孫傳龍 趙紅 崔翔宇 牟亮 徐福良 路來(lái)偉



摘要: 為提高無(wú)人駕駛汽車感知系統(tǒng)硬件資源利用率,構(gòu)建了一種基于特征融合的無(wú)人駕駛多任務(wù)感知算法。采用改進(jìn)的CSPDarknet53作為模型的主干網(wǎng)絡(luò),通過(guò)構(gòu)建特征融合網(wǎng)絡(luò)與特征融合模塊對(duì)多尺度特征進(jìn)行提取與融合,并以7種常見道路物體的檢測(cè)與可行駛區(qū)域的像素級(jí)分割兩任務(wù)為例,設(shè)計(jì)多任務(wù)模型DaSNet(Detection and Segmentation Net)進(jìn)行訓(xùn)練與測(cè)試。使用BDD100K數(shù)據(jù)集對(duì)YOLOv5s、Faster R-CNN以及U-Net模型進(jìn)行訓(xùn)練,并對(duì)mAP、Dice系數(shù)以及檢測(cè)速度等性能指標(biāo)做出對(duì)比分析。研究結(jié)果表明:DaSNet多任務(wù)模型在道路物體檢測(cè)任務(wù)上,mAP值分別比YOLOv5s和Faster RCNN高出0.5%和4.2%,在RTX2080Ti GPU上達(dá)到121FPS的檢測(cè)速度;在占優(yōu)先權(quán)與不占優(yōu)先權(quán)的可行駛區(qū)域上分割的Dice值相較于U-Net網(wǎng)絡(luò)分別高出了4.4%與6.8%,有較明顯的提升。
關(guān)鍵詞: 無(wú)人駕駛;多任務(wù);特征融合;道路物體檢測(cè);可行駛區(qū)域分割
中圖分類號(hào): TP391文獻(xiàn)標(biāo)識(shí)碼: A
Multi-task Sensing Algorithm for Driverless Vehicle Based on Feature Fusion
SUN Chuanlong1,ZHAO Hong1,CUI Xiangyu2,MU Liang1,XU Fuliang1,LU Laiwei1
Abstract:In order to improve the utilization of hardware resources of driverless vehicle perception system, a multi-task driverless vehicle perception algorithm based on feature fusion is constructed. The improved CSPDarknet53 is used as the backbone network of the model, and multi-scale features are extracted and fused by constructing feature fusion network and feature fusion module. The detection of 7 common road objects and pixel-level segmentation of the driving area are taken as examples. Multi-task DaSNet (Detection and Segmentation Net) is designed for training and testing. In order to compare model performance, BDD100K data set is used to train YOLOv5s, Faster R-CNN and U-NET models, and comparative analysis is made on mAP, Dice coefficient and detection speed and other performance indicators. The results showed that DaSNet multi-task model′s mAP value is 0.5% and 4.2% higher than YOLOv5s and Faster RCNN, respectively, and the detection speed of 121FPS can be achieved on RTX2080Ti GPU. Compared with U-NET network, Dice value of segmentation in priority and non-priority drivable are 4.4% and 6.8% higher, showing an obvious improvement.
Key words: driverless vehicle; multi-task; fature fusion; road object dection;driveable area segmentation
0 引言
目前,無(wú)人駕駛已經(jīng)成為眾多國(guó)家的發(fā)展戰(zhàn)略之一,其中,感知系統(tǒng)[1-3]作為無(wú)人駕駛汽車中不可或缺的部分之一,對(duì)環(huán)境的感知適應(yīng)性、實(shí)時(shí)性直接影響了無(wú)人駕駛汽車的安全性和可靠性,而目標(biāo)檢測(cè)、語(yǔ)義分割作為感知系統(tǒng)中的兩大任務(wù),其效果將直接影響無(wú)人駕駛汽車決策系統(tǒng)的決策質(zhì)量。
近年來(lái),深度學(xué)習(xí)[4]在目標(biāo)檢測(cè)、語(yǔ)義分割領(lǐng)域的應(yīng)用取得了重大的突破,這很大程度上歸功于大型數(shù)據(jù)集、計(jì)算機(jī)強(qiáng)大的計(jì)算能力、復(fù)雜的網(wǎng)絡(luò)架構(gòu)和優(yōu)化算法的進(jìn)展。在目標(biāo)檢測(cè)領(lǐng)域,兩階段算法……