黃俊 邵慧娟 馬學(xué)鋒 于曉輝 鄭曉鳳 張久聰

摘要:慢性HBV感染的機(jī)制尚未完全闡明,HBV可誘發(fā)宿主免疫細(xì)胞功能障礙,引起免疫失衡和功能缺陷,這可能是HBV感染慢性化的機(jī)制之一。在慢性HBV感染中,自然殺傷(NK)細(xì)胞的功能是衰竭的,可能與其細(xì)胞表面免疫檢查點(diǎn)分子的表達(dá)上調(diào)相關(guān),阻斷免疫檢查點(diǎn)可以恢復(fù)NK細(xì)胞的功能。本文將從HBV病原學(xué)、慢性HBV感染機(jī)制以及常見(jiàn)免疫檢查點(diǎn)在慢性乙型肝炎中對(duì)NK細(xì)胞功能的影響等方面進(jìn)行系統(tǒng)綜述,旨在為慢性HBV感染的治療提供新的思路。關(guān)鍵詞:乙型肝炎, 慢性; 免疫檢查點(diǎn)蛋白類; 自然殺傷細(xì)胞基金項(xiàng)目:甘肅省非感染性肝病臨床研究中心項(xiàng)目(21JR7RA017); 中央高校優(yōu)秀青年團(tuán)隊(duì)培育項(xiàng)目(31920220065);第九四〇醫(yī)院拔尖項(xiàng)目(2021yxky002)
Effect of immune checkpoint molecules on the function of natural killer cells in patients with chronic hepatitis B virus infection
HUANG Jun SHAO Huijuan MA Xuefeng YU Xiaohui ZHENG Xiaofeng ZHANG Jiucong?(1. The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, China; 2. Department of Gastroenterology, The 940 Hospital of Joint Logistic Support Force of PLA, Lanzhou 730050, China;3. Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou 730030, China)
Corresponding authors:ZHANG Jiucong, zhangjiucong@163.com (ORCID:0000-0003-4006-3033); ZHENG Xiaofeng, zhengxf19892013@126.com (ORCID:0009-0002-9660-1224)
Abstract:At present, the mechanism of chronic hepatitis B virus (HBV) infection has not been fully clarified, and HBV can cause immune cell dysfunction, immune imbalance and functional defects in the host, which might be one of the mechanisms of chronic HBV infection. In chronic HBV infection, the functions of natural killer (NK) cells are depleted, which may be associated with the upregulated expression of immune checkpoint molecules on the surface of NK cells, and blocking immune checkpoint molecules can restore the function of NK cells. This article systematically reviews the etiology of HBV, the mechanism of chronic HBV infection, and the effect of common immune checkpoint molecules on functions of NK cells in chronic hepatitis B, so as to provide new ideas for the treatment of chronic HBV infection.
Key words:Hepatitis B, Chronic; Immune Checkpoint Proteins; Natural Killer CellsResearch funding:Gansu Clinical Medical
Research Center for Non-infectious Liver Diseases(21JR7RA017); Project of Excellent Youth Team Training for the Central Universities(31920220065); The Top Project of The 940 Hospital(2021yxky02)
據(jù)世界衛(wèi)生組織估計(jì),全球有2.96億慢性乙型肝炎(CHB)患者,每年有150萬(wàn)新發(fā)HBV感染者[1],我國(guó)有7 000萬(wàn)HBV感染者,其中有2 000萬(wàn)~3 000萬(wàn)CHB患者[2]。每年全球約有70萬(wàn)人死于HBV慢性感染導(dǎo)致的肝硬化、肝衰竭和肝細(xì)胞癌等并發(fā)癥,造成了巨大的醫(yī)療和經(jīng)濟(jì)負(fù)擔(dān)[3]。據(jù)中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì)《慢性乙型肝炎防治指南(2019年版)》[4],抗病毒治療可以有效抑制HBV的復(fù)制,從而減少肝臟炎癥性壞死,降低肝硬化、肝細(xì)胞癌等肝病的發(fā)病率和致死率。目前臨床上常用的核苷酸類似物(NA)可有效降低血清病毒載量,但盡管長(zhǎng)期治療,仍很少實(shí)現(xiàn)功能性治愈,宿主免疫細(xì)胞抗病毒功能并未完全恢復(fù),且共價(jià)閉合環(huán)狀DNA(cccDNA)在肝細(xì)胞中持續(xù)存在,停藥后仍會(huì)發(fā)生病毒學(xué)復(fù)發(fā)[5]。HBV感染機(jī)體后,自然殺傷(NK)細(xì)胞是先天性免疫反應(yīng)的主要效應(yīng)細(xì)胞,通過(guò)細(xì)胞毒性作用或產(chǎn)生細(xì)胞因子等發(fā)揮抗病毒作用,在慢性HBV感染期間,NK細(xì)胞功能受損,這可能有助于病毒的持久感染[6]。免疫檢查點(diǎn)是一類參與免疫系統(tǒng)負(fù)調(diào)節(jié)的免疫調(diào)節(jié)蛋白,主要包括程序性細(xì)胞死亡蛋白1(programmed cell death protein 1,PD-1)、淋巴細(xì)胞活化基因3(lymphocyte-activation gene 3,LAG-3)、T淋巴細(xì)胞免疫球蛋白黏蛋白3(T cell immunoglobulin and mucin domain containing protein 3,TIM-3)、T淋巴細(xì)胞免疫球蛋白和ITIM結(jié)構(gòu)域(T-cell immunoglobulin and ITIM domain,TIGIT)、自然殺傷細(xì)胞2組成員A(natural killer group 2 member A,NKG2A)等,這些免疫檢查點(diǎn)特異性表達(dá)在T淋巴細(xì)胞、NK細(xì)胞等多種免疫細(xì)胞表面。近年來(lái)大量的研究表明免疫檢查點(diǎn)參與了HBV感染的疾病發(fā)展過(guò)程,本文將從HBV病原學(xué)、慢性HBV感染機(jī)制以及常見(jiàn)免疫檢查點(diǎn)在CHB中對(duì)NK細(xì)胞功能的影響等方面進(jìn)行系統(tǒng)綜述。
1HBV
1.1HBV病原學(xué)及生命周期HBV由包膜和核心顆粒組成,包膜是脂質(zhì)雙層膜,HBsAg嵌入其中,核心顆粒包含3.2 kb的松弛環(huán)狀DNA(rcDNA)、HBcAg和病毒DNA聚合酶。其基因組由四個(gè)開(kāi)放閱讀框組成,負(fù)責(zé)編碼蛋白。在感染開(kāi)始時(shí),HBsAg識(shí)別肝細(xì)胞上的硫酸乙酰肝素蛋白聚糖,并以低親和力結(jié)合,然后肝細(xì)胞表面的牛磺膽酸鈉共轉(zhuǎn)運(yùn)多肽受體介導(dǎo)病毒進(jìn)入宿主細(xì)胞,病毒包膜和肝細(xì)胞膜融合,并將核心顆粒釋放到細(xì)胞質(zhì)中,病毒核衣殼移除之后,病毒DNA進(jìn)入肝細(xì)胞的細(xì)胞核,rcDNA經(jīng)DNA修復(fù)形成cccDNA,其結(jié)構(gòu)穩(wěn)定,可以在宿主細(xì)胞中持續(xù)存在。cccDNA作為轉(zhuǎn)錄前基因組RNA以及其他信使RNA的模板,轉(zhuǎn)錄后輸出到細(xì)胞質(zhì)翻譯成病毒蛋白,包括HBsAg、HBcAg、HBeAg、DNA聚合酶和乙型肝炎病毒X蛋白,核心蛋白可以構(gòu)建成新的核衣殼,在核衣殼內(nèi),轉(zhuǎn)錄前基因組RNA在病毒DNA聚合酶的作用下逆轉(zhuǎn)錄成新的rcDNA,新的rcDNA可以進(jìn)入肝細(xì)胞核補(bǔ)充cccDNA,也可以與內(nèi)質(zhì)網(wǎng)中的包膜蛋白聚集在一起進(jìn)入分泌途徑,從肝細(xì)胞排出到血液中[7-9](圖1)。
1.2慢性HBV感染機(jī)制慢性HBV感染的機(jī)制尚未完全闡明。在HBV感染中,先天性和適應(yīng)性免疫反應(yīng)是控制病毒感染和清除肝內(nèi)炎癥壞死的主要原因,但在慢性HBV感染患者中,宿主的免疫反應(yīng)就像一把雙刃劍,一方面可以破壞被感染的肝細(xì)胞來(lái)清除HBV,另一方面可以引起肝臟炎癥,加重肝損傷,導(dǎo)致肝纖維化和肝細(xì)胞癌[10-11]。Jin等[12]分析了CHB患者外周血中各種免疫細(xì)胞亞群的百分比和功能等,發(fā)現(xiàn)CHB患者的外周血免疫細(xì)胞存在功能缺陷,尤其是NK細(xì)胞和T淋巴細(xì)胞。HBV可誘發(fā)宿主免疫細(xì)胞功能障礙,引起免疫失衡和功能缺陷,這可能是HBV感染慢性化的機(jī)制之一。
NK細(xì)胞是維持機(jī)體先天性免疫反應(yīng)的主要細(xì)胞之一,通過(guò)識(shí)別和殺死靶細(xì)胞并分泌IFN-γ、TNF-α等細(xì)胞因子來(lái)發(fā)揮作用,根據(jù)NK細(xì)胞膜CD56的密度,NK細(xì)胞可以被分為兩個(gè)亞群,CD56bright和CD56dim,CD56bright NK細(xì)胞在受到刺激時(shí)產(chǎn)生大量的細(xì)胞因子,但細(xì)胞毒性較小,相反,CD56dim NK細(xì)胞則通過(guò)脫顆粒功能殺死靶細(xì)胞,但分泌細(xì)胞因子的水平相對(duì)CD56bright NK細(xì)胞較低[13]。
已證實(shí)慢性HBV感染中T淋巴細(xì)胞功能衰竭是感染慢性化的重要機(jī)制,但越來(lái)越多的研究[12,14-17]發(fā)現(xiàn),在慢性HBV感染中,NK細(xì)胞的功能也是衰竭的,主要表現(xiàn)為NK細(xì)胞的頻數(shù)及分泌的細(xì)胞因子減少,但細(xì)胞毒性作用保持不變,這種現(xiàn)象被一些學(xué)者稱為NK細(xì)胞的“功能二分法”,NK細(xì)胞的功能二分法有助于HBV的持續(xù)存在。NK細(xì)胞的功能受其表面激活或抑制性受體的調(diào)控,近年來(lái),很多研究[18-20]發(fā)現(xiàn)免疫檢查點(diǎn)分子對(duì)慢性HBV感染中NK細(xì)胞功能也有重要的影響,在慢性HBV感染患者的NK細(xì)胞中,免疫檢查點(diǎn)分子NKG2A、PD-1、TIM-3、TIGIT等的表達(dá)是上調(diào)的,致NK細(xì)胞分泌IFN-γ和TNF-α的能力降低,并參與了肝細(xì)胞癌的進(jìn)展。因此,了解免疫檢查點(diǎn)對(duì)慢性HBV感染者NK細(xì)胞功能的影響至關(guān)重要。
2免疫檢查點(diǎn)對(duì)慢性HBV感染者NK細(xì)胞功能的影響2.1NKG2ANKG2A是C型凝集素超家族的成員,是一種單通道Ⅱ型跨膜糖蛋白,含有細(xì)胞外凝集素樣結(jié)構(gòu)域,跨膜結(jié)構(gòu)域以及胞內(nèi)段,細(xì)胞內(nèi)部分有兩個(gè)免疫受體酪氨酸抑制基序(immunoreceptor tyrosine-based inhibitory motif,ITIM),參與抑制性信號(hào)傳導(dǎo),NKG2A與CD94構(gòu)成異二聚體,NKG2A/CD94的配體有非經(jīng)典的MHC Ⅰ類分子、人白細(xì)胞抗原E[21]。慢性HBV感染時(shí),NK細(xì)胞上NKG2A的表達(dá)上調(diào),Li等[22]分析了活動(dòng)性CHB患者、非活動(dòng)性CHB患者和健康對(duì)照組的外周血NK細(xì)胞上的NKG2A水平,發(fā)現(xiàn)活動(dòng)性CHB患者的NK細(xì)胞NKG2A陽(yáng)性的百分比比非活動(dòng)性CHB患者和健康對(duì)照組高,且NK細(xì)胞NKG2A的表達(dá)與血清病毒載量呈正相關(guān),此外,HBV轉(zhuǎn)基因小鼠NKG2A陽(yáng)性的NK細(xì)胞也比對(duì)照組小鼠更高,阻斷HBV攜帶小鼠的NKG2A信號(hào)可以降低HBV DNA、HBsAg和HBcAg水平。Ma等[23]的研究同樣發(fā)現(xiàn)CHB患者中表達(dá)抑制性受體NKG2A的NK細(xì)胞百分比增加,阻斷NKG2A可以恢復(fù)NK細(xì)胞的功能,且慢性HBV感染期間,HBeAg可以誘導(dǎo)調(diào)節(jié)性T淋巴細(xì)胞中IL-10的產(chǎn)生,從而導(dǎo)致NKK2A在NK細(xì)胞上的表達(dá)增加,進(jìn)而導(dǎo)致NK細(xì)胞的功能障礙。NKG2A/CD94與其配體結(jié)合后,NKK2A中的ITIM被Src家族激酶磷酸化,磷酸化的ITIM負(fù)責(zé)招募和激活含有SH2結(jié)構(gòu)域的肌醇磷酸酶SHIP-1、SHIP-2以及酪氨酸磷酸酶SHP-1、SHP-2,這些酪氨酸磷酸酶能夠通過(guò)去磷酸化作用抑制NK細(xì)胞激活受體產(chǎn)生的激活信號(hào),最終引起NK細(xì)胞功能障礙[21,24]。
2.2PD-1PD-1于1992年被發(fā)現(xiàn),是一種Ⅰ型跨膜糖蛋白,含有單個(gè)細(xì)胞外IgV結(jié)構(gòu)域、疏水性跨膜結(jié)構(gòu)域和細(xì)胞質(zhì)尾部結(jié)構(gòu)域,其細(xì)胞質(zhì)區(qū)域內(nèi)含有ITIM樣基序和免疫受體酪氨酸轉(zhuǎn)換基序ITSM,PD-1的配體是PD-L1或PD-L2[25-26]。Li等[27]從慢性HBV感染者和健康個(gè)體的外周血中分離出外周血單個(gè)核細(xì)胞,用流式細(xì)胞術(shù)分析了PD-1在NK細(xì)胞上的表達(dá),發(fā)現(xiàn)慢性HBV感染者NK細(xì)胞上PD-1的表達(dá)顯著高于健康對(duì)照組。與李芬[28]的研究結(jié)果一致,此外,慢性HBV感染者NK細(xì)胞的頻數(shù)減少與其表面PD-1的表達(dá)上調(diào)相關(guān)。PD-1與配體結(jié)合后可以誘導(dǎo)NK細(xì)胞的衰竭,當(dāng)PD-1與其配體結(jié)合后,除了ITIM樣基序參與抑制性信號(hào)的傳導(dǎo)外,ITSM結(jié)構(gòu)域中的酪氨酸也會(huì)發(fā)生磷酸化并招募SHP-2,阻斷磷脂酰肌醇3激酶(PI3K)和Ras激活,分別抑制PIP3-AKT-mTOR和MEK-ERK激酶途徑傳遞的活化信號(hào),從而抑制免疫細(xì)胞增殖、分化、存活和分泌細(xì)胞因子[29]。阻斷PD-1/PD-L1通路可以直接阻斷抑制信號(hào),改善NK細(xì)胞的功能和活性,也可以通過(guò)調(diào)控T淋巴細(xì)胞、調(diào)節(jié)性T淋巴細(xì)胞來(lái)間接緩解NK細(xì)胞的功能抑制[30]。慢性HBV感染者NK細(xì)胞表面PD-1的表達(dá)上調(diào),導(dǎo)致NK細(xì)胞的功能衰竭,但具體的機(jī)制需要更多的研究來(lái)進(jìn)一步說(shuō)明。
2.3TIM-3TIM-3于2002年首次被發(fā)現(xiàn),由氨基末端免疫球蛋白可變結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和細(xì)胞質(zhì)尾部組成,其細(xì)胞質(zhì)尾部包含5個(gè)酪氨酸殘基,與NKG2A和PD-1不同,TIM-3無(wú)ITIM樣基序[31]。TIM-3有四個(gè)配體,包括半乳糖凝集素9、癌胚抗原細(xì)胞黏附分子1、高遷移率族蛋白B1和磷脂酰絲氨酸[32]。在慢性HBV感染中,TIM-3在許多免疫細(xì)胞中表達(dá)上調(diào),如細(xì)胞毒性T淋巴細(xì)胞、樹(shù)突狀細(xì)胞、巨噬細(xì)胞和NK細(xì)胞等,TIM-3的表達(dá)上調(diào)常伴有上述免疫細(xì)胞的功能受損,而抑制TIM-3能部分恢復(fù)上述細(xì)胞的免疫功能,從而促進(jìn)病毒的清除[33]。Ju等[34]采用流式細(xì)胞術(shù)檢測(cè)CHB患者、健康對(duì)照組和脂肪性肝病患者外周血NK細(xì)胞中的TIM-3表達(dá),發(fā)現(xiàn)與健康對(duì)照組和脂肪性肝病患者相比,CHB患者NK細(xì)胞中的TIM-3表達(dá)顯著增加,并在被HBV載體轉(zhuǎn)染的NK92細(xì)胞和HBV轉(zhuǎn)基因小鼠肝臟分離的NK細(xì)胞中也檢測(cè)到TIM-3表達(dá)增加,提示HBV感染可以上調(diào)NK細(xì)胞中的TIM-3表達(dá);研究者還使用抗體阻斷了CHB患者外周血NK細(xì)胞上TIM-3信號(hào)的傳導(dǎo),發(fā)現(xiàn)NK細(xì)胞的細(xì)胞毒性增加,分泌IFN-γ增多,認(rèn)為TIM-3表達(dá)上調(diào)反過(guò)來(lái)可以抑制CHB患者NK細(xì)胞的功能,阻斷TIM-3信號(hào)可以使NK細(xì)胞的功能恢復(fù)。目前,TIM-3導(dǎo)致慢性HBV感染NK細(xì)胞功能衰竭的機(jī)制尚未完全可知。有研究[35-36]顯示,TIM-3的配體磷脂酰絲氨酸與TIM-3結(jié)合可以抑制NK細(xì)胞的活化,磷脂酰絲氨酸促進(jìn)了TIM-3酪氨酸殘基的磷酸化,然后TIM-3與PI3K p110競(jìng)爭(zhēng)性的結(jié)合p85,抑制下游的AKT-mTOR信號(hào)傳導(dǎo)從而導(dǎo)致NK細(xì)胞功能衰竭。此外,HBV感染還可以增強(qiáng)肝細(xì)胞表面半乳糖凝集素9的表達(dá),半乳糖凝集素9與NK細(xì)胞表達(dá)的TIM-3結(jié)合而抑制NK細(xì)胞的殺傷功能,減少IFN-γ的產(chǎn)生,并促使其發(fā)生凋亡,可能為HBV感染誘導(dǎo)肝臟NK細(xì)胞免疫耐受的機(jī)制之一[37-38]。
2.4TIGITTIGIT最早于2009年被確認(rèn)為一種新型免疫檢查點(diǎn),TIGIT是CD28家族的一個(gè)新成員,可表達(dá)于幾乎所有T淋巴細(xì)胞亞群及NK細(xì)胞表面,可以抑制T淋巴細(xì)胞和NK細(xì)胞的激活[39]。TIGIT由位于細(xì)胞外的IgV結(jié)構(gòu)域、單通道跨膜段、胞內(nèi)段三部分組成,其胞內(nèi)段除了ITIM樣基序,還有免疫球蛋白酪氨酸尾樣基序[40-41]。TIGIT的配體主要包括CD155、CD112等,其中,CD155與TIGIT的親和力最大[42-43]。TIGIT與配體的相互作用可以導(dǎo)致免疫球蛋白酪氨酸尾樣基序的磷酸化,并與生長(zhǎng)因子受體結(jié)合蛋白2結(jié)合,招募SHIP-1抑制PI3K/MAPK信號(hào)傳導(dǎo),阻斷核因子-κB的活化,進(jìn)而抑制NK細(xì)胞的細(xì)胞毒性[44-45]。Yu等[20]使用流式細(xì)胞術(shù)分析了TIGIT和TIM-3在健康供體、CHB、HBV相關(guān)肝硬化和HBV相關(guān)肝細(xì)胞癌患者的表達(dá),發(fā)現(xiàn)在HBV相關(guān)疾病中,TIGIT和TIM-3在NK細(xì)胞上的表達(dá)增高,TIGIT和TIM-3具有一定比例的共表達(dá),且參與了NK細(xì)胞的功能衰竭。在HBV攜帶小鼠模型中,NK細(xì)胞上TIGIT的表達(dá)顯著上調(diào),阻斷TIGIT后顯著降低了小鼠模型血清HBsAg水平,且HBsAg轉(zhuǎn)陰率增高,阻斷TIGIT可以增加肝臟中NK細(xì)胞的數(shù)量并增強(qiáng)其分泌細(xì)胞因子的功能[46]。
2.5唾液酸結(jié)合免疫球蛋白樣凝集素(sialic acid binding immunoglobulin-like lectin,Siglec)-7/9Siglec屬于Ⅰ型凝集素家族的免疫調(diào)節(jié)性唾液酸結(jié)合受體,Siglec在多種免疫細(xì)胞上表達(dá),大多數(shù)Siglec是抑制性受體,如Siglec-7、Siglec-9等。與NK細(xì)胞的抑制性受體NKG2A、PD-1等類似,Siglecs在其細(xì)胞質(zhì)尾部也包含一個(gè)或多個(gè)ITIM樣基序,與配體結(jié)合后,ITIM被Src家族激酶磷酸化,招募并激活酪氨酸磷酸酶SHP-1和SHP-2進(jìn)而發(fā)揮抑制作用[47]。在慢性HBV感染中,NK細(xì)胞Siglec-7的表達(dá)明顯下調(diào),HBV相關(guān)肝硬化患者的疾病進(jìn)展與Siglec-7陽(yáng)性NK細(xì)胞頻數(shù)降低有關(guān)[48]。Zhao等[49]用流式細(xì)胞術(shù)評(píng)估了Siglec-9在慢性HBV感染者外周血NK細(xì)胞上的表達(dá),發(fā)現(xiàn)HBV感染者Siglec-9陽(yáng)性的NK細(xì)胞頻數(shù)下降,且與病毒復(fù)制呈負(fù)相關(guān),此外,阻斷HBV感染患者NK細(xì)胞上的Siglec-9可增加NK細(xì)胞分泌IFN-γ、TNF-α和CD107a脫顆粒能力。雖然目前的研究證明Siglec-7/9參與了慢性HBV感染,但其對(duì)NK細(xì)胞功能的影響仍需要更多的實(shí)驗(yàn)研究來(lái)進(jìn)一步闡明。
2.6LAG-3LAG-3于1990年被發(fā)現(xiàn),是一種Ⅰ型跨膜蛋白。LAG-3主要作用是抑制T淋巴細(xì)胞的活化和增殖,同時(shí)抑制Treg的功能,LAG-3的結(jié)構(gòu)與CD4具有同源性,通過(guò)與CD4競(jìng)爭(zhēng)性結(jié)合人白細(xì)胞抗原Ⅱ類來(lái)抑制T淋巴細(xì)胞功能[50]。雖然LAG-3也在活化的NK細(xì)胞上表達(dá),但其對(duì)NK細(xì)胞的調(diào)控作用尚未得到明確[47]。Narayanan等[51]用流式細(xì)胞術(shù)評(píng)估IFN-α對(duì)健康供體外周血NK細(xì)胞的影響,發(fā)現(xiàn)暴露于IFN-α的NK細(xì)胞表面LAG-3的表達(dá)增加,使用抗體體外抑制NK細(xì)胞上的LAG-3信號(hào)后,細(xì)胞因子IFN-γ、TNF-α、MIP-1α和MIP-1β的分泌顯著增加,但并不影響NK細(xì)胞的細(xì)胞毒性活性,因此他們認(rèn)為L(zhǎng)AG-3可能是成熟NK細(xì)胞的負(fù)調(diào)節(jié)因子,目前需要更多的研究來(lái)進(jìn)一步明確LAG-3對(duì)NK細(xì)胞的作用。
在慢性HBV感染中,關(guān)于NK細(xì)胞的功能及其調(diào)節(jié)機(jī)制的研究結(jié)果仍然存在爭(zhēng)議,Wang等[52]認(rèn)為HBV的持續(xù)感染和導(dǎo)致肝損傷的原因可能是由于NK細(xì)胞的過(guò)度反應(yīng),包括分泌的促炎細(xì)胞因子增多和細(xì)胞毒性增加,而免疫檢查點(diǎn)與其配體結(jié)合抑制NK細(xì)胞的功能則可作為保護(hù)慢性HBV感染者免受嚴(yán)重肝損傷治療的新靶點(diǎn)。因此,需要進(jìn)行更多的研究來(lái)探索NK細(xì)胞功能在慢性HBV感染中的作用以及其功能失調(diào)的機(jī)制。
3小結(jié)與展望
為治療慢性HBV感染,目前臨床上所使用的藥物主要為NA和IFN-α。NA是阻斷DNA合成的直接抗病毒藥物,可有效降低HBV DNA;IFN-α則通過(guò)多種機(jī)制產(chǎn)生抗病毒作用,包括直接抑制受感染細(xì)胞中的RNA和蛋白質(zhì)的產(chǎn)生,并通過(guò)阻斷核衣殼的組裝來(lái)抑制HBV DNA復(fù)制,還可以激活NK細(xì)胞和靶向HBV感染的T淋巴細(xì)胞,因此,在極少部分患者中,IFN-α治療可治愈感染,但相比之下,NA僅能抑制HBV基因組復(fù)制,對(duì)免疫反應(yīng)或cccDNA的持續(xù)存在影響很小,并不能治愈感染[53]。為完成世界衛(wèi)生組織提出的2030年前實(shí)現(xiàn)全球肝炎消除的目標(biāo),許多研究者一直在探索治療CHB的新方案,免疫治療也成為治療CHB探索的一個(gè)新方向。Envafolimab(ASC22)是一種皮下注射的針對(duì)PD-L1的單克隆抗體,在我國(guó),ASC22正在開(kāi)發(fā)用于治療CHB和各種實(shí)體瘤[54-55]。雖然目前慢性HBV感染者免疫功能調(diào)節(jié)的機(jī)制尚未完全闡釋清楚,但是伴隨著免疫檢查點(diǎn)在慢性HBV感染中的研究深入,將為臨床治療提供更多的實(shí)驗(yàn)數(shù)據(jù)和理論支持,終將迎來(lái)更多能有效治療慢性HBV感染的藥物。
利益沖突聲明:本文不存在任何利益沖突。作者貢獻(xiàn)聲明:黃俊完成論文的選題、寫作及文獻(xiàn)資料的分析;邵慧娟、馬學(xué)鋒參與文獻(xiàn)資料的分析;鄭曉鳳、張久聰參與校稿;于曉輝、張久聰指導(dǎo)并修改論文。
參考文獻(xiàn):
[1]WHO. Hepatitis B[EB/OL]. (2022-06-24)[2022-10-20]. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b.
[2]ZHU M, WANG H, LOU T, et al. Current treatment of chronic hepatitis B: Clinical aspects and future directions[J]. Front Microbiol, 2022, 13: 975584. DOI: 10.3389/fmicb.2022.975584.
[3]MADHUSOODANAN J. Research round-up: hepatitis B [J]. Nature, 2022, 603(7903): S66-S67.DOI:10.1038/d41586-022-00822-z.
[4]Chinese Society of Infectious Diseases, Chinese Medical Association, Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B (version 2019)[J]. J Clin Hepatol, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.中華醫(yī)學(xué)會(huì)感染病學(xué)分會(huì), 中華醫(yī)學(xué)會(huì)肝病學(xué)分會(huì). 慢性乙型肝炎防治指南(2019年版)[J]. 臨床肝膽病雜志, 2019, 35(12): 2648-2669. DOI: 10.3969/j.issn.1001-5256.2019.12.007.
[5]RAMJI A, DOUCETTE K, COOPER C, et al. Nationwide retrospective study of hepatitis B virological response and liver stiffness improvement in 465 patients on nucleos(t)ide analogue[J]. World J Gastroenterol, 2022, 28(31): 4390-4398. DOI: 10.3748/wjg.v28.i31.4390.
[6]BUSCA A, KUMAR A. Innate immune responses in hepatitis B virus (HBV) infection[J]. Virol J, 2014, 11: 22. DOI: 10.1186/1743-422X-11-22.
[7]MAEPA MB, ELY A, KRAMVIS A, et al. Hepatitis B virus research in South Africa[J]. Viruses, 2022, 14(9): 1939. DOI: 10.3390/v14091939.
[8]SKRLEC I, TALAPKO J. Hepatitis B and circadian rhythm of the liver[J]. World J Gastroenterol, 2022, 28(27): 3282-3296. DOI: 10.3748/wjg.v28.i27.3282.
[9]TSOUNIS EP, TOURKOCHRISTOU E, MOUZAKI A, et al. Toward a new era of hepatitis B virus therapeutics: The pursuit of a functional cure[J]. World J Gastroenterol, 2021, 27(21): 2727-2757. DOI: 10.3748/wjg.v27.i21.2727.
[10]BONINO F, COLOMBATTO P, BRUNETTO M R. HBeAg-negative/anti-HBe-positive chronic hepatitis B: a 40-year-old history[J]. Viruses, 2022, 14(8): 1691. DOI: 10.3390/v14081691.
[11]SEEGER C, MASON WS. Molecular biology of hepatitis B virus infection[J]. Virology, 2015, 479-480: 672-686. DOI: 10.1016/j.virol.2015.02.031.
[12]JIN X, YAN ZH, LU L, et al. Peripheral immune cells exhaustion and functional impairment in patients with chronic hepatitis B[J]. Front Med (Lausanne), 2021, 8: 759292. DOI: 10.3389/fmed.2021.759292.
[13]SAJID M, LIU L, SUN C. The dynamic role of NK cells in liver cancers: role in HCC and HBV associated HCC and its therapeutic implications[J]. Front Immunol, 2022, 13: 887186. DOI: 10.3389/fimmu.2022.887186.
[14]LI HJ, YANG N, MU X, et al. Reduction of natural killer cells is associated with poor outcomes in patients with hepatitis B virus-related acute-on-chronic liver failure[J]. Hepatol Int, 2022, 16(6): 1398-1411. DOI: 10.1007/s12072-022-10386-9.
[15]LI Y, WANG JJ, GAO S, et al. Decreased peripheral natural killer cells activity in the immune activated stage of chronic hepatitis B[J]. PLoS One, 2014, 9(2): e86927. DOI: 10.1371/journal.pone.0086927.
[16]LI X, ZHOU L, GU L, et al. Veritable antiviral capacity of natural killer cells in chronic HBV infection: an argument for an earlier anti-virus treatment[J]. J Transl Med, 2017, 15(1): 220. DOI: 10.1186/s12967-017-1318-1.
[17]MONDELLI MU, VARCHETTA S, OLIVIERO B. Natural killer cells in viral hepatitis: facts and controversies[J]. Eur J Clin Invest, 2010, 40(9): 851-863. DOI: 10.1111/j.1365-2362.2010.02332.x.
[18]SUN C, SUN HY, XIAO WH, et al. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy[J]. Acta Pharmacol Sin, 2015, 36(10): 1191-1199. DOI: 10.1038/aps.2015.41.
[19]CHEN Y, TIAN Z. HBV-induced immune imbalance in the development of HCC[J]. Front Immunol, 2019, 10: 2048. DOI: 10.3389/fimmu.2019.02048.
[20]YU L, LIU X, WANG X, et al. TIGIT+ TIM-3+ NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virus-related hepatocellular carcinoma[J]. Oncoimmunology, 2021, 10(1): 1942673. DOI: 10.1080/2162402X.2021.1942673.
[21]WANG X, XIONG H, NING Z. Implications of NKG2A in immunity and immune-mediated diseases[J]. Front Immunol, 2022, 13: 960852. DOI: 10.3389/fimmu.2022.960852.
[22]LI F, WEI H, WEI H, et al. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice[J]. Gastroenterology, 2013, 144(2): 392-401. DOI: 10.1053/j.gastro.2012.10.039.
[23]MA Q, DONG X, LIU S, et al. Hepatitis B e antigen induces NKG2A+ natural killer cell dysfunction via regulatory T cell-derived interleukin 10 in chronic hepatitis B virus Infection[J]. Front Cell Dev Biol, 2020, 8: 421. DOI: 10.3389/fcell.2020.00421.
[24]PERUZZI G, MASILAMANI M, BORREGO F, et al. Endocytosis as a mechanism of regulating natural killer cell function: unique endocytic and trafficking pathway for CD94/NKG2A[J]. Immunol Res, 2009, 43(1-3): 210-222. DOI: 10.1007/s12026-008-8072-7.
[25]LI PW, SHEN YQ. Effect of immune-checkpoint molecules on T-cell function in chronic infection with the HBV [J]. J Virol, 2021, 37(2): 465-470. DOI: 10.13242/j.cnki.bingduxuebao.003914.李鵬尉, 沈宇清. 免疫檢查點(diǎn)分子在慢性HBV感染中對(duì)T細(xì)胞功能影響的研究進(jìn)展 [J]. 病毒學(xué)報(bào), 2021, 37(2): 465-470. DOI: 10.13242/j.cnki.bingduxuebao.003914.
[26]WANG Y, ZHANG H, LIU C, et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts[J]. J Hematol Oncol, 2022, 15(1): 111. DOI: 10.1186/s13045-022-01325-0.
[27]LI H, ZHAI N, WANG Z, et al. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection[J]. Gut, 2018, 67(11): 2035-2044. DOI: 10.1136/gutjnl-2017-314098.
[28]LI F. Correlation between the expression of PD-1/ PD-L1 on NK cells and HBV infection[D]. Hengyang: University of South China, 2020.李芬. NK細(xì)胞上PD-1/PD-L1表達(dá)與HBV感染相關(guān)性研究[D]. 衡陽(yáng): 南華大學(xué), 2020.
[29]QUATRINI L, MARIOTTI F R, MUNARI E, et al. The immune checkpoint PD-1 in natural killer cells: expression, function and targeting in tumour immunotherapy[J]. Cancers (Basel), 2020, 12(11): 3285. DOI: 10.3390/cancers12113285.
[30]BAI R, CUI J. Burgeoning exploration of the role of natural killer cells in Anti-PD-1/PD-L1 therapy[J]. Front Immunol, 2022, 13: 886931. DOI: 10.3389/fimmu.2022.886931.
[31]WOLF Y, ANDERSON AC, KUCHROO VK. TIM3 comes of age as an inhibitory receptor[J]. Nat Rev Immunol, 2020, 20(3): 173-185. DOI: 10.1038/s41577-019-0224-6.
[32]CAI X, ZHAN H, YE Y, et al. Current progress and future perspectives of immune checkpoint in cancer and infectious diseases[J]. Front Genet, 2021, 12: 785153. DOI: 10.3389/fgene.2021.785153.
[33]LIU Y, GAO LF, LIANG XH, et al. Role of Tim-3 in hepatitis B virus infection: An overview[J]. World J Gastroenterol, 2016, 22(7): 2294-2303. DOI: 10.3748/wjg.v22.i7.2294.
[34]JU Y, HOU N, MENG J, et al. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B[J]. J Hepatol, 2010, 52(3): 322-329. DOI: 10.1016/j.jhep.2009.12.005.
[35]YANG X, LI M, QIN X, et al. Photophosphatidylserine guides natural killer cell photoimmunotherapy via tim-3[J]. J Am Chem Soc, 2022, 144(9): 3863-3874. DOI: 10.1021/jacs.1c11498.
[36]TAN S, XU Y, WANG Z, et al. Tim-3 hampers tumor surveillance of liver-resident and conventional NK cells by disrupting PI3K signaling[J]. Cancer Res, 2020, 80(5): 1130-1142. DOI: 10.1158/0008-5472.CAN-19-2332.
[37]JIAO J, JIAO D, YANG F, et al. Galectin-9 expression predicts poor prognosis in hepatitis B virus-associated hepatocellular carcinoma[J]. Aging (Albany NY), 2022, 14(4): 1879-1890. DOI: 10.18632/aging.203909.
[38]LI WQ, YU X, HOU ZH, et al. HBV impairs the function of NK cells by upregulating Galectin-9 expression on hepatocytes [J]. Current Immunology, 2014, 34(6): 471-477.?李衛(wèi)群, 于馨, 侯召華, 等. HBV通過(guò)上調(diào)肝細(xì)胞表面Galectin-9的表達(dá)抑制NK細(xì)胞的功能 [J]. 現(xiàn)代免疫學(xué), 2014, 34(6): 471-477.
[39]LI HR, ZHANG FQ, ZHANG ZC, et al. Research progress on mechanism of immunosuppressive receptor TIGIT in? pathogen infection[J]. Chin J Immunol, 2022, 38(5): 632-637. DOI: 10.3969/j.issn.1000-484X.2022.05.022.李浩然, 張富強(qiáng), 張振超, 等. 免疫抑制性受體TIGIT在病原體感染中的作用機(jī)制研究進(jìn)展 [J]. 中國(guó)免疫學(xué)雜志, 2022, 38(5): 632-637. DOI: 10.3969/j.issn.1000-484X.2022.05.022.
[40]JEONG BS, NAM H, LEE J, et al. Structural and functional characterization of a monoclonal antibody blocking TIGIT[J]. MAbs, 2022, 14(1): 2013750. DOI: 10.1080/19420862.2021.2013750.
[41]YAO F, YIN X. Regulatory effect of immune checkpoint TIGIT/CD155 on the immune microenvironment of primary liver cancer and its application prospects [J]. J Clin Hepatol, 2022, 38(11): 2632-2635. DOI: 10.3969/j.issn.1001-5256.2022.11.039.姚帆, 殷欣. 免疫檢查點(diǎn)TIGIT/CD155對(duì)原發(fā)性肝癌免疫微環(huán)境的調(diào)控作用及應(yīng)用展望 [J]. 臨床肝膽病雜志, 2022, 38(11): 2632-2635. DOI: 10.3969/j.issn.1001-5256.2022.11.039.
[42]YEO J, KO M, LEE DH, et al. TIGIT/CD226 axis regulates anti-tumor immunity [J]. Pharmaceuticals (Basel), 2021, 14(3): 200. DOI: 10.3390/ph14030200.
[43]MOLFETTA R, ZITTI B, LECCE M, et al. CD155: a multi-functional molecule in tumor progression [J]. Int J Mol Sci, 2020, 21(3): 922. DOI: 10.3390/ijms21030922.
[44]KUZEVANOVA A, APANOVICH N, MANSORUNOV D, et al. The features of checkpoint receptor-ligand interaction in cancer and the therapeutic effectiveness of their inhibition [J]. Biomedicines, 2022, 10(9): 2081. DOI: 10.3390/biomedicines10092081.
[45]ANNESE T, TAMMA R, RIBATTI D. Update in TIGIT immune-checkpoint role in cancer[J]. Front Oncol, 2022, 12: 871085. DOI: 10.3389/fonc.2022.871085.
[46]LU Y, SUN R, TIAN ZG, et al. Study on role of TIGIT in HBV immunotherapy [J]. Chin J Immunol, 2022, 38(2): 129-134. DOI: 10.3969/j.issn.1000-484X.2022.02.001.盧楊, 孫汭, 田志剛, 等. TIGIT分子在HBV免疫治療中的作用探究 [J]. 中國(guó)免疫學(xué)雜志, 2022, 38(2): 129-134. DOI: 10.3969/j.issn.1000-484X.2022.02.001.
[47]KHAN M, AROOJ S, WANG H. NK cell-based immune checkpoint inhibition[J]. Front Immunol, 2020, 11: 167. DOI: 10.3389/fimmu.2020.00167.
[48]LI YL, ZHANG QF, YIN WW, et al. Reduced frequency of natural killer cell on siglec-7(+) is associated with progression of hepatitis B virus-related cirrhosis[J]. Chin J Hepatol, 2018, 26(6): 420-425. DOI: 10.3760/cma.j.issn.1007-3418.2018.06.006.李彥霖, 張瓊方, 殷文偉, 等. Siglec-7+自然殺傷細(xì)胞頻數(shù)下降與乙型肝炎病毒相關(guān)肝硬化疾病進(jìn)展相關(guān)[J]. 中華肝臟病雜志, 2018, 26(6): 420-425. DOI: 10.3760/cma.j.issn.1007-3418.2018.06.006.
[49]ZHAO D, JIANG X, XU Y, et al. Decreased siglec-9 expression on natural killer cell subset associated with persistent HBV replication[J]. Front Immunol, 2018, 9: 1124. DOI: 10.3389/fimmu.2018.01124.
[50]ALFARRA H, WEIR J, GRIEVE S, et al. Targeting NK cell inhibitory receptors for precision multiple myeloma immunotherapy[J]. Front Immunol, 2020, 11: 575609. DOI: 10.3389/fimmu.2020.575609.
[51]NARAYANAN S, AHL PJ, BIJIN VA, et al. LAG3 is a central regulator of NK cell cytokine production[J]. bioRxiv, 2020. DOI: 10.1101/2020.01.31.928200. [Oline ahead of print]
[52]WANG J, HOU H, MAO L, et al. TIGIT signaling pathway regulates natural killer cell function in chronic hepatitis B virus infection[J]. Front Med (Lausanne), 2021, 8: 816474. DOI: 10.3389/fmed.2021.816474.
[53]REVILL PA, CHISARI FV, BLOCK JM, et al. A global scientific strategy to cure hepatitis B[J]. Lancet Gastroenterol Hepatol, 2019, 4(7): 545-558. DOI: 10.1016/S2468-1253(19)30119-0.
[54]INC AP. Ascletis announces results of the phase IIa trial of ASC22 (Envafolimab) in patients with chronic hepatitis B to be presented in oral parallel session at the liver meeting 2021 by American Association for the Study of Liver Diseases[EB/OL].(2021-10-11)[2022-10-20].https://www.prnewswire.com/news-releases/ascletis-announces-results-of-the-phase-iia-trial-of-asc22-envafolimab-in-patients-with-chronic-hepatitis-b-to-be-presented-in-oral-parallel-session-at-the-liver-meeting-2021-by-american-association-for-the-study-of-liver-disea-301396930.html.
[55]MARKHAM A. Envafolimab: first approval[J]. Drugs, 2022, 82(2): 235-240. DOI: 10.1007/s40265-022-01671-w.
收稿日期:2022-11-01;錄用日期:2022-12-18
本文編輯:朱晶
引證本文:HUANG J, SHAO HJ, MA XF,? et al. Effect of immune checkpoint molecules on the function of natural killer cells in patients with chronic hepatitis B virus infection[J]. J Clin Hepatol, 2023, 39(8): 1932-1938.