業工程重點開放實驗室,北京 100083
【目的】采用感官評價、電子鼻和電子舌檢測、質構儀分析,確定傳統疊層籠養和棲架福利籠養下雞蛋蛋黃風味的差異,為雞蛋蛋黃風味研究提供基礎數據。【方法】以傳統疊層籠養和棲架福利籠養的55周齡健康京粉蛋雞所產雞蛋為試驗對象,通過感官評價、電子鼻和電子舌檢測、質構儀檢測蛋黃的氣味、滋味和質感,運用線性判別分析(linear discriminant analysis, LDA)分析、支持向量機(support vector machine, SVM)分析、K-最近鄰法(K-nearest neighbor method, KNN)分析和決策樹(decision tree)分析對兩種籠養方式的蛋黃風味進行判別,探究不同籠養模式對雞蛋蛋黃風味的影響。【結果】與棲架福利籠養相比,傳統疊層籠養的蛋黃顏色評分顯著增加(<0.05)。感官評價中,棲架福利籠養組蛋黃的奶香味滋味評分顯著高于傳統疊層籠養組(<0.05),海苔味滋味和糊口性評分低于棲架福利籠養組(<0.05)。相關性分析結果表明,蛋黃整體喜好度評分與滋味喜好度和質感喜好度評分顯著正相關(<0.05)。蛋香味滋味評分與滋味喜好度評分顯著正相關(<0.05),蛋香滋味與魚腥滋味和甜味滋味顯著負相關(<0.05),魚腥滋味與甜味滋味顯著正相關(<0.05)。蛋黃顆粒感與蛋黃粘牙度呈顯著正相關(<0.05)。儀器檢測中,棲架福利籠養組蛋黃在電子鼻傳感器W2W(芳香有機硫成分)、W2S(甲醇、乙醇)、W1W(對硫化物靈敏)和W1S(對甲基類靈敏)響應程度顯著大于傳統疊層籠養組(<0.05),在電子舌傳感器SRS(酸味)、STS(咸味)和UMS(鮮味)響應程度顯著小于傳統疊層籠養組(<0.05),蛋黃質構特性的硬度和咀嚼性顯著大于傳統疊層籠養組(<0.05)。判別分析可知,K-最鄰近法判別方法可依據電子鼻響應值判別兩種籠養方式下的蛋黃氣味差異,準確率為94.5%。支持向量機算法、K-最鄰近法和決策樹判別方法可依據電子舌響應值判別兩種籠養方式下的蛋黃滋味差異,準確率為100.0%。【結論】棲架福利籠養下雞蛋蛋黃奶香味滋味增強、海苔味滋味和糊口減弱,電子鼻硫化物傳感器響應值增強,電子舌鮮味和咸味傳感器響應值減弱。基于電子鼻和電子舌檢測,采用K-最鄰近法、支持向量機算法和決策樹方法能夠判別傳統疊層籠養和棲架福利籠養下蛋黃風味差異。
蛋黃風味;福利籠養;電子鼻;電子舌;質構特性;產蛋雞
【研究意義】近年來人們對養殖動物福利的重視,正在推動蛋雞養殖方式轉變。2002年瑞典已停止使用傳統籠養,2009年荷蘭和德國開始逐步淘汰傳統籠養,2022年法國市面出售雞蛋必須來自非籠養養殖場。福利養殖將是蛋雞養殖的發展趨勢,對于保障蛋雞健康和產品安全、促進蛋品國際貿易方面有重要的意義。目前,我國主要采用疊層籠養和立體散養系統方式,對福利籠養模式進行了有益的探索,如蛋雞健康和行為、雞蛋品質等,福利籠養包括裝配型雞籠、單層散養系統、多層散養系統和舍外自由散養系統。棲架籠養屬于福利籠養的多層散養系統,平臺和底網均設有清糞傳送帶,實現雞只與糞便自動分離,保持雞舍低粉塵濃度和良好的空氣質量[1]。與傳統籠養相比,福利籠養可降低產蛋后期蛋雞的肝臟重量和腹脂重量,棲架籠養可增強蛋雞肱骨強度,骨礦密度和骨礦重量[2-3]。【前人研究進展】不同養殖方式對雞蛋品質和風味的影響是目前研究者們關注的熱點。平層養殖蛋雞可顯著提高雞蛋蛋殼厚度,不影響其他雞蛋品質[4]。與籠養蛋雞所產雞蛋相比,舍外散養蛋雞所產雞蛋的揮發性風味物質濃度降低,感官評價的氣味無顯著差異[5]。雞蛋品質及風味直接影響消費者對雞蛋的選取及滿意程度,與經濟效益密切相關。風味的形成取決于風味前體物及相互作用,而風味的描述和評價受到人們習慣、喜好等主觀因素影響。目前雞蛋風味的評價,主要包括主觀性的感官評價和客觀的特征風味物質分析。關于雞蛋風味的描述,主要是蛋黃風味的描述,報道的有蛋香味、魚腥味和海洋味等,且主要集中在飼料因素方面[6]。蛋香味為特征風味,主要由磷脂結合的亞油酸和花生四烯酸自動氧化形成,還受油酸和γ-亞麻酸的影響[7-8]。魚腥味為生鮮魚的風味,與蛋黃中n-3不飽和脂肪酸呈線性增長關系[9]。食品感官的儀器檢測節約成本,提高效率,但儀器響應方式與人類感官系統的響應方式不同[10-12]。電子鼻采用傳感陣列監控揮發性化合物,根據傳感器響應可得到雞蛋氣味的特性[13]。電子舌通過雞蛋溶液中分子與生物膜反應可量化雞蛋的滋味特征[14]。質構儀通過檢測雞蛋物性描述蛋黃質構屬性[15-16]。【本研究切入點】籠養方式可能影響雞蛋風味,但棲架籠養對雞蛋風味的影響并不清楚。因此,應結合主觀感官評價與電子感官儀器分析方法綜合判斷雞蛋風味。【擬解決的關鍵問題】本研究旨在明確傳統疊層籠養和棲架福利籠養方式對雞蛋品質和蛋黃風味的影響,通過分析感官評價與儀器檢測的差異以及感官屬性間的相關性,確定電子感官儀器檢測對兩種養殖模式蛋黃風味的判別準確度,為棲架福利籠養的應用及雞蛋風味研究提供基礎數據。
蛋雞養殖于2020年10月6日在中國農業大學上莊實驗站進行,樣品測定在中國農業科學院飼料研究所和中國標準化研究院實驗中心進行。
選取飼養于同一間雞舍內傳統疊層(傳統籠養,Traditional caging regime)和棲架福利籠養(棲架籠養,Furnished caging regime)兩個籠養方式下55周齡、健康京粉6號產蛋雞各216只(產蛋率85.76±1.41%,符合峪口京粉飼養手冊中正常生產性能指標),飼喂相同的玉米-豆粕型日糧。傳統籠養采用傳統商品雞籠,尺寸為0.6 m×0.45 m×0.4 m(長×寬×高),養殖密度為18.5 只/m2。棲架福利籠養尺寸為4.5 m×0.75 m×2.9 m(長×寬×高),內設12根長為0.75 m棲桿、2層產蛋箱(總面積為0.675 m2)和1.05 m2沙浴區,棲桿與飼槽相平行,平均每只蛋雞占用棲桿長度為0.164 m,同時設置2條集蛋線、3層采食槽以及2條采用乳頭式飲水器的飲水線,各層平臺與網面均采用金屬網上鋪設塑料網,飼養密度為16.3 只/m2,本試驗籠已完成蛋品質等相關試驗研究[17]。每個處理8個重復,每個重復27只雞。試驗雞第380日齡,每個重復連續2天選取接近平均蛋重的雞蛋共31枚雞蛋,共采集496枚雞蛋樣品分析。
電子天平測定蛋重、蛋殼重和蛋黃重用以計算蛋殼比例和蛋黃比例;蛋白高度、蛋黃顏色和哈氏單位使用SONOVA蛋品質自動分析儀(Orka技術有限公司,以色列)測定。
每個重復取10枚雞蛋樣品進行感官評價。感官評價在中國標準化研究院實驗中心進行。正式評價前篩選培訓評價員,本次感官評價共招募8名感官評價小組成員(4名男性和4名女性,年齡在20歲到35歲之間)。雞蛋樣品經煮蛋器蒸煮15 min,冷卻至室溫后,分離蛋黃并密封,評價前置于60℃恒溫箱中保溫。參考Goldberg方法[18],樣品進行編碼后隨機分發給評價員,評價員在未知樣品處理的情況下評價樣品。評價小組經討論后確定了描述詞匯的3個香氣、5個滋味和6個質地描述詞。確定描述詞后討論并定義描述詞相對應的參考物(煮熟雞蛋,酒鼻子,純牛奶,蔗糖,鹽溶液,海苔),使用上述參考物培訓小組成員。按上述方法制備樣品,對樣品進行數字編碼后,隨機呈給評價員。以氣味(煮熟雞蛋蛋黃、氨味酒鼻子和新鮮魚肉)、滋味(煮熟雞蛋蛋黃、新鮮魚肉、氨味酒鼻子、低脂牛奶、蔗糖和海苔)為參照,采用非結構化15 cm線量表,從0分(低)到15分(高)對樣品氣味、滋味、質感和喜好程度進行評價。每個樣品評價前,評價員使用純凈水清除口腔殘留樣品。每個重復樣品評價重復3次,每天1次。
每個重復分別取3枚和5枚雞蛋的蛋黃進行電子鼻和電子舌分析。使用煮蛋器蒸煮雞蛋15 min后冷卻至室溫,分離出蛋黃,研碎混勻后待測。取6 g蛋黃樣品放入15 mL樣品瓶后密封置于室溫平衡30 min,每個樣品做3個平行。電子鼻(PEN3,Airsense公司,德國)的設置參數為:清洗時間180 s,歸零時間10 s,樣品準備時間5 s,測定時間150 s,載氣流速300 mL/min,進樣流量300 mL/min。電子鼻傳感器及對應的敏感物質見表1。
取30 g蛋黃樣品,加蒸餾水120 mL,混勻超聲20 min后,5 000 r/min-1離心10 min,取上清液進行測試。采用電化學傳感器的電子舌(ARTREE Ⅱ 電子舌,Alpha MOS,法國)測定樣品溶液的綜合味覺信息,使用去離子水和0.01 mol·L-1的HCl溶液活化傳感器后,進行樣品測定,每個樣品測定前使用去離子水清洗傳感器,每個樣品重復檢測6次,取后4次結果進行分析。電子舌傳感器及對應的滋味名稱見表1。
每個重復取3枚蒸煮后的完整蛋黃進行質構分析,采用物性測試儀(TMS-PRO, Ensoul Technology Ltd., 美國)測定質構參數,使用型號為P/25N探頭對樣品進行連續兩次40%的擠壓。測定條件:起始力0.05 N;測定速度0.5 mm/s;測后速度0.5 mm/s;壓縮程度40%;觸發值0.05 N。
試驗數據使用SPSS軟件(Windows22.0版;SPSS Inc., Chicago, IL, USA)分析,獨立樣本t檢驗(雙尾)用于分析處理間差異。數據表示為平均值±標準差,統計學差異顯著水平定義設定為<0.05。使用Origin 2020b軟件(Origin Pro, Version 2021. Originlab Corporation, Northampton, Ma, USA)對感官評價數據進行相關性分析。在基于Window 10系統的Matelab 2016軟件(Matelab 2016b, The MathWorks, Inc., Natick, MA, USA)中通過分類學習器完成傳統籠養和棲架籠養下蛋黃電子鼻和電子舌的判別分析,包括線性判別分析(linear discriminant analysis, LDA)、支持向量機(support vector machine, SVM)分析、K-最近鄰法(K-nearest neighbor method, KNN)分析和決策樹(decision tree)分析,形成基于分類算法的混淆矩陣,其中1為傳統籠養雞蛋蛋黃,2為棲架籠養雞蛋蛋黃。

表1 電子鼻和電子舌傳感器名稱及性能描述
籠養方式對蛋重、蛋黃比例、蛋殼比例、蛋白高度和哈氏單位的影響未見顯著差異(>0.05)(表2)。與棲架籠養相比,傳統籠養的蛋黃顏色評分顯著增加(<0.05)。
棲架籠養和傳統籠養下雞蛋蛋黃感官評價評分表明(表3),籠養方式對蛋黃氣味無顯著性影響(>0.05),但顯著影響蛋黃的滋味和質感評分(<0.05)。與傳統籠養方式相比,棲架籠養方式下雞蛋蛋黃奶香味滋味的評分更高(<0.05)、海苔味滋味和糊口性評分顯著降低(<0.05)。兩種籠養方式對蛋黃的喜好度評分無顯著差異(<0.05)。
對感官評價中屬性間的相關分析可知(圖1),整體喜好度與滋味喜好度和質感喜好度顯著正相關(<0.05),氣味喜好度與滋味喜好度顯著正相關(<0.05),滋味喜好度與質感喜好度顯著正相關(<0.05)。氣味喜好度與蛋香味氣味顯著正相關(<0.05)。蛋黃滋味喜好度與蛋香味滋味顯著正相關(<0.05),蛋香滋味與魚腥滋味和甜味滋味顯著負相關(<0.05),魚腥滋味與甜味滋味顯著正相關(<0.05)。蛋黃顆粒感與蛋黃粘牙度呈顯著正相關(<0.05)。

表2 不同籠養方式對雞蛋品質的影響(n=10)
同行數據后所標字母不同表示差異顯著(<0.05),未標注或所標字母相同表示差異不顯著(>0.05)。下同
The different letters indicate significant difference (<0.05), no letter or the same letter indicate no significant difference (>0.05). The same as below

表3 不同養殖模式對蛋黃感官評價和整體喜好度的影響

A:感官評價喜好度的相關性分析;B:感官評價氣味喜好度和氣味特征的相關性分析;C:感官評價滋味喜好度和滋味特征的相關性分析;D:感官評價質感喜好度和質感特征的相關性分析
棲架籠養組蛋黃在電子鼻傳感器W2W(芳香有機硫成分),W2S(甲醇、乙醇),W1W(對硫化物靈敏)和W1S(對甲基類靈敏)響應程度顯著大于傳統籠養(<0.05),說明棲架籠養組蛋黃氣味豐富度增強(圖2-A)。此外,棲架籠養組蛋黃在電子舌傳感器SRS(酸味),STS(咸味)和UMS(鮮味)響應程度顯著小于傳統籠養(<0.05)(圖2-B)。
與傳統籠養相比,棲架籠養熟蛋黃的硬度和咀嚼性顯著升高(<0.05)(表4),其他質構特性無顯著差異(>0.05)。
電子鼻數據判別分析如圖3所示,KNN的分類準確率為94.5%,優于LDA和SVM的91.5%,更優于決策樹的89.0%。電子舌數據判別分析如圖4所示,SVM、KNN和決策樹的分類準確率為100%,優于LDA的96.0%。根據混淆矩陣可知,KNN判別傳統疊層籠養和棲架福利籠養蛋黃的氣味和滋味準確率最高。

圖2 不同養殖模式蛋黃電子鼻(A)和電子舌(B)的雷達圖(n=8)

表4 不同籠養模式對蛋黃質構特性的影響(n=8)

不同籠養方式蛋黃電子鼻的判別分析:線性判別分析(A),支持向量機(B),K-最鄰近法(C)和決策樹(D)數字1,傳統籠養;數字2,棲架籠養。下同

圖4 蛋黃分類算法的電子舌混淆矩陣。
本試驗采用同批次京粉產蛋雞,育雛后分別轉入傳統疊層籠和棲架福利籠,飼喂相同飼糧并處于相同雞舍環境下,飼養至55周齡,雞蛋蛋重、蛋黃比例等指標無顯著差別,但傳統疊層籠組蛋黃顏色顯著加深。有報道,在傳統籠養和有機籠養下生蛋黃顏色不同,可能與飼料中添加蛋黃著色劑或色素有關[19]。本試驗中,蛋黃顏色的改變可能與不同籠養方式下試雞的狀態有關。有研究表明,類胡蘿卜素能夠加深蛋黃顏色,還具有雞體免疫調節作用,在舍外養殖中,色素可能被用于支持免疫系統[20-22]。
與傳統籠養相比,棲架籠養提高了奶香味滋味評分,降低了海苔味滋味和糊口性評分。有報道,奶香味主要來源于脂肪酸(硬脂酸、油酸和亞麻酸)加熱分解,脯氨酸的增加可提高奶香味感官評分[23-24]。蛋黃香味是由極性脂溶性成分和非脂溶性成分共同作用產生[25]。蛋黃香味受養殖方式、飼糧、品種等因素影響。在飼糧中添加椰子油和大麻籽可增強蛋黃蛋香味滋味,可能與蛋黃中n-6不飽和脂肪酸的含量提高有關[9, 26]。品種和發酵飼料會改變蛋黃中半胱氨酸的含量,導致雞蛋滋味變化[27]。本試驗中,棲架籠養組提高蛋黃奶香味滋味,可能是通過改變所含脂肪酸和氨基酸前體物質的組成或含量。另一方面,棲架籠養組蛋黃海苔味滋味降低,說明其前體物質n-3不飽和脂肪酸含量有改變。在飼糧中添加亞麻籽提高了蛋黃中海苔味滋味評分,降低了蛋黃滋味接受度,這由于蛋黃中二十二碳六烯酸含量的增加[7]。與籠養模式相比,散養模式下雞蛋中n-3不飽和脂肪酸含量增多,n-6不飽和脂肪酸含量減少,且蛋黃滋味感官評分降低[19]。
與傳統籠養相比,棲架籠養降低了蛋黃糊口性。糊口性為蛋黃獨特的質感特性,表現為蛋黃在口腔中黏附的狀態。有機籠養下熟蛋黃質感降低[19]。蛋黃質感受脂蛋白組成和結構影響。蛋液中蛋黃比例增加,降低蛋白溶解度使凝膠特性彈性增強[28]。蛋黃加熱后脂質遷移形成上層的高脂質結構和下層的低脂質結構,高脂結構中脂蛋白結晶度降低且形成有序、穩定的結構[29]。此外,在感官評價相關分析中,棲架籠養組奶香味滋味評分提高、海苔味滋味和糊口性評分降低,有助于提高蛋黃喜好度,但蛋黃喜好度評分無顯著差異。這可能是由于蛋黃受整體喜好度受滋味喜好度(= 0.66,<0.05)和質感喜好度(= 0.98,<0.05)共同影響。
與傳統籠養相比,棲架籠養組蛋黃電子鼻W1W、W2W傳感器響應程度顯著升高,電子舌鮮味、咸味傳感器響應程度顯著降低,蛋黃內聚性和硬度的質構特性顯著增加。與電子鼻傳感器反應的揮發性物質大多由脂肪酸的氧化分解形成[30]。有研究表明,蛋黃電子鼻傳感器響應值隨貯藏時間和溫度呈線性增長,可能與蛋黃中脂肪酸含量變化有關[31]。本研究中,電子鼻感受器響應值存在差異可能由于棲架籠養下蛋黃中脂肪酸發生改變。研究表明,與傳統籠養相比,散養蛋雞所產雞蛋的脂肪酸組成存在差異[32]。電子舌鮮味和咸味傳感器響應值作為蛋黃滋味的主要指標,可用于判斷雞蛋的品種[33]。此外,蛋黃中呈味氨基酸含量的變化影響電子舌鮮味和咸味傳感器響應值[31]。鮮味與5'-一磷酸肌苷呈正相關,咸味與氯化物呈正相關[34]。棲架籠養組電子舌傳感器響應程度降低可能由于蛋黃中呈味氨基酸減少。本試驗結果表明,感官評價的質感喜好度評分與質構特性數值呈負相關,但并未影響福利籠養蛋黃的質感喜好度的評分。在白康等研究中,飼糧添加棉籽油使蛋黃質構特性彈性的數值顯著增加,蛋黃難以嚼碎,熟蛋黃口感品質降低[35]。棲架籠養下蛋黃內聚性和硬度的質構特性增加可能與蛋黃的脂質組成和脂蛋白結構有關。在蛋液中添加奶酪可降低炒蛋硬度和內聚性,可能由于奶酪脂質進入蛋液脂蛋白基質增加了蛋白間的可塑性,高溫高壓處理使脂質結構緊密,從而增強炒蛋硬度、內聚性和粘附性[36]。
采用KNN、SVM和決策樹方法,基于電子鼻和電子舌數據,能夠判別傳統疊層籠養和棲架籠養下蛋黃氣味和滋味。以電子鼻傳感器響應值為基礎,KNN可有效判別不同籠養方式下蛋黃氣味。KNN可快速建立模型,可判別海蘭褐、五黑雞和北農2號雞蛋蛋清和蛋黃的氣味[31, 37]。電子鼻響應值使用SVM、主成分分析和DFA分析,可判斷蜂蜜的來源和質量[38]。基于電子舌數據,KNN、SVM和決策書可有效判別兩種籠養方式下蛋黃的滋味。研究表明,以電子鼻傳感器響應值為基礎,結合SVM可有效預測牛肉存貯時間和微生物群的種群及數量[12]。王瓊等研究表明,基于電子鼻和電子舌結果,主成分分析可判別不同煙熏工藝的培根,且與模糊數字感官評價法結果一致[39]。
(1)傳統疊層籠養和棲架福利籠養對雞蛋蛋重、蛋黃比例等指標無影響,但傳統疊層籠組蛋黃顏色顯著加深。
(2)棲架籠養下雞蛋蛋黃的奶香味滋味增強、海苔味滋味和糊口性減弱,并且電子鼻的硫化物傳感器響應程度更強,電子舌的咸味和鮮味傳感器響應值降低。
(3)采用KNN、SVM和決策樹方法,基于電子鼻和電子舌檢測,能夠判別傳統疊層籠養和棲架福利籠養下蛋黃氣味和滋味的差異。
[1] 楊柳, 李保明. 蛋雞福利化養殖模式及技術裝備研究進展. 農業工程學報, 2015, 31(23): 214-221.
Yang L, Li B M. Research progress of welfare-oriented breeding mode and technical equipments for laying hen. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(23): 214-221. (in Chinese)
[2] VITS A, WEITZENBüRGER D, HAMANN H, DISTL O. Production, egg quality, bone strength, claw length, and keel bone deformities of laying hens housed in furnished cages with different group sizes. Poultry Science, 2005, 84(10): 1511-1519.
[3] 石海鵬, 楊柳, 張家發, 李保明. 棲架散養系統對產蛋后期雞蛋品質、血清生化指標、屠宰性能、骨骼健康的影響. 中國家禽, 2015, 37(17): 39-43.
SHI H P, YANG L, ZHANG J F, LI B M. Effect of aviary system during period of laying on egg quality, serum biochemical indexes, slaughter performance and bone health in laying hens. China Poultry, 2015, 37(17): 39-43. (in Chinese)
[4] 王顯. 不同飼養方式對蛋雞生產性能、雞蛋品質及經濟效益的影響. 中國飼料, 2021, (6): 21-24.
WANG X. Effects of different raising systems on production performance, egg quality and economic benefit of laying hens. China Feed, 2021, (6): 21-24. (in Chinese)
[5] PLAGEMANN I, ZELENA K, KRINGS U, BERGER R G. Volatile flavours in raw egg yolk of hens fed on different diets. Journal of the Science of Food and Agriculture, 2011, 91(11): 2061-2065.
[6] FENG J, LONG S, ZHANG H J, WU S G, QI G H, WANG J. Comparative effects of dietary microalgae oil and fish oil on fatty acid composition and sensory quality of table eggs. Poultry Science, 2020, 99(3): 1734-1743.
[7] 馮嘉. 不同營養源生產n-3 PUFA保健雞蛋的風味變化研究[D]. 楊凌: 西北農林科技大學, 2018.
Feng J. Study on sensory profile of n-3 enriched eggs procured by dietary supplementation with different sources[D]. Yangling, Northwest A & F University, 2018. (in Chinese)
[8] CHRISTOPH C, RENéE G. Evaluation of potent odorants in heated egg yolk by aroma extract dilution analysis. European Food Research and Technology, 2004, 219(5): 452-454.
[9] GOLDBERG E M, RYLAND D, GIBSON R A, ALIANI M, HOUSE J D. Designer laying hen diets to improve egg fatty acid profile and maintain sensory quality. Food Science & Nutrition , 2013, 1(4): 324-335.
[10] ZHANG J H, CAO J, PEI Z S, WEI P Y, XIANG D, CAO X Y, SHEN X R, LI C. Volatile flavour components and the mechanisms underlying their production in golden pompano (Trachinotus blochii) fillets subjected to different drying methods: A comparative study using an electronic nose, an electronic tongue and SDE-GC-MS. Food Research International, 2019, 123: 217-225.
[11] SMYTH H, COZZOLINO D. Instrumental methods (spectroscopy, electronic nose, and tongue) as tools to predict taste and aroma in beverages: advantages and limitations. Chemical Reviews, 2013, 113(3): 1429-1440.
[12] OLGA S. P, EFSTATHIOS Z. P, FADY R. M, GEORGE-JOHN E. N. Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis. Food Research International, 2013, 50(1): 241-249.
[13] AMBRA R D R, FRANCESCO L, FEDERICA C, VINCENZO C. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment-A review. Journal of Food Engineering, 2017, 210: 62-75.
[14] TOKO K, MATSUNO T, YAMAFUJI K, HAYASHI K, IKEZAKI H, SATO K, TOUKUBO R, KAWARAI S. Multichannel taste sensor using electric potential changes in lipid membranes. Biosensors Bioelectron, 1994, 9(4-5): 359-64.
[15] 張秋會, 宋蓮軍, 黃現青, 趙秋艷, 崔文明, 王凡. 質構儀在食品分析與檢測中的應用. 農產品加工, 2017, (24): 52-56.
ZHANG Q H, SONG L J, HUANG X Q, ZHAO Q Y, CUI W M, WANG F. Implication of texture analyzer in food analysis and detection. Farm Products Processing, 2017, (24): 52-56. (in Chinese)
[16] 匡鳳軍, 劉群, 曹倩蕾, 馮彥勇. 質構儀在食品行業中的應用綜述. 現代食品, 2020, (3): 112-115.
KANG F J, LIU Q, CAO Q L, FENG Y Y. Application of texture analyzer in food industries. Modern Food, 2020, (3): 112-115. (in Chinese)
[17] 曹晏飛, 張俊妍, 滕光輝, 李保明, 李喬偉. 籠養和棲架養殖模式下雞蛋品質比較. 中國家禽, 2014, 36(13): 30-32.
CAO Y F, ZHANG J Y, TENG G H, LI B M, LI Q W. Quality comparison of eggs laid by laying hens kept in cage system and perch system. China Poultry, 2014, 36(13): 30-32. (in Chinese)
[18] GOLDBERG E M, RYLAND D, ALIANI M, HOUSE J D. Interactions between canola meal and flaxseed oil in the diets of White Lohmann hens on fatty acid profile and sensory characteristics of table eggs. Poultry Science, 2016, 95(8): 1805-1812.
[19] TER?I? D, ?LENDER B, HOLCMAN A. External, internal and sensory qualities of table eggs as influenced by two different production systems. Агрозна?е, 2013, 13(4).
[20] KAMIL K, MEHMET B, EMINE N H, MUSTAFA ?, ABDULLAH U ?, EROL B, FETHIYE ?. Effects of rearing systems on performance, egg characteristics and immune response in two layer hen genotype.Journal of Animal Sciences, 2012, 25(4): 559-568.
[21] Robert P T, Nicola G L, Cheryl F N. Effect of beta carotene on disease protection and humoral immunity in chickens. Avian Diseases, 1990: 848-854.
[22] Anders P M, Clotilde B, Jon B. Carotenoid-dependent signals: indicators of foraging efficiency, immunocompetence or detoxification ability? Poultry and Avian Biology Reviews, 2000, 11(3): 137-160.
[23] KRISHNA P, GEORGE D. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 1982, 299(5881): 352-355.
[24] JIA W, LIU Y Y, SHI L. Integrated metabolomics and lipidomics profiling reveals beneficial changes in sensory quality of brown fermented goat milk. Food Chemistry, 2021, 364: 130378.
[25] 馮月超, 劉美玉, 任發政, 石波. 不同蛋黃組分對蛋黃風味的影響. 食品科學, 2006(12): 58-62.
FENG Y C, LIU M Y, REN F Z, SHI B. Effect of different components of egg yolk on flavor of egg yolk. Food Science , 2006(12): 58-62. (in Chinese)
[26] GOLDBERG E M, GAKHAR N, RYLAND D, ALIANI ML, GIBSON R A, HOUSE J D. Fatty acid profile and sensory characteristics of table eggs from laying hens fed hempseed and hempseed oil. Journal of Food Science, 2012, 77(4): S153-160.
[27] MORI H, TAKAYA M, NISHIMURA K, GOTO T. Breed and feed affect amino acid contents of egg yolk and eggshell color in chickens. Poultry Science, 2020, 99(1): 172-178.
[28] XIANG X L, LIU Y Y, LIU Y, WANG X Y, JIN Y G. Changes in structure and flavor of egg yolk gel induced by lipid migration under heating. Food Hydrocolloids, 2020, 98: 105257.
[29] WANG Q L, JIN G F, JIN Y G. Discriminating eggs from different poultry species by fatty acids and volatiles profiling: Comparison of SPME-GC/MS, electronic nose, and principal component analysis method. European Journal of Lipid Science and Technology, 2014, 116(8): 1044-1053.
[30] 畢玉芳. 雞蛋風味特征及貯藏期間風味相關成分分析[D]. 武漢: 華中農業大學, 2016.
BI Y F. Analysis of egg flavor characteristics and flavor components during storage[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[31] DONG X G, GAO L B, ZHANG H J, WANG J, QIU K, QI G H, WU S G. comparison of sensory qualities in eggs from three breeds based on electronic sensory evaluations. Foods, 2021, 10(9): 1984.
[32] Mierli??D. Fatty acid profile and oxidative stability of egg yolks from hens under different production systems. South African Journal of Animal Science, 2020, 50(2): 196-206.
[33] QI J, LIU D Y, ZHOU G H, XU X L. Characteristic flavor of traditional soup made by stewing chinese yellow-feather chickens. Journal of Food Science, 2017, 82(9): 2031-2040.
[34] PABLO J, MONICA T, TATIANA K, BALASUBRAMANIAM V M, STEPHANIE C, JASON W M, PATRICK D C, GEORGE S, GUSTAVO V B C. Texture and water retention improvement in high- pressure thermally treated scrambled egg patties. Journal of Food Science, 2006, 71(2): E52-61.
[35] 白康, 陳輝, 郭小虎, 葛帥, 黃仁錄. 棉籽油對蛋品質及熟雞蛋質構的影響. 黑龍江畜牧獸醫, 2014(03): 80-82+207.
BAI K, CHEN H, GUO X H, GE S, HUANG R L. Effects of cottonseed oil on egg qualities and texture of boiled eggs. Heilongjiang Animal Science and Veterinary Medicine, 2014(03): 80-82+207. (in Chinese)
[36] ?LIWI?SKA M, WI?NIEWSKA P, DYMERSKI T, NAMIE?NIK J, WARDENCKI W. Food analysis using artificial senses. Journal of Agricultural and Food Chemistry, 2014, 62(7): 1423-1448.
[37] PATRYCJA C, WOJCIECH W. Sensor arrays for liquid sensing- electronic tongue systems. The Analyst, 2007, 132(10): 963.
[38] HUANG LX, LIU HR, ZHANG B, WU D. Application of electronic nose with multivariate analysis and sensor selection for botanical origin identification and quality determination of honey. Food and Bioprocess Technology, 2015, 8(2): 359-370.
[39] 王瓊,徐寶才,于海,李聰. 電子鼻和電子舌結合模糊數學感官評價優化培根煙熏工藝. 中國農業科學, 2017, 50(1): 161-170.
WANG Q, XU B C, YU H, LI C. Electronic nose and electronic tongue combined with fuzzy mathematics sensory evaluation to optimize bacon smoking procedure. Scientia Agricultura Sinica, 2017, 50(1): 161-170. (in Chinese)
Effects of Different Caging Regimes on Egg Yolk Flavor of Laying Hens

1Laboratory of Quality & Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs/Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs/Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081;2Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs/China Agricultural University, Beijing 100083
【Objective】In this study, sensory evaluation, electronic nose detection, electronic tongue detection and texture analyzer detection were used to determine the differences in egg yolk flavor between traditional caging regime and furnished caging regime, to provide basic data on the egg yolk flavor. 【Method】The eggs were produced by Jing Tint 6 laying hens that were 55 weeks old and healthy in traditional caging regime and furnished caging regime that was used as the test objects. The aroma, flavor and texture of egg yolk were detected by sensory evaluation, electronic nose detection and electronic tongue detection, and texture analyzer. Linear discriminant analysis (LDA) analysis, support vector machine (SVM) analysis, K-nearest neighbor method (KNN) analysis and decision tree analysis were used to distinguish the yolk flavor of the two caging regimes to explore the influence of different caging regimes on the flavor of egg yolk.【Result】The yolk color was significantly increased in traditional caging regime compared with furnished caging regime (<0.05). The milky flavor scores of egg yolk in furnished caging regime were significantly higher than that in traditional caging regime (<0.05), and the seaweed flavor scores and stickiness scores of egg yolk in traditional caging regime were higher than those in furnished caging regime (<0.05). The results of correlation analysis showed that the overall preference score of the yolk was significantly correlated with the acceptance of flavor scores and texture scores (<0.05). Egg flavor was significantly negatively correlated with fishy flavor and sweet flavor (<0.05), and the fishy flavor was significantly positively correlated with sweet flavor (<0.05). There was a significant positive correlation between egg yolk lumpy and egg yolk adhesive dentition (<0.05). The responses of W2W, W2S, W1W and W1S of electronic nose sensors in furnished caging regime were significantly higher than those in traditional caging regime (<0.05), and the responses of SRS, STS and UMS of egg yolk electronic tongue sensors in furnished caging regime were significantly lower than those in traditional caging regime (<0.05). The hardness and chewiness of egg yolk in furnished caging regime were significantly higher than that in traditional caging regime (<0.05). The KNN method could discriminate the differences in egg yolk aroma in the different caging regimes based on the responses of the electronic nose, and the accuracy was 94.5%. The SVM, KNN method and decision tree could distinguish the differences in egg yolk flavor in the different caging regime based on the responses of the electronic tongue, with 100% accuracy rate. 【Conclusion】In conclusion, the milky flavor of egg yolk was increased in furnished caging regime, and seaweed flavor and stickiness were reduced. The instrument detected the increased responses of the electronic nose sulfide sensor and the decreased responses of the electronic tongue umami and salty sensors in furnished caging regime. According to the responses of electronic nose and electronic tongue, the differences in egg yolk flavor in two different caging regimes could be effectively distinguished by KNN analysis, SVM analysis and decision tree analysis.
egg flavor; furnished caging regime; electronic nose; electronic tongue; texture characteristics; laying hen

10.3864/j.issn.0578-1752.2023.13.014
2022-04-26;
2023-02-28
現代農業產業技術體系專項資金資助(CARS-40-K12)、中國農業科學院農科英才特殊支持計劃(NKYCQN-2021-016)
高麗冰,E-mail:18811618200@163.com。通信作者王晶,Tel/Fax:010-82106097;E-mail:wangjing@caas.cn
(責任編輯 林鑒非)