吳禮福 王雷 孫芯年 孫帥恒



摘要 傳統的聲回波消除(Acoustic Echo Cancellation,AEC)方法使用雙端通話檢測器判斷單、雙端通話場景,性能受限.盲源分離(Blind Source Separation,BSS)信號模型是一個遠端和近端信號并存的全雙工模型,因此基于BSS的AEC無需雙端通話檢測器.本文采用基于輔助函數的獨立分量分析(Auxiliary function based Independent Component Analysis,Aux-ICA)算法在頻域上實現聲回波消除,以最小化互信息為目標函數,借助輔助函數技術進行優化.仿真實驗結果表明,在連續的雙端通話場景中,該方法具有較低的計算復雜度和較好的回波消除性能.關鍵詞 回波消除;輔助函數;獨立分量分析;盲源分離;雙端通話
中圖分類號TN912
文獻標志碼A
0 引言
在網絡會議、免提通話等應用中,都不同程度地存在聲回波問題.回波的存在影響通信質量,嚴重時會使通信系統不能正常工作.因此,必須采取有效措施來抑制回波,消除其影響.回波消除是通常采用的一種方法,其基本思想是估計出回波路徑,得出回波信號的估計,從傳聲器信號中減去該估計信號,實現回波消除.
自適應濾波[1]是聲回波消除的常用方法之一.歸一化最小均方(Normalized Least Mean Square,NLMS)算法[2-3]是回波消除的典型算法,該算法通過梯度下降法使估計的回波與麥克風信號之間的均方誤差最小.為了防止濾波器發散,需要額外使用雙端通話檢測器(Double-Talk Detector,DTD)[4]或自適應步長策略[5]來減緩或停止雙端通話時自適應濾波器的調整.遞歸最小二乘法(Recursive Least Square,RLS)[6]也是一種AEC算法,與NLMS算法相比,RLS算法具有更快的收斂速度,但其計算復雜度也更高.Speex MDF[7]是一種廣泛使用的自適應濾波回聲消除算法,它以NLMS算法為基礎,用頻域多延時(Multi Delay block Frequency domain,MDF)濾波算法實現,推導出最優步長估計,其優點是濾波器系數基于塊更新.
前述的AEC方法存在一定的不足.基于梯度下降的方法存在收斂速度與穩定性之間的平衡問題[8].盡管DTD和自適應步長策略在單向通話和偶爾發生的雙端通話場景中都能很好地工作,但在連續雙端通話場景中,近端信號總是存在,它們的性能可能會下降[9].盲源分離[10-11]是一種從觀測到的混合信號中分離出期望信號來實現信號分離或增強的技術.獨立分量分析(Independent Component Analysis,ICA)[12]和獨立矢量分析(Independent Vector Analysis,IVA)[13]是典型的BSS技術.AEC可以被認為是一個半盲源分離問題,其目標是從傳聲器(麥克風)信號中分離出回波和近端信號.
近年來,基于深度學習(Deep Learning)[14-15]的回波消除方法雖然展示了很好的性能,但是這種數據驅動方法主要有兩個不足:一是需要足夠的數據進行訓練,目前雖然有一些開源音頻數據庫,但這些數據庫通常不足以建立魯棒的神經網絡;二是深度神經網絡的參數無法解釋,這對于希望從自己的需求出發來操縱和調整回波消除系統性能的工程師或實際用戶來說是無法接受的.
與傳統的AEC算法相比,由于BSS信號模型是一個遠端和近端信號并存的全雙工模型,所以基于BSS的AEC算法在連續雙端通話場景中具有更好的回波消除能力.同時,Speex MDF算法的優異性能表明頻域實現AEC具有一定的優勢.因而本文采用基于輔助函數的獨立分量分析在頻域實現聲回波消除,在全雙工特性的基礎上,利用輔助函數技術,避免了顯式步長參數選擇,降低了算法的計算復雜度.
1 問題描述
1.1 信號模型
1.2 BSS模型
2 Aux-ICA算法
2.1 算法推導
2.2 討論
Aux-ICA AEC的目標函數是通過最小化互信息得到的,互信息由KL散度(Kullback-Leibler divergence)測量[18],并由輔助函數技術進行優化.在ICA模型中,近端信號被明確地建模為一個獨立分量,ICA中的非線性參數β作為加權值.非線性參數β的使用,提高了語音的分離性能.又因為BSS信號模型是遠端和近端信號共存的全雙工模型,所以Aux-ICA AEC在連續雙端通話場景中具有良好的回波消除能力.由于式(21)包含矩陣求逆,計算量較大,并不適合在線應用,可以使用QRD-RLS(QR Decomposition-RLS)算法[19]降低計算復雜度.
在頻域進行信號處理時,為防止由于第1幀的回波路徑為零矩陣而在信號前端產生較大誤差,仿真中需對麥克風信號的第1幀進行預處理,即對第1幀的所有點按照本文算法進行迭代,使得第1幀的回波路徑為非全零矩陣.其余幀再根據第1幀進行迭代.Aux-ICA AEC算法消除回波的流程如表1所示.
3 仿真實驗
3.1 實驗環境
3.2 結果和討論
4 結論
本文研究了一種基于輔助函數的ICA算法,在頻域上實現聲回波消除.在全雙工特性的基礎上,利用輔助函數技術,可以省略顯式步長參數選擇和雙端通話檢測器,降低了算法的計算復雜度.仿真驗證了該方法具有更低的計算復雜度以及更好的回波消除性能.
參考文獻 References
[1]張琦,王霞,王磊,等.自適應回波抵消中變步長NLMS算法[J].數據采集與處理,2013,28(1):64-68ZHANG Qi,WANG Xia,WANG Lei,et al.Variable step-size NLMS algorithms in echo cancellation[J].Journal of Data Acquisition & Processing,2013,28(1):64-68
[2] Morgan D R,Kratzer S G.On a class of computationally efficient,rapidly converging,generalized NLMS algorithms[J].IEEE Signal Processing Letters,1996,3(8):245-247
[3] Albu I,Anghel C,Paleologu C.Adaptive filtering in acoustic echo cancellation systems:a practical overview[C]//2017 9th International Conference on Electronics,Computers and Artificial Intelligence (ECAI).June 29-July 1,2017,Targoviste,Romania.IEEE,2017:1-6
[4] Valin J M.On adjusting the learning rate in frequency domain echo cancellation with double-talk[J].IEEE Transactions on Audio,Speech,and Language Processing,2007,15(3):1030-1034
[5] Yang J.Multilayer adaptation based complex echo cancellation and voice enhancement[C]//2018 IEEE International Conference on Acoustics,Speech and Signal Processing.April 15-20,2018,Calgary,AB,Canada.IEEE,2018:2131-2135
[6] 丁鋒.輔助模型辨識方法(5):最小二乘辨識[J].南京信息工程大學學報(自然科學版),2016,8(5):385-403DING Feng.Auxiliary model based identification methods.Part E:least squares identification[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2016,8(5):385-403
[7] 楊果,王亞潔,王晶.Speex編碼器中回聲消除算法的分析與評估[J].電聲技術,2013,37(9):52-55YANG Guo,WANG Yajie,WANG Jing.Analysis and evaluation of echo cancellation algorithm in speex codec[J].Audio Engineering,2013,37(9):52-55
[8] Ono N,Miyabe S.Auxiliary-function-based independent component analysis for super-Gaussian sources[C]//Latent Variable Analysis and Signal Separation,2010:165-172
[9] Gunther J.Learning echo paths during continuous double-talk using semi-blind source separation[J].IEEE Transactions on Audio,Speech,and Language Processing,2012,20(2):646-660
[10] Ikram M Z.Blind source separation and acoustic echo cancellation:a unified framework[C]//2012 IEEE International Conference on Acoustics,Speech and Signal Processing.March 25-30,2012,Kyoto,Japan.IEEE,2012:1701-1704
[11] 張艷萍,李杰.回波對消中盲源分離算法的研究與仿真[J].南京信息工程大學學報(自然科學版),2013,5(6):539-543ZHANG Yanping,LI Jie.Optimization and simulation of blind source separation in acoustic echo cancellation[J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2013,5(6):539-543
[12] 石懷濤,周乾,王雨桐,等.基于相對變換的ICA故障檢測方法[J].電子測量與儀器學報,2017,31(7):1040-1046SHI Huaitao,ZHOU Qian,WANG Yutong,et al.Fault detection method based on relative-transformation ICA[J].Journal of Electronic Measurement and Instrumentation,2017,31(7):1040-1046
[13] Scheibler R,Ono N.Independent vector analysis with more microphones than sources[C]//2019 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.October 20-23,2019,New Paltz,NY,USA.IEEE,2019:185-189
[14] Lei Q H,Chen H,Hou J F,et al.Deep neural network based regression approach for acoustic echo cancellation[C]//Proceedings of the 2019 4th International Conference on Multimedia Systems and Signal Processing.2019:94-98
[15] 周曉彥,王珂,李凌燕.基于深度學習的目標檢測算法綜述[J].電子測量技術,2017,40(11):89-93ZHOU Xiaoyan,WANG Ke,LI Lingyan.Review of object detection based on deep learning[J].Electronic Measurement Technology,2017,40(11):89-93
[16] Taniguchi T,Ono N,Kawamura A,et al.An auxiliary-function approach to online independent vector analysis for real-time blind source separation[C]//2014 4th Joint Workshop on Hands-free Speech Communication and Microphone Arrays (HSCMA).May 12-14,2014,Villers-les-Nancy,France.IEEE,2014:107-111
[17] Ono N.Auxiliary-function-based independent vector analysis with power of vector-norm type weighting functions[C]//Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference.December 3-6,2012,Hollywood,CA,USA.IEEE,2012:1-4
[18] 魏本征,甘潔,尹義龍.基于邊緣特征點互信息熵的醫學圖像配準方法[J].數據采集與處理,2018,33(2):248-258WEI Benzheng,GAN Jie,YIN Yilong.Medical image registration based on mutual information entropy combined with edge correlation feature[J].Journal of Data Acquisition and Processing,2018,33(2):248-258
[19] 姜波,楊軍,張爾揚.稀疏自適應Volterra濾波的QRD-RLS算法[J].信號處理,2008,24(4):595-599JIANG Bo,YANG Jun,ZHANG Eryang.QRD-RLS algorithm for sparse adaptive Volterra filtering[J].Signal Processing,2008,24(4):595-599
[20] Allen J B,Berkley D A.Image method for efficiently simulating small-room acoustics[J].The Journal of the Acoustical Society of America,1979,65(4):943-950
[21] Loizou P C.Speech enhancement:theory and practice[M].Florida:CRC Press,2007:492-495
Frequency domain acoustic echo cancellation using auxiliaryfunction based independent component analysis
WU Lifu WANG Lei SUN Xinnian SUN Shuaiheng
1School of Electronics & Information Engineering,Nanjing University of Information Science & Technology,Nanjing 210044
2Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,
Nanjing University of Information Science & Technology,Nanjing 210044
AbstractThe performance of traditional Acoustic Echo Cancellation (AEC) is restricted due to the double-talk detector it used to determine the double-talk and single-talk scenarios.While Blind Source Separation (BSS) signal model is a full duplex model with both far-end and near-end signals,thus the BSS-based AEC does not need the double-talk detector.This paper adopts Auxiliary function based Independent Component Analysis (Aux-ICA) algorithm to realize acoustic echo cancellation in frequency domain,in which the object function is minimizing the mutual information,and the auxiliary function technique is used for optimization.Simulation results show that this method has lower computational complexity and better performance in acoustic echo cancellation under continuous double-talk scenarios.
Key words echo cancellation;auxiliary function;independent component analysis (ICA);blind source separation;double-talk