陳代明 王亞?wèn)| 咸永財(cái) 張鳴倫 劉明 沈凱令



摘? 要: 短臨降水預(yù)測(cè)由于氣象數(shù)據(jù)體量大、種類繁多,以及大氣系統(tǒng)的復(fù)雜性,預(yù)測(cè)難度大。擬構(gòu)建一個(gè)基于時(shí)空預(yù)測(cè)網(wǎng)絡(luò)的雷達(dá)回波外推模型來(lái)提高預(yù)測(cè)性能。該網(wǎng)絡(luò)旨在將時(shí)間特征和空間特征進(jìn)行解耦,獨(dú)立提取特征。空間模塊通過(guò)注意力機(jī)制建模時(shí)間不變信息,時(shí)間模塊通過(guò)級(jí)聯(lián)的門控機(jī)制建模時(shí)間依賴。最后,在雷達(dá)回波數(shù)據(jù)集上驗(yàn)證了模型的性能。
關(guān)鍵詞: 短臨預(yù)報(bào); 神經(jīng)網(wǎng)絡(luò); 時(shí)空解耦; 雷達(dá)回波
中圖分類號(hào):TP399? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A? ? ?文章編號(hào):1006-8228(2023)05-01-05
Radar echo extrapolation research based on spatiotemporal prediction network
Chen Daiming1, Wang Yadong1, Xian Yongcai1,? Zhang Minglun1, Liu Ming1, Shen Kailing2
(1. National Energy Shanxi Hydro electric Limited Liability Company, Hanzhong, Shanxi 723000, China;
2. Nanjing University of Information Science and Technology)
Abstract: Short-term precipitation prediction is difficult due to the large volume and variety of meteorological data, as well as the complexity of atmospheric systems. We propose to construct a radar echo extrapolation model based on a spatiotemporal prediction network to improve the prediction performance. The network aims to decouple temporal and spatial features and extract features independently. The spatial module models time-invariant information through an attention mechanism, and the temporal module models temporal dependence through a cascaded gating mechanism. The performance of the model is validated on a radar echo dataset.
Key words: short-term forecasting; neural networks; spatiotemporal decoupling; radar echoes
0 引言
短時(shí)強(qiáng)降雨一直是重大自然災(zāi)害中需關(guān)注和研究的重點(diǎn)問(wèn)題。我國(guó)長(zhǎng)江中下游流域今年極端暴雨天氣頻發(fā),由此造成的災(zāi)害和影響極其嚴(yán)重。由于強(qiáng)降雨短臨預(yù)報(bào)能夠根據(jù)當(dāng)前時(shí)刻的天氣情況提供未來(lái)多個(gè)小時(shí)內(nèi)降雨強(qiáng)度估計(jì)值,所以預(yù)報(bào)的結(jié)果可以用于輔助相關(guān)部門和相關(guān)行業(yè)組織及時(shí)做出正確決策。
短時(shí)強(qiáng)降雨具有高度非線性、隨機(jī)性和復(fù)雜性,使得強(qiáng)降雨短臨預(yù)報(bào)成為具有挑戰(zhàn)性的世界難題。
新一代多普勒天氣雷達(dá)作為探測(cè)云團(tuán)降水的主要工具,輸出的產(chǎn)品已成為天氣監(jiān)測(cè)、預(yù)警強(qiáng)對(duì)流天氣的重要信息來(lái)源。其中,雷達(dá)回波圖像具有嚴(yán)格的時(shí)序特征(時(shí)間分辨率為6分鐘),其反射率因子能夠更直觀、高效的反映降水實(shí)況,結(jié)合其他氣象要素指標(biāo)或天氣形勢(shì),可以獲得更好的效果,對(duì)提高災(zāi)害性天氣監(jiān)測(cè)能力和改進(jìn)天氣預(yù)報(bào)質(zhì)量有重要的現(xiàn)實(shí)意義[1]。……