司澤田,陳 萍,任秀錦,向家偉
硫酸廢液機械蒸汽再壓縮減壓膜蒸餾特性分析
司澤田1,陳 萍2,任秀錦1,向家偉1※
(1. 溫州大學機電工程學院,溫州 325035;2. 浙江省特種設備科學研究院,杭州 310020)
為了高效回收處理工農業生產過程中產生的硫酸廢液,該研究提出了一種機械蒸汽再壓縮減壓膜蒸餾系統。首先,基于質量和能量守恒定律建立數學模型,并設計搭建了系統試驗裝置,初步以自來水為測試對象開展了可行性驗證試驗;然后以硫酸溶液為研究對象,借助Matlab軟件進行迭代求解計算,模擬分析操作參數對系統熱力特性的影響規律。試驗結果表明系統膜通量和電導率分別為1.6 kg/(m2·h)和48 μS/cm,單位加熱能耗hec和系統性能系數op分別為71.88 kWh/t和8.88,比常規蒸汽加熱的減壓膜蒸餾系統節能74.7%。模擬結果表明,進料濃度增加,壓縮機功耗增加,但性能系數op減??;進料溫度、進料流速以及滲透側壓力增加,壓縮機功耗減小,op增加。因此,該系統具有良好的節能性、經濟性和環境效益,應用前景廣闊。
硫酸;膜蒸餾;膜通量;機械蒸汽再壓縮;單位加熱能耗;節能
硫酸作為一種基本原料,除了在鋼鐵、石化、氯堿、鈦白等工業方面的應用之外,在農業領域的應用也特別廣泛,例如化肥生產、農藥生產、土壤改良等。然而,由于生產設備簡陋、技術條件落后以及環境保護意識淡薄,在生產過程中會產生大量的硫酸廢液,將其直接排放不僅造成資源浪費和環境污染,還會引起土壤酸化,致使一些有害物質被植物吸收,從而對食品安全造成重大隱患。目前,硫酸廢液的處理主要以中和、高溫裂解、化學氧化、萃取、單效蒸發(single effect evaporation, SEE)和多效蒸發(multiple effect evaporation, MEE)等為主,普遍存在分離效率低、能耗高、二次污染大、運行穩定性差等問題[1-2]。因此,合理、高效地處理硫酸廢液成為眾多行業的迫切需求。
膜蒸餾是一種新興的熱驅動分離過程,是以疏水微孔膜為屏障,在膜兩側蒸汽壓差的驅動下,熱側溶液中的水分子在膜表面蒸發并透過膜孔到達冷側,而溶質分子無法通過膜孔,實現溶液的高純分離[3-5]。根據冷側水蒸汽的冷凝方式不同,膜蒸餾可分為直接接觸式(direct contact membrane distillation, DCMD)、氣隙式(air gap membrane distillation, AGMD)、氣掃式(sweep gas membrane distillation, SGMD)和減壓式(vacuum membrane distillation, VMD)。其中,VMD技術通過在冷側創造真空低壓環境增加跨膜驅動蒸汽壓差,顯著提高了膜通量并且降低了熱損失,已廣泛應用于海水淡化、廢水處理、中藥濃縮以及食品加工等領域[6-8]。CRISCUOLI等[9]采用VMD技術對果汁進行脫水濃縮。WU等[10]采用VMD系統處理離子水溶液。近年來,一些研究者嘗試采用聚四氟乙烯(polytetrafluoroethylene, PTFE)膜組件處理強酸溶液,并取得了良好的效果[11]。ZHANG等[12]采用VMD濃縮硫酸溶液,分離效率高達100%。李潛等[13]采用萃取法結合VMD處理稀硫酸溶液,酸回收率可達92.15%。
然而,現有的VMD技術普遍以鍋爐新鮮蒸汽或電能作為加熱熱源,并無蒸汽潛熱回收裝置,膜通量小、能耗高。機械蒸汽再壓縮(mechanical vapor recompression, MVR)[14-16]是將蒸發器產生的二次蒸汽經過蒸汽壓縮機壓縮,提高其溫度和壓力,再將其作為熱源加熱料液,從而充分回收利用二次蒸汽潛熱,是一種高效節能技術。LI 等[17]采用蒸汽壓縮過程回收生物乙醇VMD過程所產的二次蒸汽潛熱,通過理論分析預測蒸發能耗會得到有效降低。WANG等[18]開發了一套MVR耦合VMD海水淡化系統,并研究了系統的產水特性和節能特性。
綜上所述,針對MVR-VMD系統處理硫酸廢液,現有的研究主要以理論分析為主,未能通過試驗驗證其節能效果。本文以硫酸溶液為研究對象,設計搭建了一種MVR-VMD系統,通過建立數學模型,采用數值模擬和試驗驗證相結合的方法,研究了操作參數對MVR-VMD系統熱力性能的影響,并綜合分析了系統的節能性、經濟性和環境效益,以期為MVR-VMD系統的優化設計和工業化應用提供參考。
本文建立的MVR-VMD系統組成如圖1所示,主要包含進料水箱、減壓膜組件、蒸汽壓縮機、換熱器、冷凝水箱、循環泵、真空泵及其他輔助設備。系統通過外部熱源將進料水箱中的硫酸溶液預熱至一定溫度,在循環泵的作用下進入減壓膜組件殼程,而減壓膜組件管程在真空系統的抽吸作用下處于一定的負壓狀態,減壓膜組件內硫酸料液中的水分子通過熱邊界層到達熱側膜表面,膜表面部分水分子吸收一定的熱量蒸發,在膜兩側蒸汽壓差的驅動下透過膜孔到達滲透側,自出口直接進入蒸汽壓縮機壓縮增溫增壓,再進入換熱器向硫酸溶液釋放潛熱,最終冷凝成為液態水進入冷凝水箱,減壓膜組件濃縮液受熱后返回進料水箱繼續循環濃縮,達到設定濃度之后進入下一個利用環節。系統僅在啟動初期需要外部熱源,運行穩定之后便可自行完成蒸發過程。

注:1、2、3、4、5和6分別代表減壓膜組件的溶液進口、減壓膜組件的蒸汽出口、蒸汽壓縮機的蒸汽出口、換熱器的冷凝水出口、減壓膜組件的濃縮液出口和換熱器的濃縮液出口。
根據質量和能量守恒定律建立MVR-VMD系統數學模型,為簡化計算過程,作如下假設[19-22]:
1)系統處于穩定運行狀態;
2)忽略系統不凝性氣體的影響;
3)蒸汽壓縮機壓縮過程為絕熱壓縮過程;
4)二次蒸汽在換熱器中冷凝成為同等壓力下的飽和液態水。
減壓膜組件分為溶液進口、溶液出口和蒸汽出口,內部由多根中空膜管組成,殼程為溶液,管程為蒸汽,減壓膜組件質量平衡方程為


式中1、2和5分別為進料溶液、蒸汽和出料溶液的質量流量,kg/s;1和5分別為進料溶液和出料溶液的質量分數,%。
能量平衡方程為

式中1、2和5分別為進料溶液、蒸汽和出料溶液的比焓,kJ/kg。
減壓膜組件熱側料液主體通過邊界層向膜表面的傳熱屬于對流傳熱過程,傳遞的熱量f為


式中1為減壓膜進口溶液溫度,K;5為出料溶液溫度,K;f和fm分別為減壓膜主體溶液和熱側膜表面溫度,K;為水力半徑,m;為溶液的熱導率,W(m·K);為努塞爾數;f為對流傳熱系數[23],W/(m2·K)。
跨膜傳遞熱量m可表示為

式中為膜通量,kg/(m2·h);為汽化潛熱,kJ/kg。在穩定流動狀態下,忽略跨膜導熱損失[24],熱側傳熱傳質過程中熱量平衡方程為

減壓膜蒸餾進行熱量傳遞的同時伴隨著質量傳遞,跨膜傳質方程為


式中為膜孔徑,μm;為孔隙率,%;為膜厚度,m;v為黏度,Pa·s;為曲折因子;m為水分子相對分子質量;為理想氣體狀態常數;m為膜孔平均溫度,K;m為膜孔平均壓力,kPa。
蒸汽壓縮機的功率為[26-27]

式中3為出口蒸汽比焓,kJ/kg;th為絕熱效率,%;me為機械效率,%;mo為電機效率,%;com為功率,W。
蒸汽壓縮機對二次蒸汽壓縮之后,其出口蒸汽狀態屬于過熱,過熱蒸汽溫度3為

式中2為進口蒸汽溫度,K;為壓縮比;3為壓縮機出口水蒸汽壓力,Pa;為多變指數。
由系統熱力過程可知,蒸汽壓縮機進出口蒸汽壓力所對應的蒸汽飽和溫差為

式中Δhe為換熱器有效傳熱溫差,即換熱器出口溶液與冷凝水飽和溫度之差,K;sp為滲透側水蒸汽分壓對應的純水飽和溫度,K;ΔVMD為減壓膜組件進料溶液與滲透側壓力下純水飽和溫度之差,K。
冷側濃縮液吸收的熱量等于熱側蒸汽冷凝釋放的潛熱,熱量平衡方程為

式中4和6分別為熱側冷凝水和冷側出口溶液的比焓,kJ/kg。
單位加熱能耗(specific heating energy consumption,hec)是指蒸發1 t水所需要的加熱能耗,計算如下:

式中m為有效膜面積,m2。
系統性能系數(performance coefficient,op)為溶液在換熱器中吸收的熱量與蒸汽壓縮機功耗之比[28],其值越大,系統的能量利用效率越高,計算如下:

為了驗證本文MVR-VMD系統的可行性,初步選用自來水為原料液進行模擬試驗。
自來水預先儲存于進料水箱中,利用電加熱預熱進料水箱。減壓膜組件由南京朗天科技生產,材料為PTFE膜,孔徑為0.2 μm,孔隙率為80%,膜面積為20 m2。蒸汽壓縮機由江蘇樂科節能科技生產,功率為3 kW;換熱器由浙江鴻遠科技生產,換熱面積為4.94 m2。循環泵由上海人民泵業生產,功率為2.2 kW。真空泵由山東博山大明生產,功率為0.81 kW。圖2為MVR-VMD系統試驗裝置。
試驗主要包括系統產水效果試驗和節能效果試驗。首先,采用單因素法測量不同進料溫度、進料流速和滲透側壓力下系統的膜通量和產水電導率,分析系統產水效果。其次,連續測量蒸汽壓縮機、減壓膜組件和換熱器等關鍵部件進出口溫度、壓力及功率等參數,分析系統的節能效果。表1是測試系統儀器技術參數。為了保證試驗過程測試精度,每個試驗工況重復3次,結果取平均值。

圖2 機械蒸汽再壓縮減壓膜蒸餾系統試驗裝置

表1 測量儀器型號及技術參數
基于所建立的數學模型,首先以自來水為進料溶液進行數值模擬求解,然后利用自來水的實際測試結果,對數學模型進行驗證。在進料溫度、滲透側壓力和換熱器傳熱溫差分別為358.15 K、56 kPa和3 K的條件下,減壓膜組件出口蒸汽溫度(2)與換熱器出口冷凝水溫度(4)的試驗值與模擬值的變化情況如圖3所示,試驗值的誤差棒保持在15%以內,試驗值具有可重復性和準確性;模擬值和試驗值變化趨勢基本一致,其最大相對誤差小于15%,數學模型準確可靠,可用于后續的系統性能模擬分析。

圖3 出口蒸汽溫度(T2)與換熱器出口冷凝水溫度(T4)模擬值和試驗值對比
以自來水為蒸發對象,在進料溫度、進料流速、滲透側壓力和換熱器傳熱溫差分別為358.15 K、2.8 m/s、54 kPa和2 K條件下,開展系統單工況運行試驗,穩定運行1 h后,膜通量為1.6 kg/(m2·h),產水電導率為48 μS/cm,明顯低于自來水的電導率(200 μS/cm),顯然,本系統所產冷凝水非常純凈。在運行過程中壓縮機的頻率為30 Hz,壓縮機進出口壓力分別為54和62.5 kPa,ΔVMD和Δcom分別為1.74和3.74 K,通過測定壓縮機電機的電流和電壓,并根據廠家提供的壓縮機功率因子(0.81)計算可得其功率為2.3 kW,hec和op分別為71.88 kWh/t和8.88,整個蒸發過程僅需少量的電能驅動壓縮機,無需消耗外部熱源,節能效果明顯。為進一步研究系統運行特性,開展多工況試驗,結果如表2。由表2可知:系統在不同進料溫度、進料流速和滲透側壓力下均能夠穩定產水,最高膜通量為3.00 kg/(m2·h),最低膜通量為0.6 kg/(m2·h),系統能夠有效利用內部二次蒸汽潛熱,實現原料液的穩定蒸發。

表2 不同進料溫度(T1)、進料流速(V1)和滲透側壓力(P2)下系統的膜通量(N)
以硫酸溶液近似代替實際硫酸廢液,通過查閱相關物性手冊和文獻[29-30],獲得實際硫酸溶液物性參數試驗數據,利用正交多項式回歸法[31],擬合得到硫酸溶液在不同溫度、濃度條件下密度、比熱容、黏度和熱導率的計算式[32],計算結果與試驗數據的平均相對誤差為0.55%、0.34%、10.2%和0.31%,擬合得到的硫酸溶液物性參數較為準確?;诮⒌臄祵W模型,編制計算程序,利用Matlab軟件進行迭代求解。根據實際壓縮機和減壓膜組件的處理容量,設定蒸發速率為200 kg/h,通過數值模擬分析進料濃度、進料溫度、進料流速以及滲透側壓力等參數對系統熱力特性的影響。
4.2.1 進料濃度對熱力特性的影響
在進料溫度、進料流速和換熱器傳熱溫差為358.15 K、1 m/s和6 K的條件下,進料濃度對ΔVMD、Δcom、壓縮機功率和op的影響如圖4、圖5所示,進料濃度從5%增加至35%時,ΔVMD值從5.39 K增加至12.24 K,Δcom值從11.39 K增加至18.24 K,壓縮機功率相應地從12.1 kW增加至20.60 kW,op從10.88降低至6.56。這是因為進料濃度增加,熱側邊界層厚度增加,熱側傳熱傳質過程阻力增加,為了保證減壓膜組件均勻、穩定的蒸發,膜通量保持恒定,滲透側需要的壓力將會降低,致使ΔVMD和Δcom值增加,因此壓縮機所需壓縮比和功率增加,最終使得系統op減小。

圖4 進料濃度對進料溶液與滲透側壓力下純水飽和溫度差ΔTVMD和壓縮機進出口蒸汽飽和溫差ΔTcom的影響

圖5 進料濃度對壓縮機功率和性能系數Cop的影響
4.2.2 進料溫度對熱力特性的影響
在進料流速和換熱器傳熱溫差為1 m/s和6 K的條件下,不同進料濃度下進料溫度對ΔVMD、Δcom、壓縮機功率和op的影響如圖6、圖7所示,在進料濃度一定的情況下(以20%為例),當進料溫度從353.15 K增加至363.15 K時,減壓膜組件內硫酸溶液攜帶的能量增加,水分子擴散作用增強,強化了熱側傳熱傳質過程,用于膜表面水分子汽化的熱量增多,膜表面水分子更加容易蒸發,致使熱側膜表面水蒸汽分壓增加,為了維持恒定的蒸發速率,滲透側需要的壓力增加,致使ΔVMD和Δcom值減小,所需的壓縮比減小,從而使得壓縮機功率從15.56 kW減小至13.81 kW,而op從8.60增加至9.53。

圖6 進料濃度和進料溫度對ΔTVMD和ΔTcom的影響

圖7 進料濃度和進料溫度對壓縮機功率和Cop的影響
4.2.3 進料流速對熱力特性的影響
在進料溫度和換熱器傳熱溫差為358.15 K和6 K的條件下,不同進料濃度下進料流速分別對ΔVMD、Δcom、壓縮機功率和op的影響如圖8、圖9所示,在進料濃度一定的情況下(以25%為例),當進料流速從1.0 m/s增加至1.8 m/s時,減壓膜組件內硫酸溶液的湍流強度增強,熱側邊界層厚度和阻力減小,促進了傳熱傳質過程,膜表面水分子越容易蒸發,熱側膜表面水蒸氣分壓增加,為了保持穩定的蒸發速率,滲透側需要的壓力增加,致使ΔVMD值和Δcom值減小,所需壓縮比減小,從而使得壓縮機功率從15.94 kW減小至14.29 kW,而op從8.36增加至9.29。

圖8 進料濃度和進料流速對ΔTVMD和ΔTcom的影響

圖9 進料濃度和進料流速對壓縮機功率和Cop的影響
4.2.4 滲透側壓力對熱力特性的影響
在進料流速和換熱器傳熱溫差為1.0 m/s和6 K的條件下,不同進料濃度下滲透側壓力對ΔVMD、Δcom、壓縮機功率和op的影響如圖10、圖11所示,不同于進料濃度、進料溫度和進料流速,滲透側壓力的改變對熱側料液的流動狀態影響很小。以進料濃度30%為例,當滲透側壓力從35.0 kPa增加至45.0 kPa時,對應水蒸汽飽和溫度增加,減壓膜組件進口溶液和滲透側出口蒸汽飽和溫差減小,致使ΔVMD和Δcom值減小,所需壓縮比減小,從而使得壓縮機的功率從18.44 kW減小至17.43 kW,而op從7.30增加至7.65。

圖10 進料濃度和滲透側壓力對ΔTVMD和ΔTcom的影響

圖11 進料濃度和滲透側壓力對壓縮機功率和Cop的影響
首先,采用目前常用的蒸汽加熱VMD系統進行對比,對兩種系統的節能性、經濟性以及環境效益進行分析。
以常見的5 t/h的硫酸廢液處理量為例,將其濃度從5%濃縮至35%,需要蒸發的水量為4.28 t/h。VMD系統蒸發1 t水需要1.1 t蒸汽,蒸汽價格220元/t[33],則蒸汽費用為4.28×1.1×220=1 036元/h;考慮到溶液濃度的影響,MVR-VMD系統每蒸發1 t水平均消耗電能約100 kWh,按照電價0.6元/kWh,則電費為4.28×100×0.6= 256.8元/h;按年工作時間7 200 h計算,VMD和MVR-VMD系統年運行費用為745.92和184.90萬元,相較于VMD系統,MVR-VMD系統年節省費用為561.02萬元。假設壓縮機成本為100萬元[34],則投資回報期為2個月。按照1 kg蒸汽和1度電等價標煤折算系數分別為0.145和0.404 kg[33]計算,VMD和MVR-VMD系統年運行需要標煤為4 917.6和1 245.6 t,則MVR-VMD系統比VMD系統年節省標煤3 672 t,節能率為74.7%。按照燃燒1 kg標煤釋放二氧化碳、二氧化硫和氮氧化物分別為2.49、0.075和0.037 5 kg[35]計算,MVR-VMD系統比VMD系統每年減排二氧化碳、二氧化硫、氮氧化物分別為9 143.28、275.4和137.7 t。
選取單效蒸發、雙效蒸發(double effect evaporation, DEE)、三效蒸發(three effect evaporation, TEE)、MVR、VMD、熱泵膜蒸餾(heat pump-vacuum membrane distillation, HP-VMD)系統與MVR-VMD系統進行熱力性能對比[36-37],如表3。SEE,DEE,TEE和MVR系統中采用絲網或旋風分離器進行氣液分離,分離效率為90%左右,而VMD,HP-VMD與MVR-VMD系統均采用疏水膜進行氣液分離,分離效率高達99.9%。顯然,VMD系統在分離效率方面優勢明顯。另外,通過將幾種蒸發系統蒸發能耗折算成標煤分析可知:相較于VMD與HP-VMD系統,MVR-VMD系統回收利用了內部二次蒸汽潛熱,單位能耗最小。綜上所述,MVR-VMD系統在分離效率、耐腐蝕性、節能性、經濟性以及環境效益等多方面具有更大的優勢,發展應用前景廣闊。

表3 不同蒸發系統性能對比
目前,國內外針對MVR-VMD系統處理硫酸廢液處于起步研究階段,本文所搭建的MVR-VMD系統屬于小型試驗系統,硫酸具有強腐蝕性和強氧化性,在高溫高壓的環境下蒸發極易造成安全事故,現有的實驗室工作條件無法滿足真實硫酸廢液的膜蒸餾試驗,故本文初步開展以自來水替代硫酸廢液的蒸發試驗,探討MVR-VMD系統的產水特性和節能效果。然而,由于自來水與硫酸廢液的性質差異,采用自來水代替硫酸廢液進行系統性能模擬分析的結果會存在一定誤差,硫酸溶液濃度越高,誤差越大。浙江環諾環??萍脊煞萦邢薰菊趶氖铝蛩釓U液等強腐蝕性溶液蒸發設備的開發,可為本項目提供實際工業應用場景,本項目后期將與其合作開展高濃度硫酸廢液的蒸發試驗。
為了高效處理工業以及農藥、化肥、土壤改良等農業生產過程產生的硫酸廢液,本文提出了一種MVR-VMD系統,通過對系統進行研究得到以下結論:
1)試驗結果表明以自來水為蒸發對象,在進料溫度、進料流速、滲透側壓力和換熱器傳熱溫差為358.15 K、2.8 m/s、54.0 kPa和2 K的條件下,膜通量為1.6 kg/(m2·h),產水電導率為48 μS/cm,而系統hec和op分別為71.88 kWh/t和8.88。
2)模擬結果表明以硫酸溶液為蒸發對象,在換熱器傳熱溫差一定時,當進料濃度增加,壓縮機壓縮比和功耗增加,但系統性能系數op減小;當進料溫度、進料流速和滲透側壓力增加,壓縮機壓縮比和功耗減小,但op增加。
3)相較于常規的SEE,DEE,TEE和MVR系統,VMD,HP-VMD 與MVR-VMD系統分離效率高達99.9%,在分離性能方面優勢明顯。然而,相較于VMD與HP-VMD 系統,MVR-VMD系統更具有高效節能特性。顯然,綜合考慮分離、節能等特性,MVR-VMD系統具有更大的優勢,發展應用前景廣闊。
[1] ZHAO Q, LIU C, LI B, et al. Recovery of chromium from residue of sulfuric acid leaching of chromite[J]. Process Safety and Environmental Protection, 2018, 113: 78-87.
[2] HLDER A, KARAK S, et al. Ultrastable imine‐based covalent organic frameworks for sulfuric acid recovery: An effect of interlayer hydrogen bonding[J]. Angewandte Chemie International Edition, 2018, 57(20): 5797-5802.
[3] 朱萬超,宋鑫華,葛藝,等. 質子交換膜燃料電池/直接接觸式膜蒸餾分布式聯產系統性能[J]. 農業工程學報,2022,38(1):239-247.
ZHU Wanchao, SONG Xinhua, GE Yi, et al. Thermal performance analysis of distributed cogeneration system based on proton exchange membrane fuel cell/direct contact membrane distillation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38 (1): 239-247. (in Chinese with English abstract)
[4] BROGIOLI D, YIP N Y. Energy efficiency analysis of membrane distillation for thermally regenerative salinity gradient power technologies[J]. Desalination, 2022, 531: 1-11.
[5] SPARENBERG M C, BASTIEN H, CRISTHIAN M F, et al. Experimental mass transfer comparison between vacuum and direct contact membrane distillation for the concentration of carbonate solutions[J]. Separation and Purification Technology, 2021, 275: 1-14.
[6] SCHEEPERS D M, TAHIR AJ, BRUNNER C, et al. Vacuum membrane distillation multi-component numerical model for ammonia recovery from liquid streams[J]. Journal of Membrane Science, 2020, 30: 1-17.
[7] 賀清堯,石明菲,馮椋,等. 基于膜蒸餾的沼液資源化處理研究進展[J]. 農業工程學報,2021,37(8):259-268.
HE Qingyao, SHI Mingfei, FENG Liang, et al. Research progress of biogas slurry resourceful treatment by membrane distillation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 259-268. (in Chinese with English abstract)
[8] MARTIJIN B, BART N. Cost reduction of heat pump assisted membrane distillation by using variable electricity prices[J]. Desalination, 2022, 530:1-10.
[9] CRISCUOLI A, DRIOLI E. Date juice concentration by vacuum membrane distillation[J]. Separation and Purification Technology, 2020, 251: 1-9.
[10] WU H, SHEN F, WANG J, et al. Separation and concentration of ionic liquid aqueous solution by vacuum membrane distillation[J]. Journal of Membrane Science, 2016, 518: 216-228.
[11] LI X, QIN Y, LIU R, et al. Study on concentration of aqueous sulfuric acid solution by multiple-effect membrane distillation[J]. Desalination, 2012, 307: 34-41.
[12] ZHANG G, ZHANG Q, ZHOU K. Study on concentrating sulfuric acid solution by vacuum membrane distillation[J]. Journal of Central South University of Technology, 1999, 6(2): 99-102.
[13] 李潛,朱紅力,趙麗珍. 萃取膜蒸餾法處理鈦白廢酸的研究[J]. 江蘇化工,2004(5):42-46.
LI Qian, ZHU Hongli, ZHAO Lizhen. Study on disposal of waste acid in titania production by extration-vacuum membrane distillation process[J]. Jiangsu Chemical Industry, 2004(5): 42-46. (in Chinese with English abstract)
[14] ZHOU S H, LIU X Y, BIAN Y N. Energy, exergy and exergoeconomic analysis of a combined cooling, desalination and power system[J]. Energy Conversion Management, 2020, 218: 1-18.
[15] AHMED K A, NATARAJAN E. Numerical investigation on the effect of toroidal rings in a parabolictrough receiver with the operation of gases: An energy and exergy analysis[J]. Energy, 2020, 203: 1-19.
[16] JIANG H, ZHANG Z Y. Design and evaluation of a parallel-connected double-effect mechanical vapor recompression evaporation crystallization system[J]. Applied Thermal Engineering, 2020, 179: 1-10.
[17] LI J F, ZHOU W C, FAN S Q, et al. Bioethanol production in vacuum membrane distillation bioreactor by permeate fractional condensation and mechanical vapor compression with polytetrafluoroethylene (PTFE) membrane[J]. Bioresource Technology, 2018, 268: 708-714.
[18] WANG Y N, QIU B Y, XIAO Z Y, et al. Hybrid desalination system of mechanical vapor recompression based on membrane distillation[J]. Membrane Water Treatment, 2021, 12(3): 115-123.
[19] 趙林,吳小華,孫東亮,等. 乙醇超重力MVR熱泵精餾系統仿真及優化研究[J]. 工程熱物理學報,2022,43(3):679-684.
ZHAO Lin, WU Xiaohua, SUN Dongliang, et al. Simulation and optimization study of ethanol-water high gravity MVR heat pump distillation system[J]. Journal of Engineering Thermophysics, 2022, 43(3): 679-684. (in Chinese with English abstract)
[20] 李帥旗,王漢治,馮自平,等. 耦合過熱蒸汽干燥的MVR蒸發結晶系統熱力性能分析[J]. 化工進展,2020,39(2):439-445.
LI Shuaiqi, WANG Hanzhi, FENG Ziping, et al. Performance analysis of a MVR evaporative crystallization system coupled with super-heated steam drying technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 439-445. (in Chinese with English abstract)
[21] KIM Y, KIM D K, AMANO Y, et al. Performance of single‐ and double‐effect operable mechanical vapor recompression desalination system adaptable to variable wind energy[J]. International Journal of Energy Research, 2019, 43(9): 4606-4612.
[22] WANG H Z, LI S Q, HUANG C, et al. Performance analysis of a mechanical vapor recompression zero-emission system with water-injected compressor[J]. Energy Procedia, 2018, 152: 863-868.
[23] 郝維維. 熱泵膜蒸餾系統研究[D]. 天津:天津科技大學, 2015.
HAO Weiwei. Study on Heat Pump Membrane Distillation System[D]. Tianjin: Tianjin University of Science and Technology, 2015. (in Chinese with English abstract)
[24] KIM Y D, THU K, CHOI S H. Solar-assisted multi-stage vacuum membrane distillation system with heat recovery unit[J]. Desalination, 2015, 367: 161-171.
[25] CHIAM C K, SARBATLY R. Study of the rectangular cross-flow flat-sheet membrane module for desalination by vacuum membrane distillation[J]. Chemical Engineering & Processing, 2016, 102: 169-185.
[26] HOG H S, LI W, GU C Z. Performance study on a mechanical vapor compression evaporation system driven by Roots compressor[J]. International Journal of Heat Mass Transfer, 2018; 125: 343-349.
[27] 梁林,韓東,彭濤. 機械蒸汽再壓縮硫酸銨廢水處理系統的分析[J]. 化學工程,2012,40(8):74-78.
LIANG Lin, HAN Dong, PENG Tao. Exergy analysis of system for ammonium sulfate wastewater treatment with mechanical vapor recompression[J]. Chemical Engineering, 2012, 40(8): 74-78. (in Chinese with English abstract)
[28] 劉燕,裴程林,王智,等. 兩效機械蒸汽再壓縮蒸發系統性能分析[J]. 現代化工,2016,36(5):130-132,134.
LIU Yan, PEI Chenglin, WANG Zhi, et al. Performance analysis of two-stage mechanical vapor recompression evaporation system[J]. Modern Chemical Industry, 2016, 36(5): 130-132, 134. (in Chinese with English abstract)
[29] 劉少武,齊焉,劉東. 硫酸工作手冊[M]. 南京:東南大學出版社,2001,2.
[30] 沙業汪,孫仲坡. 硫酸工藝設計手冊[M]. 南京:化工部硫酸工業科技情報中心站出版社,1990.
[31] 孫文. 兩級機械蒸汽再壓縮系統熱力特性與優化研究[D]. 哈爾濱:哈爾濱工業大學,2018.
SUN Wen. Research on Thermodynamic Characteristics and Optimization of Two-stage Mechanical Vapor Recompression System[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese with English abstract)
[32] SI Z T, HAN D, GU J M, et al. Exergy analysis of a vacuum membrane distillation system integrated with mechanical vapor recompression for sulfuric acid waste treatment[J]. Applied Thermal Engineering, 2020, 178: 1-13.
[33] 韓東,彭濤,梁林. 基于蒸汽機械再壓縮的硫酸銨蒸發結晶實驗[J]. 化工進展,2009,28(S1):187-189.
[34] 梁林. 處理高濃度含鹽廢水的機械蒸汽再壓縮系統設計及性能研究[D]. 南京:南京航空航天大學,2013.
LIANG Lin. Design and Performance Research of Mechanical Vapor Recompression System for Treating High Concentration Saline Wastewater[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese with English abstract)
[35] 李金平,王航,王兆福,等. 甘南臧區太陽能主被動聯合采暖系統性能[J]. 農業工程學報,2018,34(21):1-7.
LI Jinping, WANG Hang, WANG Zhaofu, et al. Performance of solar active-passive combined heating system in Tibetan areas of southern Gansu[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 1-7. (in Chinese with English abstract)
[36] 梁林,韓東. 蒸汽機械再壓縮蒸發器的實驗[J]. 化工進展,2009,28:358-360.
[37] 張旸,任建勛,陳澤敬. 壓縮式熱泵膜蒸發系統的分析與試驗研究[J]. 工程熱物理學報,2005,26(1):107-109.
ZANG Yang, REN Jianxun, CHEN Zejing. Experimental studies on vapor compress heat pump membrane distillation system [J]. Journal of Engineering Thermophysics, 2005, 26(1): 107-109. (in Chinese with English abstract)
Characteristics analysis of the combined system for the mechanical vapor recompression and vacuum membrane distillation of sulfuric acid wastes
SI Zetian1, CHEN Ping2, REN Xiujin1, XIANG Jiawei1※
(1.,,325035,; 2.,310020,)
In order to efficiently recover and treat sulfuric acid waste produced in the industrial and agricultural production and utilization process, a combined system of mechanical vapor recompression (MVR) and vacuum membrane distillation (VMD) was proposed and designed in this paper. A compressor was employed to compress the secondary vapor evaporated from the sulfuric acid solution in the VMD module. Then, the compressed vapor with a higher pressure and temperature was used to heat the feed solution in the heat exchanger, which not only recovered the latent heat of internal secondary vapor but also saved the external heat source and cooling water. The proposed system could complete the entire evaporation process by itself, and realize the efficient recovery and utilization of sulfuric acid waste through the complement advantages of VMD and MVR. Firstly, mathematical models were established in the light of the mass and energy conservation principles, the system experimental setup was constructed and then the experiments were carried out to verify the accuracy and reliability of the established mathematical models as well as the feasibility of MVR coupled with VMD. Then, the calculation program of thermodynamic performance was then developed and solved by the iteration with the aid of the Matlab software. The effects of operating parameters including feed concentration, feed temperature, feed velocity and permeate side pressure on thermodynamic characteristics were investigated. The following conclusions could be obtained: A series of experiments were carried out with the tap water as feed, under the conditions of feed temperature, feed velocity, permeate side pressure and heat transfer temperature difference of heat exchanger were 358.15 K, 2.8 m/s, 54.0 kPa and 2 K, membrane flux and condensate water conductivity were tested to be 1.6 kg/(m2·h) and 48 μS/cm, and specific heating energy consumption (hec) and performance coefficient (op) were found to be 71.88 kWh/t and 8.88. The simulated results indicated that when the heat transfer temperature difference of the heat exchanger was constant, increasing the feed concentration increased the saturation temperature difference between inlet solution and outlet vapor of the VMD module (ΔVMD)and saturation temperature difference between inlet vapor and outlet vapor of the compressor (Δcom), which led to the increase of the compression ratio and power consumption of the compressor while the decrease of theop; increasing the feed temperature, feed velocity and permeate side pressure would decrease the values of ΔVMDand Δcom, resulting in the decrease of the compression ratio and power consumption of the compressor while the increase of theop. Compared with single-effect evaporation, double-effect evaporation, three-effect evaporation and MVR systems, the separation efficiency of VMD, Heat pump-VMD and MVR-VMD systems was up to 99.9%, with obvious advantages in separation performance. However, compared with VMD and Heat pump-VMD systems, the current MVR-VMD system was more efficient and energy-saving. Obviously, considering the characteristics of separation and energy saving, the MVR-VMD system has greater advantages and broad prospects for development and application.
sulfuric acid; membrane distillation; membrane flux; mechanical vapor recompression; unit heating energy consumption; energy saving
10.11975/j.issn.1002-6819.202209130
TK5; S216.4
A
1002-6819(2023)-05-0035-08
司澤田,陳萍,任秀錦,等. 硫酸廢液機械蒸汽再壓縮減壓膜蒸餾特性分析[J]. 農業工程學報,2023,39(5):35-42.doi:10.11975/j.issn.1002-6819.202209130 http://www.tcsae.org
SI Zetian, CHEN Ping, REN Xiujin, et al. Characteristics analysis of the combined system for the mechanical vapor recompression and vacuum membrane distillation of sulfuric acid wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(5): 35-42. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202209130 http://www.tcsae.org
2022-09-15
2023-02-21
浙江省自然科學基金項目(D21E050001)
司澤田,博士后,研究方向為工業廢水處理。Email:tian3221623@163.com
※向家偉,教授,博士生導師,研究方向為高端機械裝備系統。Email:jwxiang@wzu.edu.cn