999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

融合特征增強(qiáng)模塊的小樣本農(nóng)業(yè)害蟲(chóng)識(shí)別

2023-04-29 19:46:50王祎李旭偉劉怡光陳立平
四川大學(xué)學(xué)報(bào)(自然科學(xué)版) 2023年4期

王祎 李旭偉 劉怡光 陳立平

摘 要 ???:基于深度學(xué)習(xí)的圖像識(shí)別技術(shù)在具體應(yīng)用前必須先經(jīng)過(guò)大量帶標(biāo)簽樣本的訓(xùn)練,然而在實(shí)際場(chǎng)景中目標(biāo)域樣本可能非常稀缺,小樣本圖像識(shí)別技術(shù)應(yīng)運(yùn)而生.為了提升小樣本場(chǎng)景下的圖像識(shí)別準(zhǔn)確率,本文提出一個(gè)通用的兩階段訓(xùn)練模型以融合現(xiàn)行主流方法并增強(qiáng)其表現(xiàn).首先,針對(duì)訓(xùn)練時(shí)不同害蟲(chóng)種類(lèi)背景相似度過(guò)高的問(wèn)題提出融合雙注意力機(jī)制的特征加強(qiáng)模塊;其次,針對(duì)小樣本情況下預(yù)測(cè)可能產(chǎn)生的過(guò)擬合問(wèn)題提出基于高斯分布的特征生成模塊以提高泛化能力;最后,將三種典型小樣本識(shí)別方法統(tǒng)一成兩階段訓(xùn)練模型以融入提出的方法.將該思路及改進(jìn)首次應(yīng)用于傳統(tǒng)害蟲(chóng)分類(lèi)數(shù)據(jù)集IP102,識(shí)別準(zhǔn)確率可以在基準(zhǔn)方法上取得2.11%到6.87%的提升.為了進(jìn)一步驗(yàn)證本文方法的有效性,在小樣本領(lǐng)域公開(kāi)數(shù)據(jù)集Mini-Imagenet也進(jìn)行了相應(yīng)的實(shí)驗(yàn),提升效果同樣顯著.

關(guān)鍵詞 : 圖像識(shí)別; 小樣本; 特征增強(qiáng); 農(nóng)業(yè)害蟲(chóng)

中圖分類(lèi)號(hào) :S126 文獻(xiàn)標(biāo)識(shí)碼 :A DOI : ?10.19907/j.0490-6756.2023.042001

Few shot learning of agricultural pests classification ?fusion with enhanced feature model

WANG Yi ?1, LI ?Xu-Wei ?1, LIU Yi-Guang ?1, CHEN Li-Ping ?2

(1. College of Computer Science (College of Software), Sichuan University, Chengdu 610065, China;

2. School of Information Engineering, Tarim University, Tarim 843300, China)

In order to achieve accurate image recognition in scenarios where the target domain samples are limited,such as agricultural pest Image recognition, few shot image classification methods have been developed as an extension of deep learning-based image classification .To further improve the accuracy in the few shot image classification, this paper proposes a general two-stage training model that integrates current mainstream methods and enhances their performance to improve the recognition accuracy in limited sample scenarios Firstly, a feature enhancement module incorporating dual attention mechanism is proposed to solve the problem that the background similarity of different pest species is too high during training. Secondly, a feature generation module based on Gaussian distribution is proposed to solve the problem of overfitting that may occur in prediction in the case of a single sample. to improve the generalization ability. Finally, three typical few-shot recognition methods are unified into a two-stage training model to incorporate the proposed method. This idea and improvement are applied to the traditional pest classification dataset IP102 for the first time, and the recognition accuracy can be improved by 2.11% to 6.87% over the benchmark method. In order to further verify the effectiveness of the method in this paper, corresponding experiments were also carried out on the public dataset Mini-Imagenet in the field of few shot learning, the improvement effect is also significant.

Imagine classification; Few shot learning; Feature enhancement; Agricultural pests

1 引 言

農(nóng)業(yè)問(wèn)題關(guān)乎民生大計(jì),種類(lèi)繁多的害蟲(chóng)卻給糧食生產(chǎn)和作物安全帶來(lái)了巨大的挑戰(zhàn) ?[1],因此安全高效地識(shí)別農(nóng)業(yè)害蟲(chóng)尤為重要.同時(shí)基于深度學(xué)習(xí)的圖像識(shí)別技術(shù)也取得了飛速的進(jìn)展,各種改進(jìn)的卷積神經(jīng)網(wǎng)絡(luò) ?[2-4]和Transformer機(jī)制 ?[5-6]在某些特定場(chǎng)景下的表現(xiàn)已經(jīng)超越人類(lèi),面對(duì)經(jīng)濟(jì)與效率的取舍,有學(xué)者在農(nóng)業(yè)害蟲(chóng)識(shí)別領(lǐng)域使用機(jī)器視覺(jué)方法進(jìn)行了各種積極的嘗試.

登錄APP查看全文

主站蜘蛛池模板: 一级成人欧美一区在线观看 | 中文字幕一区二区视频| 97视频在线精品国自产拍| 国产亚洲男人的天堂在线观看| 97视频在线精品国自产拍| 久久这里只有精品66| 伊人网址在线| 福利一区在线| 色综合久久88| 99在线视频免费观看| 欧美a级完整在线观看| 搞黄网站免费观看| 99精品国产电影| 五月婷婷中文字幕| 亚洲中文字幕在线精品一区| 国产精品男人的天堂| 国产免费久久精品99re丫丫一| 热99精品视频| 蜜臀av性久久久久蜜臀aⅴ麻豆| 67194在线午夜亚洲| 91久久夜色精品国产网站| 26uuu国产精品视频| 国产成人三级在线观看视频| 成人小视频网| 无码区日韩专区免费系列| 久久亚洲美女精品国产精品| 国产中文一区二区苍井空| 国产精品香蕉在线| 国产乱人伦偷精品视频AAA| 毛片久久久| 国产乱论视频| 国产欧美专区在线观看| 国产99精品久久| 成人无码一区二区三区视频在线观看 | 欧美高清视频一区二区三区| 久久99精品久久久久久不卡| www.国产福利| 亚洲国产精品一区二区高清无码久久| 亚洲第一精品福利| 中文字幕无线码一区| 国产福利小视频高清在线观看| 国产成在线观看免费视频| 日韩不卡免费视频| 久久精品视频一| 大陆国产精品视频| 国产三级国产精品国产普男人 | 国产91丝袜在线播放动漫| 欧美在线黄| 亚洲专区一区二区在线观看| 国产玖玖视频| 欧美精品在线视频观看| 欧美国产综合色视频| 亚洲精品第五页| 日韩欧美综合在线制服| 久久久久亚洲AV成人网站软件| 久久性视频| 四虎综合网| 丝袜高跟美脚国产1区| 久久国产V一级毛多内射| 欧美a级在线| 男女性色大片免费网站| 国产精品va免费视频| 在线中文字幕网| 亚洲女同欧美在线| 久久国产精品影院| 丁香婷婷在线视频| 午夜a视频| 曰AV在线无码| 婷婷伊人久久| 国产乱子伦手机在线| 精品无码人妻一区二区| 国产女主播一区| 欧美一区福利| 亚洲国产成人无码AV在线影院L| 国产一二三区视频| 亚洲人在线| 亚洲欧洲自拍拍偷午夜色无码| 欧美日韩免费在线视频| 特级毛片8级毛片免费观看| 国产成人三级| 国产在线观看成人91| 亚洲无码熟妇人妻AV在线|