999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

外源γ-氨基丁酸對蛇龍珠葡萄葉片碳氮代謝的影響

2023-07-27 02:18:00王春恒韓愛民張立梅李斗王宇航金鑫馮麗丹楊江山
果樹學報 2023年7期

王春恒 韓愛民 張立梅 李斗 王宇航 金鑫 馮麗丹 楊江山

摘 ? ?要:【目的】碳氮代謝是植物體內重要的生理過程,探究γ-氨基丁酸(GABA)對葡萄碳氮代謝的影響,并篩選最適調控濃度?!痉椒ā恳?0年生釀酒葡萄蛇龍珠為試材,于開花期、坐果期、膨大期、轉色期對長勢一致的植株進行葉面噴施,研究了不同濃度γ-氨基丁酸5、10、15、20 mmol·L-1處理對葉片碳、氮代謝及其關鍵酶活性的影響?!窘Y果】與對照相比,噴施外源GABA提高了葡萄葉片碳代謝相關蔗糖合酶(SuSy)、蔗糖磷酸合成酶(SPS)、酸性轉化酶(AI)和中性轉化酶(NI)活性,增加淀粉、可溶性糖、果糖、葡萄糖和蔗糖含量;GABA處理也增強了氮代謝相關硝酸還原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)、谷氨酸脫氫酶(GDH)、谷氨酸草酰乙酸轉氨酶(GOT)、谷氨酸丙酮酸轉氨酶(GPT)活性,增加硝態氮(NO3-·N)含量,增加了內源GABA含量?!窘Y論】外源GABA增加葡萄葉片內源GABA含量,從而增強碳代謝和氮代謝相關酶活性,增加淀粉、可溶性糖的積累,促進硝態氮(NO3-·N)吸收和銨態氮(NH4+·N)的轉化,其中以10 mmol·L-1外源γ-氨基丁酸效果最佳。

關鍵詞:葡萄;γ-氨基丁酸;碳代謝;氮代謝

中圖分類號:S663.1 文獻標志碼:A 文章編號:1009-9980(2023)07-1386-13

Effects of γ-aminobutyric acid on carbon and nitrogen metabolism in leaves of Cabernet Gernischt grape

WANG Chunheng1, HAN Aimin1, ZHANG Limei1, LI Dou1, WANG Yuhang1, JIN Xin1, FENG Lidan2, YANG Jiangshan1*

(1College of Horticulture, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2Gansu Wine Industry Technology Research and Development Center, Lanzhou 730070, Gansu, China)

Abstract: 【Objective】 Carbon metabolism and nitrogen metabolism are the most basic and important physiological processes in plant. The ability of carbon and nitrogen metabolism can directly affect the quality and yield of crops. It has been shown that regulating carbon and nitrogen metabolism is an important measure to improve plant yield and quality. The aim of this study was to investigate the effect of γ-aminobutyric acid (GABA) on carbon and nitrogen metabolism in grape and to screen the optimal regulation concentration. 【Methods】 Using 10-year-old wine grape Cabernet Gernischt as test material, the effects of different concentrations of γ-aminobutyric acid (GABA) on the carbon and nitrogen metabolism and key enzyme activities in the leaves of grape were studied. A total of 4 GABA concentration treatments were set up: 5 mmol·L-1 (T1), 10 mmol·L-1 (T2), 15 mmol·L-1 (T3), 20 mmol·L-1 (T4), and distilled water treatment was used as the control (CK). The leaves of grape plants with the same growth and without diseases and pests were sprayed at the flowering stage, fruit setting stage, fruit expansion stage and fruit color conversion stage. Each treatment had 3 replicates and each replicate had 5 plants. The amount of spray was controlled by the appearance of initial drip from the leaves. The leaf sampling time was 8:00 am on the third day after treatment, and the leaves were sampled again at mature stage. After freezing in liquid nitrogen, the samples were placed in an ultra-low temperature refrigerator at -80 ℃ for later use. 【Results】Compared with CK, the exogenous GABA treatments increased the activities of sucrose synthase (SuSy), sucrose phosphate synthase (SPS), acid invertase (AI) and neutral invertase (NI) related to the carbon metabolism in the grape leaves, and increased the contents of starch, soluble sugar, fructose, glucose and sucrose. The GABA treatments also enhanced the activities of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT), and also increased the content of nitrate nitrogen (NO3-·N) and the endogenous GABA content. The exogenous GABA treatments significantly increased the contents of starch, soluble sugar, NO3-·N and the activities of SuSy-s, NR, GS, GDH, GOT and GPT in the leaves of Cabernet Gernischt during the growth period, and significantly increased the contents of fructose, glucose, sucrose, NH4+·N and the activities of SuSy-c, SPS, AI, NI and GOGAT, and also increased the content of endogenous GABA. Specifically, the endogenous GABA content in the grape leaves increased significantly at flowering stage, fruit setting stage, veraison stage and maturity stage after the exogenous 10 mmol·L-1 GABA treatment. The starch content in the leaves increased significantly in the growth period, the fructose content increased significantly at the fruit setting stage, the expanding stage and the mature stage, the glucose content increased significantly at the expanding stage and the turning stage, the sucrose content increased significantly at the expanding stage and the mature stage, and the total soluble sugar increased significantly from the flowering stage to the mature stage. The activity of carbon metabolism-related enzyme AI increased significantly at the expansion stage, the turning stage and the mature stage, and the activity of NI increased significantly at the fruit setting stage and the mature stage. At the same time, the GABA treatments significantly increased the SPS activity at the fruit setting stage, the expansion stage and the mature stage, respectively. The activity of SuSy-s increased significantly at the fruit setting stage, the turning stage and the mature stage, and the activity of SuSy-c increased significantly at the expansion stage, the turning stage and the mature stage. Similarly, after the exogenous GABA treatments, the content of NO3-·N in grape leaves increased significantly from flowering stage to maturity stage, and maintained a higher level of NO3-·N at the late stage of grape growth compared with the control, while the content of NH4+·N had no significant difference with those of the CK except for that at maturity stage. The activity of GOGAT, GS and NR increased significantly from fruit setting stage to maturity stage, the activity of GDH increased significantly from flowering stage to maturity stage, and the activity of GOT and GPT increased significantly except for maturity stage. 【Conclusion】 During the growth period, the GABA treatments increased the carbon metabolism and nitrogen metabolism related substances and enzyme activities in the grape leaves. It was speculated that the exogenous GABA treatments increased the carbon and nitrogen metabolism activity of the grape leaves, and affected the carbon metabolism of the leaves as a nitrogen source, which strengthened the relationship between nitrogen metabolism and carbon metabolism to some extent. The exogenous GABA increased the endogenous GABA in the grape leaves, thereby enhanced the activities of enzymes related to carbon metabolism and nitrogen metabolism, increased the accumulation of starch and soluble sugar, and promoted the absorption of nitrate nitrogen (NO3-·N) and the transformation of ammonium nitrogen (NH4+·N). 10 mmol·L-1 exogenous GABA had the best effect.

Key words: Grape; γ-aminobutyric acid; Carbon metabolism; Nitrogen metabolism

碳代謝和氮代謝是植物生命活動中最基礎的代謝和重要生理過程[1],植物碳氮代謝能力直接影響作物的品質和產量[2]。為提高作物碳氮代謝能力,降低干旱、鹽堿、低溫、水澇、病蟲害等不利條件對產量和品質的影響,以及在正常生長條件下增強植物碳氮代謝能力,前人已做大量研究。研究表明,在鹽脅迫條件下,可通過褪黑素提高水稻幼苗碳、氮代謝能力來提升抗性抵御環境脅迫,恢復生長力[3]。呂騰飛等[4]利用緩釋氮肥與尿素配施顯著提高雜交秈稻幼穗和劍葉細胞碳、氮代謝關鍵酶活性,進一步提高雜交稻產量。李健忠等[5]通過打頂后噴施油菜素內酯和生長素增強煙草碳氮代謝從而提高煙葉質量和產量。金正勛等[6]對水稻噴施6-BA和ABA,調控籽粒碳氮代謝相關酶基因表達從而提高稻米品質。因此,調控碳氮代謝是提高植物產量和品質的重要措施。

γ-氨基丁酸(GABA)是動植物體內一種天然存在的非蛋白組成氨基酸,是一種重要的抑制性神經遞質,多數研究側重于醫藥研究,能有效抑制谷氨酸的脫羧反應,提高葡萄糖磷酸酯酶的活性,具有鎮靜、催眠、抗驚厥、降血壓的生理作用;在植物界的研究中發現,GABA是植物生長所必需的,它與碳和氮代謝密切相關,是橋接碳和氮代謝的關鍵因素[7-8]。植物細胞遭受脅迫時,可誘導體內谷氨酸脫羧酶(GAD)催化谷氨酸脫羧產生高于正常水平的GABA,同時消耗H+,因此認為GABA的生成可維持細胞pH的穩定[9]。王泳超[10]和于立堯[11]的研究證明適量的外源GABA能恢復鹽脅迫和干旱條件下玉米和甜瓜幼苗的株高、根系發育以及各種生長指標,對植物形態建成具有調控作用。閆妮等[12]利用GABA浸種提高了番茄出苗率以及促進植株生長緩解鹽脅迫;適度噴施GABA可恢復NaCl脅迫下西伯利亞白刺葉肉細胞光合活性[13];降低高溫、干旱脅迫下高羊茅葉綠素含量下降速度[14];增強硝酸鈣脅迫下甜瓜幼苗對NO3-·N的同化能力[15]。目前,通過施用含氮肥料來提高作物產量和品質一直是綠色革命的一個重要因素[16],然而,在生態方面,過度施用化肥會造成災難性的影響,例如富營養化[17]。更好地了解植物氮代謝對于提高植物產量和減少肥料過度使用至關重要[18]。GABA可作為氮源被植株直接吸收[19],且外源GABA在葡萄生長發育過程中對葉片碳氮代謝的影響鮮有報道。筆者在本試驗中通過對葡萄葉面GABA的噴施處理,探究外源GABA對葡萄碳氮代謝的影響,以期為葡萄生產施用γ-氨基丁酸類肥料提供理論依據和技術參數。

1 材料和方法

1.1 植物材料和試驗地概況

試驗以10年生釀酒葡萄蛇龍珠(Cabernet Gernischt)為試材,對葡萄葉片進行不同濃度GABA處理,于2021年4—11月在甘肅農業大學葡萄園進行,行株距0.75 m×1.5 m,單干雙臂Y形整形,南北走向。

1.2 試驗設計

試驗共設4個GABA濃度處理:5 mmol·L-1(T1)、10 mmol·L-1(T2)、15 mmol·L-1(T3)、20 mmol·L-1(T4),以蒸餾水處理為對照,于開花期、坐果期、膨大期、轉色期對長勢一致、無病蟲害的植株進行葉面噴施,以葉片開始滴液為準,每個處理設3個重復,每個重復5株。葉片采樣時間為處理后第3天上午8:00,成熟期再取樣1次,液氮冷凍后放入-80 ℃超低溫冰箱備用。

1.3 測定項目與方法

1.3.1 ? ?葉片碳代謝指標測定 ? ?可溶性總糖含量采用蒽酮-硫酸法測定[20],使用高效液相色譜儀(美國Waters Acquity Arc)測定蔗糖、葡萄糖和果糖含量,參照賀雅娟等[21]的方法,色譜條件:XBridge BEH Amide色譜柱(4.6 mm×150.0 mm、2.5 μm),柱溫40 ℃,流動相為75%乙腈、0.2%乙胺以及24.8%超純水,流速0.8 mL·min-1,進樣量 20 μL,檢測波長為254 nm。

蔗糖合酶合成方向(SuSy-s)、蔗糖合酶分解方向(SuSy-c)、蔗糖磷酸合成酶(SPS)、酸性轉化酶(AI)、中性轉化酶(NI)酶液提取參考張弦[22]的方法,酶活性測定參考潘儼[23]的方法。

1.3.2 ? ?葉片氮代謝指標測定 ? ?硝態氮含量通過水楊酸-硫酸溶液比色法測定[24]。銨態氮含量采用靛酚藍-分光光度法測定[25]。硝酸還原酶(NR)活性采用磺胺比色法測定[26]。谷氨酰胺合成酶(GS)活性采用FeCl3絡合顯色比色法測定[27]。谷氨酸合成酶(GOGAT)活性參照趙鵬等[28]的方法測定。谷氨酸脫氫酶(GDH)活性參考王小純等[29]的方法測定。谷氨酸草酰乙酸轉氨酶(GOT)和谷氨酸丙酮酸轉氨酶(GPT)活性參考吳良歡等[30]的方法測定。

1.3.3 ? ?數據分析 ? ?用 Excel 2016進行數據處理及作圖,用SPSS 23.0對數據進行統計分析。

2 結果與分析

2.1 GABA對蛇龍珠葡萄葉片碳代謝的影響

2.1.1 ? ?GABA對葉片可溶性糖、果糖、葡萄糖、蔗糖以及淀粉含量的影響 ? ?不同濃度GABA對蛇龍珠葡萄葉片可溶性糖、果糖、葡萄糖、蔗糖和淀粉含量的影響如表1所示,生育期內葉片可溶性糖含量呈“下降-上升-下降”的變化趨勢,果糖、葡萄糖和蔗糖含量均呈先上升的波動變化趨勢,淀粉含量呈先降后升的趨勢。與對照相比,GABA處理于坐果期、膨大期、轉色期明顯提高可溶性糖含量;于開花期至成熟期提高果糖、葡萄糖和蔗糖含量;開花期、坐果期、膨大期、轉色期明顯增加淀粉含量,并隨GABA濃度增大均呈現出先升后降的變化趨勢。在不同濃度GABA處理中,可溶性糖含量在T2、T3處理后各時期較對照顯著增加(p<0.05),T2處理提升效果最佳,開花期至成熟期較對照提高了13.48%、85.94%、31.09%、58.72%、34.65%。T1、T2處理使果糖含量于坐果期、膨大期和成熟期顯著增加(p<0.05)及葡萄糖含量在膨大期、轉色期顯著增加(p<0.05),而T2和T3處理使蔗糖含量在膨大期、成熟期顯著增加(p<0.05)。淀粉含量在T3、T4處理后于開花期至轉色期提升效果較好,在成熟期反而顯著降低其含量(p<0.05),而T1、T2處理使其含量各時期顯著增加(p<0.05),T2處理提高效果最佳,開花期至成熟期分別較對照提高25.00%、76.63%、101.74%、112.6%、8.47%。

2.1.2 ? ?GABA對葉片蔗糖合酶(SuSy)和蔗糖磷酸合成酶(SPS)活性的影響 ? ?不同濃度GABA對葡萄葉片蔗糖合酶合成方向(SuSy-s)活性影響如圖1-A所示,隨著果實的生長發育,葉片SuSy-s活性呈“上升-下降-上升”的變化趨勢。與對照相比,GABA處理明顯增強坐果期、膨大期、成熟期SuSy-s活性,尤其在成熟期急劇增強,其中,T4處理增強效果最佳,分別較對照提高了40.95%、95.50%、138.16%(p<0.05);開花期、轉色期T1處理顯著提高其活性(p<0.05),較對照提升33.33%、56.07%,而T4處理降低了其活性。

生育期葉片SPS活性逐漸升高(圖1-B)。與對照相比,GABA處理后SPS活性于坐果期、膨大期和成熟期明顯增強。T3、T4處理于坐果期、膨大期提升效果較好,在轉色期、成熟期降低其活性。而T2處理于坐果期、膨大期、成熟期顯著增強其活性(p<0.05),較對照提升21.57%、30.44%、15.82%。

葉片蔗糖合酶分解方向(SuSy-c)活性呈逐漸上升趨勢(圖1-C)。與對照相比,GABA處理使SuSy-c活性于坐果期、膨大期、轉色期、成熟期明顯增強;其中,坐果期、成熟期T4處理提升SuSy-c活性效果突出,于膨大期、轉色期、成熟期T2、T3處理使其活性顯著上升(p<0.05),T2處理增強效果最佳,較對照提升86.63%、32.27%、35.72%。

2.1.3 ? ?GABA對葉片酸性轉化酶(AI)、中性轉化酶(NI)活性的影響 ? ?不同濃度GABA對葡萄葉片AI活性影響如圖1-D所示,AI活性總體呈逐漸上升趨勢。與對照相比,GABA處理使AI活性在膨大期、轉色期、成熟期明顯增強,尤其在成熟期T2、T3、T4處理使其活性急劇增強;其中,T4處理于坐果期、膨大期、成熟期明顯增強AI活性,但在轉色期顯著降低其活性(p<0.05);而T2處理使AI活性在膨大期和成熟期顯著增強(p<0.05);T3處理使其活性在膨大期、轉色期、成熟期顯著增強(p<0.05),較對照提升94.19%,20.21%,95.90%。

葉片NI活性呈先上升的波動變化趨勢(圖1-E)。與對照相比,GABA處理使NI活性于坐果期、膨大期、轉色期明顯增強及成熟期急劇增強,并隨GABA濃度增加呈先升后降的變化趨勢;其中,NI活性在T3、T4處理后,成熟期顯著升高、膨大期和轉色期反而明顯降低;而T1處理于坐果期、膨大期、轉色期、成熟期提升效果顯著(p<0.05),較對照提升40.61%、14.84%、39.10%、55.20%。

2.2 GABA對蛇龍珠葡萄葉片氮代謝的影響

2.2.1 ? ?GABA對葉片硝態氮(NO3-·N)和銨態氮(NH4+·N)及GABA含量的影響 ? ?不同濃度GABA對葡萄葉片NO3-·N含量影響如圖2-A所示,NO3-·N含量在生育期內呈先升后降的變化趨勢,與對照相比,GABA處理使其含量在轉色期、成熟期上升并趨于穩定,并隨GABA處理濃度增加呈先升后降的變化趨勢,其中,T2、T3處理明顯提升其含量,T2處理顯著提升NO3-·N含量(p<0.05),開花期至成熟期分別較對照提升51.80%、17.75%、5.86%、64.97%、89.53%。

葉片NH4+·N含量呈先升后降的變化趨勢(圖2-B),與對照相比,GABA處理后NH4+·N含量于膨大期、轉色期、成熟期明顯上升,其中,T4處理提升效果顯著(p<0.05),分別較對照升高16.31%、14.42%、18.10%;而在成熟期T2、T3處理顯著提升NH4+·N含量(p<0.05),其他時期T1、T2、T3處理與對照基本無顯著差異。

不同濃度GABA對葡萄葉片內源GABA含量的影響如圖2-C所示,內源GABA含量從開花期至成熟期呈逐漸上升的變化趨勢。與對照相比,外源GABA處理使得葉片內源GABA含量在開花期、坐果期、轉色期、成熟期增加,尤其成熟期T2、T3處理明顯增加其含量,并隨外源GABA濃度增加其含量呈先升后降的變化趨勢,其中,T2處理顯著增加其含量(p<0.05),開花期、坐果期、轉色期、成熟期分別較對照提高73.55%、10.46%、18.41%、30.91%。

2.2.2 ? ?GABA對葉片硝酸還原酶(NR)活性的影響 不同濃度GABA對葡萄葉片NR活性的影響如圖3-A所示,NR活性呈先升后降的變化趨勢。與對照相比,GABA處理在各時期明顯增強NR活性,并隨GABA處理濃度增加呈先升后降的變化趨勢,其中,坐果期T1、T2、T3處理急劇增強其活性。T2處理NR活性顯著增強(p<0.05),開花期至成熟期分別較對照提高了58.93%、57.30%、72.43%、38.36%、63.83%。

2.2.3 ? ?GABA對葉片谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)以及谷氨酸脫氫酶(GDH)活性的影響 ? ?不同濃度GABA對葡萄葉片GS活性的影響如圖3-B所示,GS活性總體呈逐漸增強的趨勢。與對照相比,GABA處理在各物候期均提高GS活性,并隨GABA濃度增加其活性呈先升后降的變化趨勢,其中,除膨大期T3、T4處理急劇增強GS活性外,其他時期T2處理增強效果最佳,GS活性顯著增強(p<0.05),開花期至成熟期分別較對照升高53.40%、28.72%、25.85%、25.18%、15.05%。

葉片GOGAT(圖3-C)和GDH活性(圖3-D)均呈先升后降的變化趨勢,GOGAT和GDH活性隨GABA濃度增加均呈先升后降的變化趨勢,GOGAT活性除開花期外其他時期明顯增強,GDH活性在各時期均明顯增強。其中,T2、T3處理提升二者活性效果顯著(p<0.05),GOGAT活性于坐果期至成熟期T2處理較對照升高46.78%、33.41%、86.55%、58.53%,以及T3處理較對照提升48.53%、65.54%、103.11%、46.92%;GDH活性于開花期至成熟期T2處理較對照升高12.63%、46.78%、33.41%、86.55%、58.53及T3處理較對照提高5.96%、48.53%、65.53%、103.11%、46.92%。

2.2.4 ? ?GABA對葉片谷氨酸草酰乙酸轉氨酶(GOT)和谷氨酸丙酮酸轉氨酶(GPT)活性的影響 ? ?不同濃度GABA對葡萄葉片GOT和GPT活性影響如圖3-E和圖3-F所示,GOT和GPT活性均呈先升后降的變化趨勢。與對照相比,GABA處理在各時期明顯增強二者活性,并隨GABA濃度增加二者活性呈先升后降的趨勢;其中,在成熟期T1、T2處理使GOT和GPT活性顯著增強(p<0.05),于開花期、坐果期、膨大期和轉色期T2、T3處理顯著增強二者活性(p<0.05),T2處理提升效果最優,GOT活性于開花期至成熟期T2處理較對照升高47.75%、31.84%、10.89%、16.83%、8.01%,GPT活性在開花期至成熟期較對照升高63.10%、11.80%、16.22%、48.28%、5.56%。

3 討 論

植物生長過程中碳氮代謝在植株體內的動態變化直接影響著光合產物的合成、轉化以及礦質營養的吸收、蛋白質的合成等[1],氮代謝為碳代謝提供酶和光合色素,碳代謝為氮代謝提供碳源和能量,且二者需要共同的還原力和ATP、碳骨架等[31]。植物碳代謝產物主要是淀粉、可溶性糖、蔗糖、葡萄糖、果糖等,SPS、SuSy、AI、NI等酶參與碳代謝物質的形成和轉化[32]。韓麗娜等[33]對葡萄的試驗研究中,通過控制施氮量增強碳代謝關鍵酶SPS、SS活性,進一步促進蔗糖、葡萄糖和果糖的積累,從而提高葡萄產量和品質。植物氮代謝主要包括NO3-·N、NH4+·N的合成和固定,NR、GOGAT、GS、GDH、GOT、GPT等酶參與二者的吸收及固定[34]。吳薇等[35]的研究表明,通過控制施氮量增強NR活性和氮代謝物含量從而促進烤煙生長發育提高品質。高松等[36]的研究通過增加大蔥葉片蔗糖、還原糖、NO3-·N、NH4+·N含量和提高SPS、SS、NR、GS、GDH、GOGAT等的活性,增強大蔥生長力。因此,研究植物碳氮代謝規律,探索有效調控途徑和方法,對提高作物產量和品質具有重要的作用[5,9,34]。筆者課題組在GABA對果實品質影響的研究結果中顯示,GABA處理顯著提高了果實可溶性糖、蔗糖、果糖、葡萄糖和有機酸含量[37],改善了果實品質。本研究中外源GABA處理在生育期顯著增加了蛇龍珠葡萄葉片淀粉、可溶性糖、NO3-·N含量及提高SuSy-s、NR、GS、GDH、GOT、GPT活性,明顯增加了果糖、葡萄糖、蔗糖、NH4+·N含量及提高SuSy-c、SPS、AI、NI、GOGAT活性,增加了內源GABA含量,與對照相比,在各處理中10 mmol·L-1 GABA提升效果最佳。

試驗研究表明,外源10 mmol·L-1 GABA處理在生育期顯著增加了蛇龍珠葡萄葉片淀粉含量,與宋鎖玲[34]的研究結論相似,GABA增加了甜瓜幼苗葉片淀粉含量。Chen等[38]研究發現GABA顯著增加楊樹莖中蔗糖、果糖和非結構性碳水化合物含量。GABA噴施后果糖含量于坐果期、膨大期和成熟期顯著增加,葡萄糖含量在膨大期和轉色期顯著提升,蔗糖含量在膨大期和成熟期顯著增加,可溶性糖總量于開花期至成熟期顯著增強。GABA處理使AI活性在膨大期、轉色期和成熟期顯著增強,NI活性于坐果期和成熟期顯著增加。同時GABA處理使得SPS活性分別于坐果期、膨大期和成熟期顯著增強,SuSy-s活性于坐果期、轉色期和成熟期顯著增強,SuSy-c活性在膨大期、轉色期和成熟期顯著增強,與劉金平[39]的研究結果一致,GABA增強了不結球白菜幼苗SPS、SuSy活性。GABA通過提高GAD、GABA-T活性和CmGAD基因表達量,促進GABA的生物合成[40-41],外源GABA處理后開花期、坐果期、轉色期和成熟期葡萄葉片內源GABA含量顯著上升。研究表明,給楊樹幼苗施用GABA后樹體莖中蔗糖含量增加并伴隨蔗糖代謝相關基因SUS和SPS表達上調[38,42]。在植物碳代謝中,SPS活性強弱直接影響植株體內蔗糖和淀粉的分配,其活性越低蔗糖積累越少[32];SuSy在植株體內對蔗糖的轉化方向存在催化合成(SuSy-s)和催化分解(SuSy-c),兩個催化方向的轉換與自身是否被磷酸化有關[43],通常SuSy被認為主要起分解蔗糖作用,也有研究者認為其在光合器官中具有較強的催化蔗糖合成能力,還有研究者提出SuSy的作用在不同植物中存在較大差異[44]。表明外源GABA處理增加葡萄葉片蔗糖含量與SPS、SuSy活性的增強有關。蔗糖在葉片內的貯存和轉化還與AI、NI活性變化相關,可被AI、NI不可逆分解為果糖和葡萄糖[45]。蔗糖可作為信號分子調控基因的表達,從而影響酶催化活性[46]。推測蔗糖含量變化影響了蔗糖催化分解反應活性,增強AI、NI活性促進果糖、葡萄糖的生成。外源GABA也可提高正常條件和低溫條件下番茄葉片葉綠素含量,提高抗氧化酶活性和葉片凈光合速率,從而增加可溶性糖、還原糖及非還原糖含量[47]。推斷淀粉、可溶性糖含量的增加也與GABA影響葉片光合作用相關。表明外源GABA增加蛇龍珠葡萄葉片內源GABA含量,進一步影響碳代謝相關酶活性,從而調控淀粉、可溶性糖含量增加。

本試驗結果表明,外源10 mmol·L-1 GABA處理在生育期使得蛇龍珠葡萄葉片NO3-·N含量在開花期至成熟期顯著增加,且在葡萄生長后期與對照相比保持較高NO3-·N水平,與任文奇[48]的研究結果一致,GABA增加了甜瓜幼苗葉片NO3-·N含量。而GABA處理后葉片NH4+·N含量除成熟期外其他時期與對照無顯著差異,可能與GS/GOGAT途徑活性和GDH活性增強影響NH4+轉化有關。劉金平[39]和弓瑞娟[9]的研究發現,GABA增強了不結球白菜和生菜GS、GOGAT和NR活性。本試驗結果顯示,GABA處理使得GOGAT活性于坐果期至成熟期顯著增強,GS和NR活性在開花期至成熟期均顯著增強。GABA處理使GDH活性在開花期至成熟期顯著增強,與燕博文[49]的研究結論相似,GABA增強了玉米幼苗GDH活性。GABA處理后GOT、GPT活性除成熟期外其他時期顯著增強,與谷海濤等[50]的研究結果一致,GABA增強了粳稻葉片GOT、GPT活性。研究表明,外源GABA使生菜葉片硝酸還原酶基因表達上調,從而顯著增強NR活性[51]。GABA可有效促進甜瓜根系對NO3-·N的吸收及其向地上部分的運輸[15]。表明GABA處理增加葡萄葉片NO3-·N的積累與NR活性增強有關。植株吸收NO3-被NR還原為NH4+,NH4+在植物體內必須及時被同化來消除其對細胞的毒性,再通過主要途徑GS/GOGAT循環催化下進一步被固定為酰胺態氮[15]。前人研究發現,GABA也可誘導植株葉片中GS2/GOGAT基因表達上調進一步增強GS/GOGAT途徑活性從而提升氮的通量[52]。推測內源GABA含量的增加影響葡萄葉片氮代謝關鍵酶活性,促進NO3-·N的吸收及向NH4+·N的轉化固定。GDH是除GS/GOGAT途徑以外的另一種NH4+同化途徑,GDH既能催化NH4+與a-酮戊二酸合成谷氨酸,又能催化谷氨酸氧化脫氨釋放出NH4+,在氮代謝中起著重要的作用[53]。葡萄葉片GDH活性增強加速了NH4+的轉化,同時促進谷氨酸氧化脫氨釋放出NH4+。而GOT和GPT活性增強會消耗GDH催化NH4+反應的合成物谷氨酸,可催化谷氨酸與其他底物的反應生成天冬氨酸和丙氨酸[54]。使NH4+的消耗大于累積,與本試驗中葉片NH4+·N含量變化不顯著相契合,內源GABA含量的增加進一步促進NH4+·N的轉化。

在生育期內,GABA處理不同程度提高了葡萄葉片碳代謝和氮代謝有關物質的含量和酶的活性。研究發現,GABA參與氮的儲存與運輸,其代謝途徑被認為能夠調節碳、氮營養平衡,維持植物正常的生長和發育[19]。氮素是植物必需的元素,給小麥施氮增強旗葉SS活性、蔗糖和淀粉含量[55]。擬南芥在GABA作為唯一氮源的培養基上可正常生長[56]。推測外源GABA處理激發了葡萄葉片碳、氮代謝活力,同時作為氮源影響葉片碳代謝,在一定程度加強了氮代謝與碳代謝的聯系。

4 結 論

綜上所述,10 mmol·L-1外源GABA增加葡萄葉片內源GABA含量,從而誘導碳、氮代謝相關酶SPS、SuSy、AI、NI、NR、GS、GOGAT、GDH、GOT、GPT活性增強,增加淀粉、可溶性糖、蔗糖、果糖、葡萄糖的積累和促進了氮素的吸收轉化,提升葡萄葉片碳氮代謝水平,促進植株生長。

參考文獻 References:

[1] 寧宇,鄧惠惠,李清明,米慶華,韓賓,艾希珍. 紅藍光質對芹菜碳氮代謝及其關鍵酶活性的影響[J]. 植物生理學報,2015,51(1):112-118.

NING Yu,DENG Huihui,LI Qingming,MI Qinghua,HAN Bin,AI Xizhen. Effects of red and blue light quality on the metabolites and key enzyme activities of carbon-nitrogen metabolism in celery[J]. Plant Physiology Journal,2015,51(1):112-118.

[2] GANGWAR S,SINGH V P. Indole acetic acid differently changes growth and nitrogen metabolism in Pisum sativum L. seedlings under chromium (Ⅵ) phytotoxicity:Implication of oxidative stress[J]. Scientia Horticulturae,2011,129(2):321-328.

[3] 陳麗珊,周紅艷,林偉偉. 外源褪黑素對鹽脅迫下水稻苗期碳氮代謝的影響[J/OL]. 生態學雜志,2022:1-11. http://kns.cnki.net/kcms/detail/21.1148.Q.20220917.1053.004.html.

CHEN Lishan,ZHOU Yanhong,LIN Weiwei. Effects of exogenous melatonin on carbon and nitrogen metabolism of rice seedlings under salt stress[J/OL]. Chinese Journal of Ecology,2022:1-11. http://kns.cnki.net/kcms/detail/21.1148.Q.20220917.1053.004.html.

[4] 呂騰飛,諶潔,代鄒,馬鵬,楊志遠,鄭傳剛,馬均. 緩釋氮肥與尿素配施對機插雜交秈稻碳氮積累的影響[J]. 作物學報,2021,47(10):1966-1977.

L? Tengfei,SHEN Jie,DAI Zou,MA Peng,YANG Zhiyuan,ZHENG Chuangang,MA Jun. Effects of combined application of slow release nitrogen fertilizer and urea on carbon and nitrogen accumulation in mechanical transplanted hybrid rice[J]. Acta Agronomica Sinica,2021,47(10):1966-1977.

[5] 李健忠,薛立新,朱金峰,許自成,許儀,金磊,郝浩浩,蘇謙. 打頂后噴施油菜素內酯和生長素對烤煙田間生長、碳氮代謝及煙葉品質的影響[J]. 中國生態農業學報,2015,23(11):1404-1412.

LI Jianzhong,XUE Lixin,ZHU Jinfeng,XU Zicheng,XU Yi,JIN Lei,HAO Haohao,SU Qian. Effects of brassinolide and auxin on growth,carbon and nitrogen metabolism and tobacco quality of flue-cured tobacco leaves after topping[J]. Chinese Journal of Eco-Agriculture,2015,23(11):1404-1412.

[6] 金正勛,王思宇,王珊,王劍,張忠臣,李鋼夑,樸鐘澤. 外源激素對水稻籽粒碳氮代謝相關酶基因表達影響[J]. 東北農業大學學報,2020,51(7):1-9.

JIN Zhengxun,WANG Siyu,WANG Shan,WANG Jian,ZHANG Zhongchen,LEE Gangseob,PIAO Zhongze. Effect of exogenous hormones on gene expression of carbon and nitrogen metabolism-related enzymes in rice grains[J]. Journal of Northeast Agricultural University,2020,51(7):1-9.

[7] BATUSHANSKY A,KIRMA M,GRILLICH N,TOUBIANA D,PHAM P A,BALBO I,FROMM H,GALILI G,FERNIE A R,FAIT A. Combined transcriptomics and metabolomics of Arabidopsis thaliana seedlings exposed to exogenous GABA suggest its role in plants is predominantly metabolic[J]. Molecular Plant,2014,7(6):1065-1068.

[8] FAIT A,FROMM H,WALTER D,GALILI G,FERNIE A R. Highway or byway:The metabolic role of the GABA shunt in plants[J]. Trends in Plant Science,2008,13(1):14-19.

[9] 弓瑞娟. γ-氨基丁酸對生菜氮代謝及營養品質的影響[D]. 保定:河北農業大學,2012.

GONG Ruijuan. Effect of exogenous aminobutyric acid on nitrogen metabolism and nutrition quality of lettuce[D]. Baoding:Hebei Agricultural University,2012.

[10] 王泳超. γ-氨基丁酸(GABA)調控鹽脅迫下玉米種子萌發和幼苗生長的機制[D]. 哈爾濱:東北農業大學,2016.

WANG Yongchao. Mechanism of aminobutyric acid (GABA) regulating maize seed germination and seedling growth under salt stress[D]. Harbin:Northeast Agricultural University,2016.

[11] 于立堯. 外源γ-氨基丁酸對甜瓜幼苗生長、抗干旱脅迫的影響[D]. 上海:上海交通大學,2018.

YU Liyao. Effects of exogenous γ- aminobutyric acid on growth,drought stress resistance of melon seedlings in greenhouse[D]. Shanghai:Shanghai Jiao Tong University,2018.

[12] 閆妮,馮棣,楊鳳娟,張敬敏,桑茂鵬,祝海燕. γ-氨基丁酸浸種對鹽分脅迫下番茄出苗及幼苗生長的影響[J]. 中國瓜菜,2022,35(10):58-63.

YAN Ni,FENG Di,YANG Fengjuan,ZHANG Jingmin,SANG Maopeng,ZHU Haiyan. GABA soaking affects tomato emergence and seedling growth under salt stress[J]. China Cucurbits and Vegetables,2022,35(10):58-63.

[13] 王馨,閆永慶,殷媛,劉威,王賀,季紹旭. 外源γ-氨基丁酸(GABA)對鹽脅迫下西伯利亞白刺光合特性的影響[J]. 江蘇農業學報,2019,35(5):1032-1039.

WANG Xin,YAN Yongqing,YIN Yuan,LIU Wei,WANG He,JI Shaoxu. Effect of exogenous γ-aminobutyric acid (GABA) on photosynthetic characteristics of Nitraria sibirica pall under salt stress[J]. Jiangsu Journal of Agricultural Sciences,2019,35(5):1032-1039.

[14] 陳梓健. 外源GABA對高溫、干旱脅迫下高羊茅的生理影響[D]. 廣州:仲愷農業工程學院,2017.

CHEN Zijian. Physiological effects of exogenous GABA on Festuca arundinacea under high temperature and drought stress[D]. Guangzhou:Zhongkai University of Agriculture and Engineering,2017.

[15] 甄愛,胡曉輝,任文奇,蘇春杰,靳曉青,孫先鵬. 外源γ-氨基丁酸對Ca(NO3)2脅迫下甜瓜幼苗NO3--N同化的影響[J]. 應用生態學報,2016,27(12):3987-3995.

ZHEN Ai,HU Xiaohui,REN Wenqi,SU Chunjie,JIN Xiaoqing,SUN Xianpeng. Effect of exogenous γ-aminobutyric acid on NO3--N assimilation in muskmelon under Ca(NO3)2 stress[J]. Chinese Journal of Applied Ecology,2016,27(12):3987-3995.

[16] TILMAN D,CASSMAN K G,MATSON P A,NAYLOR R,POLASKY S. Agricultural sustainability and intensive production practices[J]. Nature,2002,418(6898):671-677.

[17] SINHA E,MICHALAK A M,BALAJI V. Eutrophication will increase during the 21st century as a result of precipitation changes[J]. Science,2017,357(6349):405-408.

[18] GAUDINIER A,RODRIGUEZ-MEDINA J,ZHANG L F,OLSON A,LISERON-MONFILS C,B?GMAN A M,FORET J,ABBITT S,TANG M,LI B H,RUNCIE D E,KLIEBENSTEIN D J,SHEN B,FRANK M J,WARE D,BRADY S M. Transcriptional regulation of nitrogen-associated metabolism and growth[J]. Nature,2018,563(7730):259-264.

[19] 宋紅苗,陶躍之,王慧中,徐祥彬. GABA在植物體內的合成代謝及生物學功能[J]. 浙江農業科學,2010,51(2):225-229.

SONG Hongmiao,TAO Yuezhi,WANG Huizhong,XU Xiangbin. The anabolism and biological function of GABA in plants[J]. Journal of Zhejiang Agricultural Sciences,2010,51(2):225-229.

[20] 劉曉涵,陳永剛,林勵,莊滿賢,方曉娟. 蒽酮硫酸法與苯酚硫酸法測定枸杞子中多糖含量的比較[J]. 食品科技,2009,34(9):270-272.

LIU Xiaohan,CHEN Yonggang,LIN Li,ZHUANG Manxian,FANG Xiaojuan. Comparison of methods in determination of polysaccharide in Lycium barbarum L.[J]. Food Science and Technology,2009,34(9):270-272.

[21] 賀雅娟,馬宗桓,韋霞霞,李玉梅,李彥彪,馬維峰,丁孫磊,毛娟,陳佰鴻. 黃土高原旱塬區不同品種蘋果果實糖及有機酸含量比較分析[J]. 食品工業科技,2021,42(10):248-254.

HE Yajuan,MA Zonghuan,WEI Xiaxia,LI Yumei,LI Yanbiao,MA Weifeng,DING Sunlei,MAO Juan,CHEN Baihong. Comparative analysis of sugar and organic acid contents of different apple cultivars in dryland of loess plateau[J]. Science and Technology of Food Industry,2021,42(10):248-254.

[22] 張弦. 不同施鉀水平對‘嘎拉蘋果果實糖、酸生理代謝的影響[D]. 楊凌:西北農林科技大學,2016.

ZHANG Xian. Effects of different potassium level on sugar and acid metabolism in‘Gala apple fruit[D]. Yangling:Northwest A & F University,2016.

[23] 潘儼. 庫爾勒香梨果實發育及采后糖代謝與呼吸代謝關系的研究[D]. 烏魯木齊:新疆農業大學,2016.

PAN Yan. The relationship between sugar metabolism and respiratory metabolism throughout fruit development and postharvest of Korla fragrant pear (Pyrus sinkiangensis Yu)[D]. Urumqi:Xinjiang Agricultural University,2016.

[24] 黎冰. 氮素形態對赤霞珠葡萄氮代謝和蔗糖代謝調控機制的研究[D]. 楊凌:西北農林科技大學,2017.

LI Bing. Study on regulation mechanism of nitrogen forms on nitrogen and sucrose metabolism in Cabernet Sauvignon grape[D]. Yangling:Northwest A & F University,2017.

[25] 梁劍光,朱玲,徐正軍. 靛酚藍-分光光度法測定發酵液中氨態氮含量研究[J]. 食品與發酵工業,2006,32(9):134-137.

LIANG Jianguang,ZHU Ling,XU Zhengjun. Study on the determination of NH4+-N content in microbial fermentation liquor by indophenol blue spectrophotometric method[J]. Food and Fermentation Industries,2006,32(9):134-137.

[26] 李慧,叢郁,常有宏,藺經,盛寶龍. 豆梨NADH型硝酸還原酶基因克隆、表達及酶活性分析[J]. 果樹學報,2014,31(5):760-768.

LI Hui,CONG Yu,CHANG Youhong,LIN Jing,SHENG Baolong. Cloning,expression and enzyme activity analysis of nitrite reductase gene from Pyrus calleryana[J]. Journal of Fruit Science,2014,31(5):760-768.

[27] 馬宗桓,陳佰鴻,毛娟,胡紫璟,李文芳. 施氮時期對釀酒葡萄葉片氮代謝酶及相關基因表達的影響[J]. 西北植物學報,2018,38(2):298-306.

MA Zonghuan,CHEN Baihong,MAO Juan,HU Zijing,LI Wenfang. Effects of nitrogen metabolism enzymes and related gene expression in leaves of Vitis vinifera during nitrogen application period[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(2):298-306.

[28] 趙鵬,何建國,熊淑萍,馬新明. 氮素形態對專用小麥旗葉酶活性及籽粒蛋白質和產量的影響[J]. 中國農業大學學報,2010,15(3):29-34.

ZHAO Peng,HE Jianguo,XIONG Shuping,MA Xinming. Studies on the effects of different nitrogen forms on enzyme activity in flag leaves in wheat and protein and yield of grain for specialized end-uses[J]. Journal of China Agricultural University,2010,15(3):29-34.

[29] 王小純,熊淑萍,馬新明,張娟娟,王志強. 不同形態氮素對專用型小麥花后氮代謝關鍵酶活性及籽粒蛋白質含量的影響[J]. 生態學報,2005,25(4):802-807.

WANG Xiaochun,XIONG Shuping,MA Xinming,ZHANG Juanjuan,WANG Zhiqiang. Effects of different nitrogen forms on key enzyme activity involved in nitrogen metabolism and grain protein content in speciality wheat cultivars[J]. Acta Ecologica Sinica,2005,25(4):802-807.

[30] 吳良歡,蔣式洪,陶勤南. 植物轉氨酶(GOT和GPT)活度比色測定方法及其應用[J]. 土壤通報,1998,29(3):136-138.

WU Lianghuan,JIANG Shihong,TAO Qinnan. Colorimetric determination method of plant transaminase (GOT and GPT) activity and its application[J]. Chinese Journal of Soil Science,1998,29(3):136-138.

[31] 申麗霞,王璞. 玉米穗位葉碳氮代謝的關鍵指標測定[J]. 中國農學通報,2009,25(24):155-157.

SHEN Lixia,WANG Pu. Determination of C-N metabolism indices in ear-leaf of maize (Zea mays L.)[J]. Chinese Agricultural Science Bulletin,2009,25(24):155-157.

[32] 蘇麗英,吳勇,於新建,夏叔芳. 水稻葉片蔗糖磷酸合成酶的一些特性[J]. 植物生理學報,1989,15(2):117-123.

SU Liying,WU Yong,YU Xinjian,XIA Shufang. Some properties of rice leaf sucrose phosphate synthetase[J]. Physiology and Molecular Biology of Plants,1989,15(2):117-123.

[33] 韓麗娜,馬宗桓,王穎,胡紫璟,史星雲,毛娟,陳佰鴻. 荒漠區滴灌施氮量對葡萄葉綠素熒光特性及碳代謝的影響[J]. 華北農學報,2020,35(2):170-177.

HAN Lina,MA Zonghuan,WANG Ying,HU Zijing,SHI Xingyun,MAO Juan,CHEN Baihong. Effects of nitrogen application rate in drip irrigation on chlorophyll fluorescence characteristics and carbon metabolism of grape in desert area[J]. Acta Agriculturae Boreali-Sinica,2020,35(2):170-177.

[34] 宋鎖玲. 低氧脅迫下γ-氨基丁酸對甜瓜幼苗無機氮代謝、糖代謝及礦質元素含量的影響[D]. 保定:河北農業大學,2012.

SONG Suoling. Effects of γ-aminobutyric acid on inorganic nitrogen metabolism,sugar metabolism and mineral elements contents of melon seedling under hypoxia stress[D]. Baoding:Hebei Agricultural University,2012.

[35] 吳薇,韓相龍,鄭璞帆,韋成才,袁帥,張立新. 移栽方式與施氮量對烤煙生長發育和產質量的影響[J]. 植物營養與肥料學報,2018,24(2):535-543.

WU Wei,HAN Xianglong,ZHENG Pufan,WEI Chengcai,YUAN Shuai,ZHANG Lixin. Effects of transplanting mode and nitrogen application rate on growth,development and yield of flue-cured tobacco[J]. Journal of Plant Nutrition and Fertilizers,2018,24(2):535-543.

[36] 高松,劉穎,劉學娜,曹逼力,陳子敬,徐坤. 光質對大蔥葉片碳氮代謝的影響[J]. 植物生理學報,2020,56(3):565-572.

GAO Song,LIU Ying,LIU Xuena,CAO Bili,CHEN Zijing,XU Kun. Effects of light quality on carbon and nitrogen metabolism in leaves of Welsh onion (Allium fistulosum)[J]. Plant Physiology Journal,2020,56(3):565-572.

[37] 王宇航,韓愛民,張立梅,李斗,金鑫,王春恒,馮麗丹,楊江山. 外源γ-氨基丁酸對蛇龍珠葡萄果實糖酸代謝的影響[J].果樹學報,2023,40(4):699-711.

WANG Yuhang,HAN Aimin,ZHANG Limei,LI Dou,JIN Xin,WANG Chunheng,FENG Lidan,YANG Jiangshan. Effects of exogenous GABA on sugar and acid metabolism of Cabernet Gernischet [J]. Journal of Fruit Science,2023,40(4):699-711.

[38] CHEN W,MENG C,JI J,LI M H,ZHANG X M,WU Y Y,XIE T T,DU C J,SUN J C,JIANG Z P,SHI S Q. Exogenous GABA promotes adaptation and growth by altering the carbon and nitrogen metabolic flux in poplar seedlings under low nitrogen conditions[J]. Tree Physiology,2020,40(12):1744-1761.

[39] 劉金平. γ-氨基丁酸對淹水脅迫下不結球白菜幼苗碳氮代謝相關指標的影響[D]. 南京:南京農業大學,2016.

LIU Jinping. Effects of exogenous γ-ambutyric acid on relevant indicators of carbon and nitrogen metabolism of non-heading cabbage under waterlogging stress[D]. Nanjing:Nanjing Agricultural University,2016.

[40] LI Y X,LIU B Y,PENG Y X,LIU C L,ZHANG X Z,ZHANG Z J,LIANG W,MA F W,LI C Y. Exogenous GABA alleviates alkaline stress in Malus hupehensis by regulating the accumulation of organic acids[J]. Scientia Horticulturae,2020,261:108982.

[41] 梁靜宜,郭凡,趙科,王鴻飛,許鳳. 外源γ-氨基丁酸對鮮切南瓜品質和γ-氨基丁酸代謝的影響[J]. 食品工業科技,2022,43(19):385-392.

LIANG Jingyi,GUO Fan,ZHAO Ke,WANG Hongfei,XU Feng. Effect of exogenous γ-aminobutyric acid on the quality and γ-aminobutyric acid metabolism of fresh-cut pumpkins[J]. Science and Technology of Food Industry,2022,43(19):385-392.

[42] WANG Y,YUAN B,JI Y C,LI H. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid[J]. Carbohydrate Polymers,2013,97(2):518-522.

[43] TANASE K,SHIRATAKE K,MORI H,YAMAKI S. Changes in the phosphorylation state of sucrose synthase during development of Japanese pear fruit[J]. Physiologia Plantarum,2002,114(1):21-26.

[44] MORIGUCHI T,ABE K,SANADA T,YAMAKI S. Levels and role of sucrose synthase,sucrose-phosphate synthase,and acid invertase in sucrose accumulation in fruit of Asian pear[J]. Journal of the American Society for Horticultural Science,1992,117(2):274-278.

[45] VERMA A K,UPADHYAY S K,VERMA P C,SOLOMON S,SINGH S B. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars[J]. Plant Biology,2011,13(2):325-332.

[46] WIND J,SMEEKENS S,HANSON J. Sucrose:Metabolite and signaling molecule[J]. Phytochemistry,2010,71(14/15):1610-1614.

[47] ABD ELBAR O H,ELKELISH A,NIEDBA?A G,FARAG R,WOJCIECHOWSKI T,MUKHERJEE S,ABOU-HADID A F,EL-HENNAWY H M,ABOU EL-YAZIED A,ABD EL-GAWAD H G,AZAB E,GOBOURI A A,EL-SAWY A M,BONDOK A,IBRAHIM M F M. Protective effect of γ-aminobutyric acid against chilling stress during reproductive stage in tomato plants through modulation of sugar metabolism,chloroplast integrity,and antioxidative defense systems[J]. Frontiers in Plant Science,2021,12:663750.

[48] 任文奇. 外源γ-氨基丁酸對Ca(NO3)2脅迫下甜瓜幼苗氮代謝和光合作用的調控[D]. 西北農林科技大學, 2016.

REN Wenqi. Regulation of exogenous γ-aminobutyric acid on nitrogen metabolism and photosynthesis of melon seedlings under Ca(NO3)2 stress [D]. Northwest A & F University, 2016.

[49] 燕博文. 低氮脅迫下γ-氨基丁酸對玉米幼苗氮代謝調控機制研究[D]. 鄭州:河南農業大學,2022.

YAN Bowen. Regulation mechanism of γ-aminobutyric acid on nitrogen metabolism in maize seedlings under low nitrogen stress[D]. Zhengzhou:Henan Agricultural University,2022.

[50] 谷海濤,賈琰,張博,孫斌,王卓茜,趙宏偉. 孕穗期干旱脅迫下外源γ-氨基丁酸對寒地粳稻籽粒氮素形成及產量的影響[J]. 華北農學報,2018,33(5):209-217.

GU Haitao,JIA Yan,ZHANG Bo,SUN Bin,WANG Zhuoqian,ZHAO Hongwei. Effects of exogenous γ-aminobutyric acid on grain nitrogen formation and yield in cold-region Japonica rice under drought stress at booting stage[J]. Acta Agriculturae Boreali-Sinica,2018,33(5):209-217.

[51] 田真,李敬蕊,王祥,吳曉蕾,宮彬彬,高洪波. 生菜硝酸還原酶基因的克隆及高氮水平下外源γ-氨基丁酸對其表達和葉片硝酸鹽含量的影響[J]. 西北植物學報,2015,35(6):1098-1105.

TIAN Zhen,LI Jingrui,WANG Xiang,WU Xiaolei,GONG Binbin,GAO Hongbo. Cloning of nitrate reductase gene of lettuce and effect of exogenous γ-aminobutyric acid on gene expression and nitrate content in leaves under high nitrogen level[J]. Acta Botanica Boreali-Occidentalia Sinica,2015,35(6):1098-1105.

[52] CAMARGO E L O,NASCIMENTO L C,SOLER M,SALAZAR M M,LEPIKSON-NETO J,MARQUES W L,ALVES A,TEIXEIRA P J P L,MIECZKOWSKI P,CARAZZOLLE M F,MARTINEZ Y,DECKMANN A C,RODRIGUES J C,GRIMA-PETTENATI J,PEREIRA G A G. Contrasting nitrogen fertilization treatments impact xylem gene expression and secondary cell wall lignification in Eucalyptus[J]. BMC Plant Biology,2014,14:256.

[53] 李冰,張照貴,王佳佳,李斯深. 小麥GDH1基因克隆及其功能標記開發[J]. 山東農業科學,2014,46(10):6-11.

LI Bing,ZHANG Zhaogui,WANG Jiajia,LI Sishen. Cloning and functional marker of GDH1 gene in wheat[J]. Shandong Agricultural Sciences,2014,46(10):6-11.

[54] LIANG C G,CHEN L P,WANG Y,LIU J,XU G L,LI T. High temperature at grain-filling stage affects nitrogen metabolism enzyme activities in grains and grain nutritional quality in rice[J]. Rice Science,2011,18(3):210-216.

[55] 李友軍,熊瑛,陳明燦,駱炳山. 氮、磷、鉀對豫麥50旗葉蔗糖和籽粒淀粉積累的影響[J]. 應用生態學報,2006,17(7):1196-1200.

LI Youjun,XIONG Ying,CHEN Mingcan,LUO Bingshan. Effects of nitrogen,phosphorus and potassium fertilization on sucrose accumulation in flag leaf and starch accumulation in kernel of weak gluten wheat[J]. Chinese Journal of Applied Ecology,2006,17(7):1196-1200.

[56] ALLAN W L,SHELP B J. Fluctuations of γ-aminobutyrate, γ-hydroxybutyrate, and related amino acids in Arabidopsis leaves as a function of the light-dark cycle, leaf age, and N stress[J]. Canadian Journal of Botany,2006,84(8):1339-1346.

主站蜘蛛池模板: 制服无码网站| 日本爱爱精品一区二区| 亚洲第一在线播放| 超碰aⅴ人人做人人爽欧美 | 国产精品永久不卡免费视频| 在线观看视频一区二区| 国产在线97| 国产福利2021最新在线观看| 综合网久久| 国产精品网址在线观看你懂的| 国产精品专区第一页在线观看| www.日韩三级| 青草国产在线视频| 国产香蕉97碰碰视频VA碰碰看| 一级黄色网站在线免费看| 亚洲自拍另类| 黄色网页在线播放| 99精品一区二区免费视频| 色综合成人| 91亚洲精选| 日韩av在线直播| 国产免费福利网站| 欧美日韩国产在线人| 亚洲无码免费黄色网址| 99精品国产电影| 日韩欧美中文亚洲高清在线| 欧美精品导航| 伊人中文网| 鲁鲁鲁爽爽爽在线视频观看| 在线观看欧美国产| 国产91小视频| 日本免费一级视频| 亚洲精品少妇熟女| 日韩欧美国产另类| 亚洲妓女综合网995久久| 国产精品毛片一区视频播| 精品国产福利在线| 日本爱爱精品一区二区| 久青草网站| 国产在线观看精品| 一本二本三本不卡无码| 天天摸天天操免费播放小视频| 亚洲人在线| 伊在人亚洲香蕉精品播放| 欧美成a人片在线观看| 伊人久久综在合线亚洲2019| 香蕉视频国产精品人| 国产91色在线| 青青极品在线| 91区国产福利在线观看午夜| 国产极品美女在线播放| 伊人欧美在线| 国产电话自拍伊人| 免费观看三级毛片| 国产亚洲高清在线精品99| 国产精品亚洲αv天堂无码| 91视频区| 久久人人妻人人爽人人卡片av| 亚洲视频免费在线| 刘亦菲一区二区在线观看| 国产网站免费观看| 欧美成人一区午夜福利在线| a色毛片免费视频| 亚洲天堂2014| 成人综合网址| 亚洲日韩AV无码精品| 亚洲色欲色欲www在线观看| 欧美三级自拍| 人人艹人人爽| AV不卡在线永久免费观看| 日韩在线成年视频人网站观看| 在线视频精品一区| 日韩无码视频播放| 亚洲伊人电影| 国模沟沟一区二区三区| 欧美中文字幕在线二区| 亚洲男人在线天堂| 嫩草国产在线| 亚洲人在线| 自偷自拍三级全三级视频| 日本一本正道综合久久dvd | 第一页亚洲|