沈平 孫卓婧 張華 李云河 李飛武 宋新元 鄭戈






摘要 ?為有序推進我國生物育種產業,保障轉基因玉米大豆產業化安全、可持續實施,需建立科學的抗性治理策略,延緩靶標害蟲和雜草抗性產生。查閱大量國內外相關靶標害蟲和雜草抗性進化研究的文獻,總結國際轉基因玉米大豆抗性治理的經驗教訓,并分析我國轉基因抗蟲棉的相關實踐,立足我國當今靶標害蟲與雜草實際情況,進行分析討論。依據玉米種植區域特點及蟲情發生規律進行區域劃分,并確定各區域推薦的轉基因抗蟲玉米基因類型和配套庇護所策略,提出適合我國現階段產業特點的轉基因玉米大豆抗性治理策略。在靶標害蟲抗性治理方面,應根據我國玉米主產區的靶標害蟲發生及遷移擴散為害規律,遵循整體布局、源頭治理的原則,在轉化體研發、品種審定等環節加強蟲源和種源控制;同時,建議因地制宜,采取“一區一類基因一策”的害蟲抗性治理措施。在田間雜草抗性治理方面,建議配合輪換使用不同抗性機理的轉化體和不同作用機理的除草劑。
關鍵詞 ?轉基因玉米;轉基因大豆;靶標害蟲;抗性雜草;抗性治理
中圖分類號 ?S 43 ??文獻標識碼 ?A ??文章編號 ?0517-6611(2023)05-0141-06
doi: 10.3969/j.issn.0517-6611.2023.05.032
開放科學(資源服務)標識碼(OSID):
Application of Resistance Management Strategies in Genetically Modified Maize and Soybean in China
SHEN Ping, SUN Zhuo-jing, ZHANG Hua et al
(Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176)
Abstract ?To promote the biological breeding industry and ensure the safety and sustainable implementation of the transgenic maize and soybean industrialization in China, it is necessary to establish a scientific resistance management strategy to delay the emergence of resistance to target pests and weeds.This study reviewed a large number of domestic and foreign literature on the evolution of resistance to target pests and weeds, summarized the experience and lessons of resistance management of genetically modified maize and soybean in the world, and analyzed the relevant practices of genetically modified insect-resistant cotton, also based on the actual situation of target pests and weeds in China.According to the characteristics of corn planting areas and the occurrence law of pests, the regions are divided, and the gene types and supporting shelter strategies of transgenic insect resistant corn recommended in each region are determined. In this study, the management strategy of resistance of genetically modified maize and soybean was put forward. In terms of pest resistance management, pest source and provenance control should be strengthened in transformation research and development and variety certification according to the occurrence, migration and diffusion of target pests in main maize producing areas in China, and the principle of overall layout and source control. At the same time, it is suggested to adopt the pest resistance management measures of “one area, one class of genes, one policy” according to local conditions. In the field weed resistance control, it is suggested to use transformants with different resistance mechanisms and herbicides with different action mechanisms in rotation.
Key words ?Genetically modified maize;Genetically modified soybean;Target pests;Resistance of weeds;Resistance management
轉基因作物自1996年實現大規模商業化種植以來,發展迅速,2019年全球種植面積達到1.904億hm2,較1996年的170萬hm2增長了近111倍,使得生物技術成為世界上應用最為迅速的作物技術[1]。目前已商業化的轉基因作物中最主要的性狀是抗蟲和耐除草劑2類,抗蟲耐除草劑轉基因作物的大面積推廣應用,一方面在減少農藥使用、保障害蟲和雜草綠色防控及農業可持續發展中發揮了重要作用;另一方面,也面臨著靶標害蟲抗性及雜草抗性產生的風險。為有效減緩抗性產生的進程,延長抗性基因及相關轉基因產品的生命周期,科學界、產業界和監管部門通過開展廣泛研究,建立了一系列抗性治理措施,如庇護所/高劑量、耐除草劑作物及除草劑品種輪換等[2-5]。美國、加拿大等國家和地區20多年的實踐證明,通過制定強制性法規,抗性 治理措施總體實施效果較好,均未在田間發現害蟲產生實質性抗性,而巴西、阿根廷等地區由于監管手段不足,抗性治理措施未得到有效落實,導致田間很快出現對抗蟲轉基因作物產生抗性的靶標害蟲種群,相應的轉化體不得不退出市場。可見,抗性治理工作對于轉基因作物產業可持續發展至關重要,而抗性治理措施的科學設計和有效落實在抗性治理工作中起到關鍵性的作用。我國高度重視轉基因作物研究與產業化應用,1997年已實現轉基因抗蟲棉花商業化種植,積累了較好的害蟲抗性治理經驗。在國家轉基因生物新品種培育重大專項的支持下,涌現出一大批新基因、新技術、新產品,抗蟲耐除草劑玉米DBN9936、瑞豐125、耐除草劑大豆中黃6106等多個轉化體陸續獲得生產應用安全證書,配套的轉基因農作物品種審定、種子生產經營許可等制度也在不斷完善,為有序推進我國轉基因主要農作物產業化奠定基礎。為進一步推進我國轉基因抗蟲耐除草劑玉米、耐除草劑大豆等主要農作物的推廣應用,保障農業生物技術產業安全可持續發展,該研究系統分析了國內外轉基因作物靶標害蟲抗性和雜草抗性研究進展,總結了國內外抗性治理的經驗和教訓,結合我國不同生態區的農業生產實際,提出了我國轉基因玉米大豆應用的抗性治理策略,為制定具有中國特色的抗性治理政策提供科學支撐。
1 轉基因玉米靶標害蟲抗性現狀
1.1 國外主要靶標害蟲抗性水平
與害蟲會對長期施用的化學農藥產生抗性一樣,靶標害蟲長期處于抗蟲作物表達的殺蟲蛋白的選擇壓力下,會發生抗性進化。根據靶標害蟲對殺蟲蛋白產生抗性的程度,可分為3個水平:敏感水平、早期預警抗性水平和實質抗性水平(表1)。
1.2 我國主要靶標害蟲抗性水平
1.2.1 ???亞洲玉米螟抗性水平。
亞洲玉米螟嚴重危害我國玉米生產,是我國轉基因抗蟲玉米主要的靶標害蟲之一。掌握亞洲玉米螟田間種群對Bt殺蟲蛋白的敏感基線,對商業化推廣轉基因抗蟲玉米具有重要意義。在我國玉米主要產區——北方春播玉米區和黃淮平原夏播玉米區的7個省份、14個地點進行田間亞洲玉米螟對Bt殺蟲蛋白敏感性的監測,結果顯示,采自不同地區的亞洲玉米螟種群對Cry1Ab、Cry1Ac、Cry1F 5種殺蟲蛋白處于敏感水平[17]。
1.2.2 ???草地貪夜蛾抗性水平。
2019年,草地貪夜蛾侵入我國,對農業生產構成重大威脅。我國學者利用分子手段,快速鑒定出入侵的草地貪夜蛾種群為喜食玉米的“玉米型”草地貪夜蛾,并確定入侵源頭及入侵路徑,為害蟲防控提供了堅實基礎。利用室內生測技術,明確了入侵的草地貪夜蛾種群對5種常用Bt蛋白的敏感性水平與抗性等位基因頻率, 結果顯示,草地貪夜蛾對Vip3A、Cry1Ab、Cry1F、Cry2Ab、Cry1Ac 5種Bt殺蟲蛋白的敏感性指標在0.28~3.76,表明其種群對以上Bt蛋白均未產生抗性[18]。轉cry1Ab和vip3Aa雙價基因玉米對草地貪夜蛾的防治效果優于單價的轉cry1Ab基因玉米[19]。上述研究為利用轉基因抗蟲玉米防控草地貪夜蛾以及制定相關害蟲抗性治理策略提供了基礎。
1.3 Bt蛋白交互抗性研究
如果靶標害蟲對不同蛋白存在交互抗性,將加劇抗性產生,因此開展不同類型Bt蛋白的交互抗性研究,對于轉基因抗蟲作物產品開發及產業化推廣具有重要意義。研究表明,Cry1Ab蛋白和Cry1Ac蛋白之間存在高水平的交互抗性,Cry1Ab、Cry1Ac同Cry1Ah和Cry1F存在低水平的交互抗性[20-21]。同時,國外相關研究表明,Vip3Aa蛋白與Cry1Ab、Cry1Ac、Cry1F等蛋白不存在交互抗性[22-24]。這些研究成果為我國科學利用不同類型抗蟲基因,并制定靶標害蟲抗性進化治理策略提供了重要依據。
2 雜草抗性現狀
雜草抗藥性指雜草種群所獲得的,在施用能夠有效防治該種群的除草劑后,能夠存活并繁衍的能力[25]。在雜草防除實踐中,一些對除草劑敏感的雜草種群被殺死,而另一些雜草由于在除草劑選擇壓的作用下,產生了對該除草劑不敏感的突變體,這些突變體被保留下來發展成抗藥性種群,即雜草對除草劑產生了抗藥性[26]。如果長期使用同一種或同一類作用機理的除草劑,就可能在田間出現抗這種(類)除草劑的雜草[27]。
2.1 雜草抗藥性及對農業生產的影響
迄今為止,全球有264種雜草的505個生物型對除草劑產生了抗性,分布在71個國家的95種作物(含非耕地)[28-29]。目前已知的除草劑作用機制僅31類,其中的21類藥劑已有抗性雜草報道,涉及164種除草劑。據統計,全球稻田有52種雜草的近80個生物型對除草劑產生抗性(圖1)[30],涉及除草劑包括ALS[31]、ACCase[32-33]、合成激素類[34-35]、光系統 Ⅱ 抑制劑[36-37]、細胞分裂抑制劑[38]、長鏈脂肪酸抑制劑[39]、酯類合成抑制劑[40]、EPSP抑制劑[41]、DOXP抑制劑[42]等。
雜草抗藥性對農業生產產生直接和間接影響。由于抗性雜草出現導致雜草群落演替,抗性雜草難以治理,直接影響作物產量[43]。農民為了防治抗性雜草,常采用加大施藥量的做法,不僅增加草害防除成本,還帶來作物藥害、環境污染等間接問題,更嚴重的是可能造成某一作物化學防控體系整體失效[44]。
2.2 全球玉米、大豆田主要抗性雜草
全球四大作物(小麥、玉米、大豆和水稻)田間抗性雜草數量較多,而玉米和大豆田抗性雜草數量分別居第二(62種,100多個生物型)和第三位(48種,90多個生物型)(圖2)。雜草抗性產生與使用除草劑的類型及年限密切相關[28,45]。1972年,美國首例報道玉米田對光系統Ⅱ除草劑產生抗性的綠穗莧(Amaranthus hybridus)[46],此后的20年間由于主要采用莠去津類除草劑防治玉米田雜草,因此發現的90多例抗性雜草均為對光系統Ⅱ除草劑產生抗性[47]。20世紀80年代末,乙酰乳酸合酶(ALS)抑制劑類除草劑煙嘧磺隆、噻吩磺隆等在玉米田大量使用[48-49],1994年,美國報道了糙果莧(Amaranthus tuberculatus)對氯嘧磺隆、煙嘧磺隆、咪唑乙煙酸等ALS抑制劑類除草劑產生抗性[50],由于作物輪作制度和生境類似,這些雜草不僅在玉米田發現,在大豆、棉花田均有發生[51-52]。美國1974年首次報道了大豆田對除草劑氟樂靈產生抗性的牛筋草(Eleusine indica)[53],1995年,發現對光系統Ⅱ除草劑莠去津(玉米田除草劑)和ALS抑制劑唑嘧磺草胺、氯嘧磺隆等同時產生抗性的糙果莧[54-55]。
2.3 轉基因耐草甘膦作物與雜草抗藥性發展
1996年之前的20多年間未見草甘膦的抗性報道。但自耐草甘膦作物商業化開始,由于美國、巴西、阿根廷、澳大利亞等國家大量使用草甘膦除草,雜草抗性發展迅速,導致耐草甘膦雜草數量增加[56]。
2001年美國大豆田首次發現抗草甘膦的小飛蓬(Conyza canadensis)[57],此后陸續發現對草甘膦和其他作用機理除草劑產生多抗性的雜草[58-59]。2005年,巴西首次報道了在玉米、大豆、小麥、果園發現對草甘膦產生抗性的香絲草(Conyza bonariensis)[60],同年,發現對草甘膦、ALS抑制劑及原卟啉原氧化酶抑制劑類除草劑產生抗性的糙果莧[61];阿根廷也在當年發現了對草甘膦產生抗性的假高粱(Sorghum halepense)[62]。此后的十幾年,美國及巴西、阿根廷等國家每年都有對草甘膦產生抗性雜草的報道[59,63]。目前為止,全球耐草甘膦雜草有50余種(圖3),主要集中在澳大利亞、美國、巴西、阿根廷;一些國家還發現對草甘膦和其他作用機制除草劑產生多抗性的雜草,如澳大利亞報道有對4種不同作用機制除草劑產生多抗性的野胡蘿卜(Raphanus raphanistrum)[64]和對5種不同作用機制除草劑產生多抗性的早熟禾(Poa annua)[65];美國也發現對4種不同作用機制除草劑產生多抗性的地膚(Kochia scoparia)[66-67]和對5種不同作用機制除草劑產生多抗性的長芒莧(Palmer amaranth)[68]。
我國抗性雜草44種,數量居世界第6位,目前僅發現非耕地的牛筋草和小飛蓬2種雜草對草甘膦產生抗性(表2)[69]。
3 抗性治理的經驗和教訓
3.1 國際抗性治理經驗與教訓
3.1.1
靶標害蟲抗性治理。美國、加拿大等發達國家及南非、烏拉圭、菲律賓等發展中國家都將庇護所策略納入了轉基因作物監管法規,強制要求農民在種植Bt作物時必須種植非Bt作物作為庇護所,并建立了相應的監管體系。此外,農民的自律意識對庇護所策略的實施也至關重要。發達國家的種植者通常都是大農場主,受教育程度普遍較高,使得庇護所種植的合規率比較高。相反,在巴西、阿根廷等一些發展中國家,由于農民配合程度低,使得庇護所種植合規率不足30%,直接導致草地貪夜蛾在短時間內對Cry1F、Cry1Ab等Bt玉米中常用殺蟲蛋白產生了抗性。同樣地,在印度,由于農民對庇護所策略執行不嚴,導致紅鈴蟲在4~5年就對第一代Bt棉花產生了抗性。
3.1.2
雜草抗性治理方面。根據目的基因、農田生態環境、雜草多樣性等因素,科學合理地制定除草劑使用指南,在保證雜草防控效果的同時,控制除草劑使用頻次及使用量,能有效降低除草劑抗性雜草的產生[3-4]。種植耐受多種除草劑的轉基因玉米時,應建立科學合理的除草劑輪換使用制度,避免常年連續使用一種除草劑或一類具有相同作用機制的除草劑[5]。此外,雜草綜合管理策略(IWM)是另一種有效的途徑,包括作物輪作、種植覆蓋作物、物理控制等[70-71]。作物輪作能顯著影響土壤中雜草種子庫的種類和密度[72],有利于降低雜草對除草劑產生抗性的風險[73]。種植覆蓋作物不僅減少了雜草在休耕期間的繁殖,而且增加了土壤微生物活性,有利于除草劑的降解,該方式在美國已廣泛應用[74-75]。通過物理方法控制雜草種子生產、花粉分散、繁殖體傳播等,能夠減少抗性雜草個體的生存和繁殖[76-77]。
3.2 我國抗蟲棉抗性治理實踐
自1997年轉基因抗蟲棉推廣應用以來,我國已有20多年的Bt棉種植歷史,至今未在田間發現棉鈴蟲、紅鈴蟲等靶標害蟲對Bt棉產生實質抗性。在Bt棉抗性治理實踐中總結的經驗,可為我國轉基因玉米、大豆產業化后的抗性治理提供重要參考價值。一是通過第三方鑒定確保Bt棉高劑量表達殺蟲蛋白。在發放安全證書前,由農業農村部組織有資質的檢測機構,對申請安全證書的Bt棉品種進行鑒定,鑒定指標包括殺蟲蛋白表達量及抗蟲效率,確保進入生產應用的Bt棉品種滿足高劑量要求,且對棉鈴蟲具有很好的抗蟲性。二是采用自然庇護所策略延緩棉鈴蟲抗性產生。結合靶標害蟲棉鈴蟲的生物學特性、Bt棉推廣區域的農業種植結構及我國國情,提出了自然庇護所策略。依托Bt棉種植區周圍的大豆、花生、玉米等作物,為棉鈴蟲提供自然庇護所,Bt棉上少量存活的棉鈴蟲抗性個體與自然庇護所產生的敏感個體交配產生雜合個體,再利用Bt棉表達的殺蟲蛋白殺死攜帶隱性抗性基因的棉鈴蟲雜合個體。三是利用種子混合庇護所策略延緩紅鈴蟲抗性產生。紅鈴蟲是寄主專一性較強的害蟲,主要為害棉花,在Bt棉應用的前10年,抗性等位基因頻率呈上升趨勢,產生抗性的風險很大。隨著Bt雜交棉的推廣應用,一些育種機構以F1代Bt雜交棉種子的后代(F2代)作為商品種子,由于F2代種子中約有25%為非轉基因棉花,這樣就形成了75%轉基因種子+25%非轉基因種子的種子混合庇護所模式。這類品種的推廣,使得紅鈴蟲的抗性等位基因頻率顯著下降,從而延緩了紅鈴蟲抗性的產生。
4 我國轉基因玉米大豆應用抗性治理策略
4.1 總體方案
以有序推進轉基因玉米大豆產業化、延緩害蟲和雜草抗性產生為目標,立足我國農業基本國情,結合國內外實踐,提出了我國轉基因玉米大豆應用的抗性治理總方案。一是完善法規制度。進一步梳理轉基因安全管理、種子管理法規等,從轉基因品種研發的目標基因克隆、轉化、轉化體安全證書發放到品種審定、生產、銷售、種植和安全監管全環節,制定延緩和防止抗性產生的技術路徑和有效措施,確保轉基因品種的安全應用和持續利用。二是完善標準體系。加強抗性治理相關標準體系建設,根據法規制度,制定抗性治理的標準,細化操作環節,讓政策落地可行,確保落實研發者、銷售者的主體責任和當地農業行政主管部門的屬地化管理責任。三是加強宣傳培訓。加強抗性治理重要性和相關技術、措施的宣傳貫徹培訓工作,讓研發者、生產者、使用者和管理者內化于心、外化于行,使各方想做、能做、規范做、有效做好抗性治理工作。四是實施長期抗性監測計劃。依托現有部級檢測機構網絡,按生態區合理布局,長年開展主要靶標害蟲種群(抗蟲玉米種植區)和雜草自然種群(耐除草劑玉米和大豆種植區)的監測及抗性等位基因頻率檢測監測,建立區域性主要靶標害蟲和雜草抗性進化模型,科學預測與防范風險。
4.2 治理措施
4.2.1 ???靶標害蟲抗性治理措施。
首先,根據我國玉米主產區的靶標害蟲發生及遷移擴散為害規律,按照整體布局、源頭治理的原則,做好周年繁殖蟲源區抗性治理,從源頭控制抗性種群。其次,多環節加強種源控制。在轉化體研發方面,加強不同作用機制的抗蟲基因研發,防止交互抗性產生,同時加強多基因聚合產品的研究,有效降低抗性風險;在轉化體審批方面,根據不同生態區環境因素和農業種植結構,科學審批轉化體的應用區域,因地制宜合理設置不同生態區、不同轉化體的庇護所策略;在品種審定方面,加強轉基因玉米品種的外源殺蟲蛋白表達量測定及目標性狀鑒定,確保產品符合高劑量要求。最后,建議因地制宜實行“一區一類基因一策”的害蟲抗性治理措施。依據玉米種植區域特點及蟲情發生規律進行區域劃分,并確定各區域推薦的轉基因抗蟲玉米基因類型和配套庇護所策略。建議我國轉基因抗蟲玉米害蟲抗性治理區域劃分為北方春播玉米區、黃淮平原夏播玉米區、西部玉米種植區和南部玉米種植區,具體害蟲抗性治理措施如表3所示。
4.2.2 ????雜草抗性治理措施。
從耐除草劑品種培育與推廣、目標除草劑科學使用、抗性監測等多個方面,綜合制定雜草抗性治理的策略和具體措施。一是培育和推廣耐受作用機理不同的多種除草劑的多基因聚合轉基因作物品種,每隔4~5年,輪換使用作用機理不同的目標除草劑,減低除草劑選擇壓。二是對單基因耐除草劑作物品種,每隔4~5年,輪換種植另一類耐不同作用機理除草劑的轉化體,配套相應的目標除草劑,進行可持續雜草防控。三是根據雜草抗性監測情況,選擇性地使用能殺滅田間雜草、但對農作物生長沒有影響的常規除草劑進行田間雜草防控,減低除草劑選擇壓。
參考文獻
[1] ?國際農業生物技術應用服務組織.2019年全球生物技術/轉基因作物商業化發展態勢[J].中國生物工程雜志,2021,41(1):114-119.
[2] ILS I.An evaluation of insect resistance management in Bt field corn:A science-based framework for risk assessment and risk management[M].Washington,DC:ILSI Press,1998:78.
[3] HOLM F A,KIRKLAND K J,STEVENSON F C.Defining optimum herbicide rates and timing for wild oat(Avena fatua)control in spring wheat(Triticum aestivum)[J].Weed Technol,2000,14(1):167-175.
[4] BUSI R,POWLES S B,BECKIE H J,et al.Rotations and mixtures of soil-applied herbicides delay resistance[J].Pest Manag Sci,2020,76(2):487-496.
[5] GREEN J M,HAZEL C B,FORNEY D R,et al.New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate[J].Pest Manag Sci,2008,64(4):332-339.
[6] HUANG F N,LEONARD B R,COOK D R,et al.Frequency of alleles conferring resistance to Bacillus thuringiensis maize in Louisiana populations of the southwestern corn borer[J].Entomol Exp Appl,2007,122(1):53-58.
[7] CRESPO A L,SPENCER T A,ALVES A P,et al.On-plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer,Ostrinia nubilalis[J].Pest Manag Sci,2009,65(10):1071-1081.
[8] FARINS G P,DE LA POZA M,HERNNDEZ-CRESPO P,et al.Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain[J].Entomol Exp Appl,2004,110(1):23-30.
[9] SIEGFRIED B D,RANGASAMY M,WANG H C,et al.Estimating the frequency of Cry1F resistance in field populations of the European corn borer(Lepidoptera:Crambidae)[J].Pest Manag Sci,2014,70(5):725-733.
[10] ?THIEME T G M,BUUK C,GLOYNA K,et al.Ten years of MON 810 resistance monitoring of field populations of Ostrinia nubilalis in Europe[J].J Appl Entomol,2018,142(1/2):192-200.
[11] BERNARDI O,BERNARDI D,RIBEIRO R S,et al.Frequency of resistance to Vip3Aa20 toxin from Bacillus thuringiensis in Spodoptera frugiperda(Lepidoptera:Noctuidae)populations in Brazil[J].Crop Prot,2015,76:7-14.
[12] GHIMIRE M N,HUANG F N,LEONARD R,et al.Susceptibility of Cry1Ab-susceptible and-resistant sugarcane borer to transgenic corn plants containing single or pyramided Bacillus thuringiensis genes[J].Crop Prot,2011,30(1):74-81.
[13] HUANG F N,GHIMIRE M N,LEONARD B R,et al.Extended monitoring of resistance to Bacillus thuringiensis Cry1Ab maize in Diatraea saccharalis(Lepidoptera:Crambidae)[J].GM Crops Food,2012,3(3):245-254.
[14] ALCANTARA E,ESTRADA A,ALPUERTO V,et al.Monitoring Cry1Ab susceptibility in Asian corn borer(Lepidoptera:Crambidae)on Bt corn in the Philippines[J].Crop Prot,2011,30(5):554-559.
[15] CAMARGO A M,ANDOW D A,CASTAERA P,et al.First detection of a Sesamia nonagrioides resistance allele to Bt maize in Europe[J].Sci Rep,2018,8(1):1-7.
[16] 王月琴,何康來,王振營.靶標害蟲對Bt玉米的抗性發展和治理策略[J].應用昆蟲學報,2019,56(1):12-23.
[17] 王月琴.亞洲玉米螟對不同Bt毒素的抗性演化規律研究[D].北京:中國農業大學,2018.
[18] 李國平,姬婷婕,孫小旭,等.入侵云南草地貪夜蛾種群對5種常用Bt蛋白的敏感性評價[J].植物保護,2019,45(3):15-20.
[19] 張丹丹,吳孔明.國產Bt-Cry1Ab和Bt-(Cry1Ab+Vip3Aa)玉米對草地貪夜蛾的抗性測定[J].植物保護,2019,45(4):54-60.
[20] WANG Y Q,WANG Y D,WANG Z Y,et al.Genetic basis of Cry1F-resistance in a laboratory selected Asian corn borer strain and its cross-resistance to other Bacillus thuringiensis toxins[J].PLoS One,2016,11(8):1-12.
[21] SHABBIR M Z,QUAN Y D,WANG Z Y,et al.Characterization of the Cry1Ah resistance in Asian corn borer and its cross-resistance to other Bacillus thuringiensis toxins[J].Sci Rep,2018,8(1):1-9.
[22] ESTRUCH J J,WARREN G W,MULLINS M A,et al.Vip3A,a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects[J].Proc Natl Acad Sci USA,1996,93(11):5389-5394.
[23] LEE M K,WALTERS F S,HART H,et al.The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin[J].Appl Environ Microbiol,2003,69(8):4648-4657.
[24] HERNNDEZ-MARTNEZ P,HERNNDEZ-RODRGUEZ C S,VAN RIE J,et al.Insecticidal activity of Vip3Aa,Vip3Ad,Vip3Ae,and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests[J].J Invertebr Pathol,2013,113(1):78-81.
[25] 張朝賢,黃紅娟,崔海蘭,等.抗藥性雜草與治理[J].植物保護,2013,39(5):99-102.
[26] YU Q,POWLES S.Metabolism-based herbicide resistance and cross-resistance in crop weeds:A threat to herbicide sustainability and global crop production[J].Plant Physiol,2014,166(3):1106-1118.
[27] PETERSON M A,COLLAVO A,OVEJERO R,et al.The challenge of herbicide resistance around the world:A current summary[J].Pest Manag Sci,2018,74(10):2246-2259.
[28] MATZRAFI M,GADRI Y,FRENKEL E,et al.Evolution of herbicide resistance mechanisms in grass weeds[J].Plant Sci,2014,229:43-52.
[29] MOSS S.Integrated weed management(IWM):Why are farmers reluctant to adopt non-chemical alternatives to herbicides?[J].Pest Manag Sci,2019,75(5):1205-1211.
[30] HEAP I.Global perspective of herbicide-resistant weeds[J].Pest Manag Sci,2014,70(9):1306-1315.
[31] SCARABEL L,PANOZZO S,LODDO D,et al.Diversified resistance mechanisms in multi-resistant Lolium spp.in three European countries[J].Front Plant Sci,2020,11:1-12.
[32] GOLMOHAMMADZADEH S,ROJANO-DELGADO A M,VZQUEZ-GARCA J G,et al.Cross-resistance mechanisms to ACCase-inhibiting herbicides in short-spike canarygrass(Phalaris brachystachys)[J].Plant Physiol Biochem,2020,151:681-688.
[33] VZQUEZ-GARCA J G,TORRA J,PALMA-BAUTISTA C,et al.Point mutations and cytochrome p450 can contribute to resistance to ACCase-inhibiting herbicides in three Phalaris species[J].Plants(Basel),2021,10(8):1-12.
[34] PORCIUNCULA L M,TEIXEIRA A R,SANTOS M F C,et al.Characterization data and kinetic studies of novel lipophilic analogues from 2,4-dichlorophenoxyacetic acid and Propanil herbicides[J/OL].Data Brief,2020,32[2022-05-25].https://doi.org/10.1016/j.dib.2020.106202.
[35] PORCIUNCULA L M,TEIXEIRA A R,SANTOS M F C,et al.Novel lipophilic analogues from 2,4-D and Propanil herbicides:Biological activity and kinetic studies[J].Chem Phys Lipids,2020,231:1-9.
[36] OETTMEIER W.Herbicide resistance and supersensitivity in photosystem II[J].Cell Mol Life Sci,1999,55(10):1255-1277.
[37] FUNAR-TIMOFEI S,BOROTA A,CRISAN L.Combined molecular docking and QSAR study of fused heterocyclic herbicide inhibitors of D1 protein in photosystem II of plants[J].Mol Divers,2017,21(2):437-454.
[38] O’LOONEY N,FRY S C.The novel herbicide oxaziclomefone inhibits cell expansion in maize cell cultures without affecting turgor pressure or wall acidification[J].New Phytol,2005,168(2):323-329.
[39] TRESCH S,HEILMANN M,CHRISTIANSEN N,et al.Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone,selective inhibitors of 3-ketoacyl-CoA synthases[J].Phytochemistry,2012,76:162-171.
[40] OLORUNSOGO O O,MALOMO S O.Sensitivity of oligomycin-inhibited respiration of isolated rat liver mitochondria to perfluidone,a fluorinated arylalkylsulfonamide[J].Toxicology,1985,35(3):231-240.
[41] SAMMONS R D,GRUYS K J,ANDERSON K S,et al.Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase:Identification of an EPSP synthase.EPSP.glyphosate ternary complex[J].Biochemistry,1995,34(19):6433-6440.
[42] LICHTENTHALER H K,ZEIDLER J,SCHWENDER J,et al.The non-mevalonate isoprenoid biosynthesis of plants as a test system for new herbicides and drugs against pathogenic bacteria and the malaria parasite[J].Z Naturforsch C ?Biosci,2000,55(5/6):305-313.
[43] BECKIE H J,ASHWORTH M B,FLOWER K C.Herbicide resistance management:Recent developments and trends[J].Plants(Basel),2019,8(6):1-13.
[44] NORSWORTHY J K,WARD S M,SHAW D R,et al.Reducing the risks of herbicide resistance:Best management practices and recommendations[J].Weed Sci,2012,60:31-62.
[45] BECKIE H J,KIRKLAND K J.Implication of reduced herbicide rates on resistance enrichment in wild oat(Avena fatua)[J].Weed Technol,2003,17(1):138-148.
[46] PFISTER K,STEINBACK K E,GARDNER G,et al.Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes[J].Proc Nat Acad Sci USA,1981,78(2):981-985.
[47] 龍迪,王彥輝,曾東強.雜草對光系統Ⅱ抑制劑的抗藥性研究進展[J].分子植物育種,2021,19(4):1383-1392.
[48] BIANCHI A.Challenger:A new post-emergent herbicide to control Sorghum halepense and other weeds in maize[J].Malezas,1990,18(1):35-40.
[49] MLLER K.Harmony-several years′ experience with the control of weeds in maize[R].Zeitschrift Für Pflanzenkrankheiten Und Pflanzenschutz,1992.
[50] WOODWORTH A,ROSEN B,BERNASCONI P.Broad range resistance to herbicides targeting acetolactate synthase(ALS)in a field isolate of Amaranthus sp.is conferred by a Trp to Leu mutation in ALS gene[J].Plant Physiol,1996,111:1353.
[51] PATZOLDT W L,TRANEL P J.Multiple ALS mutations confer herbicide resistance in waterhemp(Amaranthus tuberculatus)[J].Weed Sci,2007,55(5):421-428.
[52] TRANEL P J.Herbicide resistance in Amaranthus tuberculatus[J].Pest Manag Sci,2021,77(1):43-54.
[53] MUDGE L C,GOSSETT B J,MURPHY T R.Resistance of goosegrass(Eleusine indica)to dinitroaniline herbicides[J].Weed Sci,1984,32(5):591-594.
[54] HORAK M J,PETERSON D E.Biotypes of Palmer amaranth(Amaranthus palmeri)and common waterhemp(Amaranthus rudis)are resistant to imazethapyr and thifensulfuron[J].Weed Technol,1995,9(1):192-195.
[55] ANDERSON D D,ROETH F W,MARTIN A R.Occurrence and control of triazine-resistant common waterhemp(Amaranthus rudis)in field corn(Zea mays)[J].Weed Technol,1996,10(3):570-575.
[56] DUKE S O.The history and current status of glyphosate[J].Pest Manag Sci,2018,74(5):1027-1034.
[57] VAN GESSEL M J.Glyphosate-resistant horseweed from Delaware[J].Weed Sci,2001,49(6):703-705.
[58] SIMARMATA M,KAUFMANN J E,PENNER D.Potential basis of glyphosate resistance in California rigid ryegrass(Lolium rigidum)[J].Weed Sci,2003,51(5):678-682.
[59] BECKIE H J.Herbicide-resistant weed management:Focus on glyphosate[J].Pest Manag Sci,2011,67(9):1037-1048.
[60] FERREIRA E A,GALON L,ASPIAZU ?' ?I,et al.Glyphosate translocation in hairy fleabane(Conyza bonariensis)biotypes[J].Planta Daninha,2008,26(3):637-643.
[61] LEGLEITER T R,BRADLEY K W.Glyphosate and multiple herbicide resistance in common waterhemp(Amaranthus rudis)populations from Missouri[J].Weed Sci,2008,56(4):582-587.
[62] VILA-AIUB M M,BALBI M C,GUNDEL P E,et al.Evolution of glyphosate-resistant johnsongrass(Sorghum halepense)in glyphosate-resistant soybean[J].Weed Sci,2007,55(6):566-571.
[63] AVES C,BROSTER J,WESTON L,et al.Conyza bonariensis(flax-leaf fleabane)resistant to both glyphosate and ALS inhibiting herbicides in north-eastern Victoria[J].Crop Pasture Sci,2020,71(9):864-871.
[64] WALSH M J,POWLES S B,BEARD B R,et al.Multiple-herbicide resistance across four modes of action in wild radish(Raphanus raphanistrum)[J].Weed Sci,2004,52(1):8-13.
[65] SINGH V,DOS REIS F C,REYNOLDS C,et al.Cross and multiple herbicide resistance in annual bluegrass(Poa annua)populations from eastern Texas golf courses[J].Pest Manag Sci,2021,77(4):1903-1914.
[66] MENGISTU L W,CHRISTOFFERS M J,LYM R G.A psbA mutation in Kochia scoparia(L)Schrad from railroad rights-of-way with resistance to diuron,tebuthiuron and metribuzin[J].Pest Manag Sci,2005,61(11):1035-1042.
[67] LECLERE S,WU C X,WESTRA P,et al.Cross-resistance to dicamba,2,4-D,and fluroxypyr in Kochia scoparia is endowed by a mutation in an AUX/IAA gene[J].Proc Natl Acad Sci USA,2018,115(13):E2911-E2920.
[68] BAGAVATHIANNAN M V,NORSWORTHY J K.Multiple-herbicide resistance is widespread in roadside Palmer amaranth populations[J].PLoS One,2016,11(4):1-9.
[69] 張翼翾.全球抗草甘膦雜草的概況[J].世界農藥,2018,40(3):38-45.
[70] SWANTON C J,WEISE S F.Integrated weed management:The rationale and approach[J].Weed Technol,1991,5(3):657-663.
[71] OLIVEIRA M C,OSIPITAN O A,BEGCY K,et al.Cover crops,hormones and herbicides:Priming an integrated weed management strategy[J/OL].Plant Sci,2020,301[2022-05-25].https://doi.org/10.1016/j.plants.2020.110550.
[72] STEFAN L,ENGBERSEN N,SCHB C.Crop-weed relationships are context-dependent and cannot fully explain the positive effects of intercropping on yield[J].Ecol Appl,2021,31(4):1-12.
[73] ?WEISBERGER D,NICHOLS V,LIEBMAN M.Does diversifying crop rotations suppress weeds? A meta-analysis[J].PLoS One,2019,14(7):1-12.
[74] OWEN M D,BECKIE H J,LEESON J Y,et al.Integrated pest management and weed management in the United States and Canada[J].Pest Manag Sci,2015,71(3):357-376.
[75] ?SCHMIDT J H,JUNGE S,FINCKH M R.Cover crops and compost prevent weed seed bank buildup in herbicide-free wheat-potato rotations under conservation tillage[J].Ecol Evol,2019,9(5):2715-2724.
[76] WALSH M J,POWLES S B.Management of herbicide resistance in wheat cropping systems:Learning from the Australian experience[J].Pest Manag Sci,2014,70(9):1324-1328.
[77] PEROTTI V E,LARRAN A S,PALMIERI V E,et al.Herbicide resistant weeds:A call to integrate conventional agricultural practices,molecular biology knowledge and new technologies[J/OL].Plant Sci,2020,290[2022-05-25].https://doi.org/10.1016/j.plantsci.2019.110255.