王 巍, 馮文帥, 張首剛, 王學鋒, 王惜康, 范運強
(1. 中國航天科技集團有限公司, 北京 100048; 2. 北京航天控制儀器研究所, 北京 100039;3. 中國科學院國家授時中心, 西安 710600)
世界時(Universal Time, UT1)是以地球自轉運動為參考的時間計量系統, UT1 反映了地球在空間的自轉角度, 與極移二分量(xp、yp)、 歲差、 章動一起被稱為地球定向參數(Earth Orientation Parameter, EOP)[1]。 EOP 是實現天球與地球參考架坐標轉換的關系參數, 在衛星、 飛船、 深空探測等應用領域, 對于需要在地面目標和空間目標之間建立坐標轉換關系的問題, EOP 都是必不可少的。
飛行器軌道所在的地心天球參考系(Geocentric Celestial Reference System, GCRS)與地面站所在的國際地球參考系(International Terrestrial Reference System, ITRS)轉換模型如下[1]
式(1)中,Q(t)為歲差-章動矩陣, 表示地極在GCRS 中的運動;R(t)為地球自轉矩陣, 表示地球繞天球自轉軸的自轉;W(t)為極移矩陣, 表示地極在ITRS 中的位置變化。 地球自轉矩陣R(t)反映地球實際自轉的信息, 與UT1 的準確值相關。
在上述5 個EOP 參數中, 4 個軸向參數(極移二分量、 歲差、 章動)緩慢變化, 具有較好的可預測性。 而反映自轉參數的世界時變化快, 其預測誤差往往會比軸向參數預測誤差大1 個數量級[2],所以世界時的測定精度直接影響航天器跟蹤測量精度、 軌道測量精度和有關科學應用的分析精度[3]。
以測繪衛星需求為例, 測繪體系需求主要分為基礎測繪、 詳細測繪和精確測繪等3 類, 各種測繪體系需求的技術指標典型值如表1 所示。 在精確測繪任務中, 當繪制1∶10000 比例尺地形圖時, 地面像元分辨率需要達到0.6m ~1m; 而當繪制1∶5000 比例尺地形圖時, 相應的指標參數則需提高到0.1m ~0.3m, 對應的精密定軌精度要求最高可達0.01m 量級(1σ), 其要求世界時精度需達到0.01ms 量級。

表1 基礎測繪、 詳細測繪和精確測繪對比Table 1 Comparison of basic surveying, detailed surveying and precision surveying
隨著測繪衛星、 導航衛星、 空間站、 深空探測等領域的精密定軌需求與日俱增, 精確的世界時測量成為一項亟待解決的問題。
在過去很長一段時間內, 世界時是通過對恒星觀測來實現的。 常用的測定方法和相應儀器有:1)中天法——中星儀、 光電中星儀、 照相天頂筒;2)等高法——超人差棱鏡等高儀、 光電等高儀。 用這些儀器觀測, 一個夜晚觀測的均方誤差為5ms左右。 依據全世界一年的天文觀測結果, 經過綜合處理所得到的世界時精度約為1ms。 因為各種因素(主要是環境因素)的影響, 長期以來, 世界時的測量精度沒有顯著的提高。 近年來, 隨著科學技術水平的提升以及國際合作組織的建立, 更高精度的世界時測量方法主要有甚長基線干涉測量(Very Long Baseline Interferometry, VLBI)、 全球導航衛星系統(Global Navigation Satellite System,GNSS)、 衛星激光測距(Satellite Laser Ranging,SLR)等, 測量精度提高了1 ~2 個數量級。
目前, 國際上UT1 觀測技術主要是以VLBI 為代表的天文幾何測量技術。 天文幾何測量技術對地球自轉變化的測量屬于間接測量, 通常需要對地球之外的人造衛星、 月球、 恒星或是河外射電源等參考目標源進行觀測, 再通過解析觀測數據以獲得UT1 參數。 VLBI 技術能夠對地球定向參數(EOP)的5 個參數進行全部高精度測量, 由國際地球自轉與參考系服務(International Earth Rotation and Reference System Service, IERS)組織在其網站進行定期發布[4-6]。 目前, 基于VLBI 技術的世界時測量精度可達0.01ms 水平, 但該技術需要全球組網, 且數據處理中心位于美國和歐盟, 更新周期較慢, 對于我國航天等領域世界時的使用具有一定的局限性。
20 世紀90 年代以來, 隨著慣性測量技術的不斷發展, 利用高精度的慣性測量儀器, 如大型激光陀螺儀(Ring Laser Gyroscope, RLG) 和光纖陀螺儀(Fiber Optic Gyroscope, FOG) 等光學陀螺儀, 可實現對地球自轉角速度的高精度實時測量。該測量技術利用固連在地球表面的光學陀螺儀直接測量地球自轉, 通過Sagnac 效應所產生的頻率差(或相位差), 進而對頻率差(或相位差)進行解析以獲取地球瞬時自轉角速度, 其測量原理與傳統的天文幾何測量技術完全不同。 它基于狹義相對論和Sagnac 原理, 利用光學陀螺儀直接對地球瞬時自轉角速度的變化進行測量[7-8], 而不需要通過觀測地球之外的參考目標源來獲取地球自轉變化的信息。 此外, 該技術單個測試臺站即可獲取世界時, 無需全球布站; 無需地面布置大型觀測站,隱蔽性好; 數據更新速度快, 可提供以小時為更新周期的世界時信息。 目前, 利用光學陀螺儀精確測量地球自轉已逐步應用于地球固體潮觀測、極移觀測、 旋轉地震波探測、 引力磁效應等科學研究領域[9-10]。
考慮到用于世界時測量的激光陀螺儀、 光纖陀螺儀幾何尺寸較大, 邊長或直徑在1m 以上, 目前最大的超過了20m, 已不屬于傳統的陀螺儀范疇, 一般不再具有陀螺儀應具備的多個動態性能,因此本文中將用于世界時測量的光纖陀螺儀稱為Sagnac 高精度光纖干涉儀或高精度光纖干涉儀。考慮到激光干涉儀通常指的是測量位移量的專用名詞, 因此用于世界時測量的激光陀螺儀在本文中稱為大型激光陀螺儀。
1993 年, 新西蘭Canterbury 大學的STEDMAN教授等人建立了名為“Canterbury-Ring” (C-I)的大型環形激光陀螺儀[11], 該陀螺儀環形諧振腔所包圍的面積達到0.85m2, 由該陀螺儀可測量到地球自轉引起的拍頻約為71Hz, 這是國際上第一個用于精確測量地球自轉運動的大型激光陀螺儀。 在此后的研究中, 該研究團隊又相繼建立了“C-II”、“G-0” 等一系列大型環形激光陀螺儀[12], 其測量精度也隨之不斷提高, 直至2009 年, 該校建立了“UG-2” 超大環形激光陀螺儀[13], 該大型激光陀螺儀環形諧振腔包圍的面積達到834m2, 測量精度也取得了較大突破, 目前該陀螺儀主要用于監測地球的微小地震效應、 固體潮效應等研究工作。
2008 年, 意大利的HURST 教授領導的研究小組研制建立了名為“G-Pisa” 的大型激光陀螺儀,該陀螺儀由多個環形激光器構成一個正六面體結構[14-15], 可同時在不同方向上檢測到因地球自轉運動而產生的Sagnac 效應, 主要用于地球自轉監測并開展了包括極移探測、 旋轉地震波探測等相關物理效應的研究[16]。
目前, 國際上測量地球自轉角速度精度最高的激光陀螺儀是“Gross-ring” (G-ring)大型環形激光陀螺儀, 由1998 年德國慕尼黑技術大學的SCHREIBER 教授開始實施。 該陀螺儀位于德國Wettzell 天文觀測站, 陀螺儀由激光諧振腔、 反射鏡、 分束棱鏡、 激光激發器、 探測器、 超高真空接口、 微晶玻璃底板、 微晶玻璃梁柱、 反射鏡固定架等組成。 G-ring 的實物圖如圖1 所示[17], 該圖是在壓力控制器升起來的情況下進行拍攝的, 陀螺儀的環形諧振腔尺寸為4m×4m。

圖1 德國G-ring 大型激光陀螺儀Fig.1 Diagram of German “G-ring” large-scale RLG
經過20 余年的不斷完善, G-ring 陀螺儀對地球自轉角速度的測量精度不斷提高, 圖2 為該陀螺儀的測量精度Allan 方差分析曲線, 零偏精度達到5 ×10-13rad/s(即1 ×10-7(°) /h), 可滿足地球的半日周期潮汐項、 日周期極移項、 年周期極移項、 錢德勒周期極移項以及區域性潮汐項測試精度要求,圖3 為該陀螺儀測試的120 天內地球日長變化以及與IERS 組織的C04 數據序列的比較。 由圖3 可知,G-ring 陀螺儀有較高的日長測試精度, 并提供了以1h ~3h 為間隔的更新速率, 日長誤差小于2ms[17]。

圖2 G-ring 陀螺儀的Allan 方差分析曲線Fig.2 Allan deviation curve of G-ring gyroscope

圖3 G-ring 陀螺儀測試的地球日長變化以及與IERS 的比較Fig.3 Comparison between LoD signal by the G-ring gyroscope and IERS
2016 年, 德國慕尼黑大學的研究團隊設計建造了名為“ROMY” 的大型激光陀螺儀[18], 該陀螺儀為正四面體結構, 邊長為12m, 目前其角速度測量精度最高約2 ×10-12rad/s, 即4 ×10-7(°) /h,測量精度尚未達到G-ring 陀螺儀的水平, 尚未有世界時測量精度報道, 但其基于正四面體結構的四軸陀螺儀的優勢是可同時在不同方向上測量到地球自轉角速度的分量, 綜合不同方向上的分量測量結果, 最終得出地球自轉角速度矢量的變化。
隨著光纖陀螺儀技術的不斷發展和成熟, 利用光纖環取代傳統的環形激光諧振腔所構建的光纖陀螺儀也可達到與激光陀螺儀相同乃至更高的測量靈敏度。
2013 年, 意大利和德國的研究人員曾先后研究利用商用互聯網光纖通信網絡構建了面積達20km2、 光纖總長度達到47km 的超大面積Sagnac光纖干涉儀, 并用于監測地球自轉變化[19]。 該研究充分利用了城市光纖通信網覆蓋面積大的特點,通過增大光纖環覆蓋面積, 預計光纖干涉儀在理論上可以達到很高的測量精度[20]。 但是由于該光纖干涉儀的光纖環路受到非互易性測量環境、 地表振動、 溫度不均勻等多重因素的影響, 最終對地球自轉角速度的測量精度并未達到預期效果。
2023 年, 北京航天控制儀器研究所突破了多項提升高精度光纖干涉儀精度的關鍵技術, 研制了直徑為1.5m 的大型光纖干涉儀BFOI-1500, 聯合中國科學院國家授時中心實現了世界時的測量與解算, 并完成了與IERS 公報C04 時間序列的對比驗證, 具體見下文。
為了實現零偏的高性能和標度因數的長期穩定性, 高精度光纖干涉儀典型方案由光功率自穩定型高斯譜摻鉺光纖光源、 半導體光放大器等非線性光放大器、 高靈敏度光電探測器、 分束器、 Y波導相位調制器、 光譜整形器、 大型光纖環以及相應驅動、 調制、 解調及信號處理電路等組成,如圖4 所示。

圖4 高精度光纖干涉儀典型組成示意圖Fig.4 Typical composition diagram of high-precision FOI
低噪聲、 高穩定的光纖干涉儀工作原理如下:光功率自穩定的摻鉺光纖光源產生大功率寬譜光源, 經高斯濾波器整形后, 進入半導體光放大器(Semiconductor Optical Amplifier, SOA), 調整SOA驅動電路使其工作在輸入光的飽和吸收區(即非線性放大區), 壓低光源的波動水平, 以降低光源的相對強度噪聲, 經過SOA 后的光波需要通過偏振抑制器消除偏振度, 通過光纖耦合器進入Y 波導與光纖環組成的干涉光路中。 在干涉光路中, Y 波導需滿足高芯片消光比、 低插入損耗、 低波形斜度、 低偏振串音等條件; 干涉光路中的超長光纖環可采取十六極精密對稱繞法繞制保偏光纖環,光纖選用偏振保持性能較好、 更適合長距離拉制的普通保偏光纖, 光纖環為帶膠繞制的無骨架環;經干涉儀光路傳輸后的光通過光纖耦合器以及濾波器進入高靈敏光電探測器, 由信號處理電路進行信號解調, 實現干涉回路敏感角速度信號的高精度檢測。
高靈敏光電探測器將Sagnac 干涉儀返回的干涉信號轉換為電信號, 因此要求探測器具有較高的響應度和靈敏度, 以提升光信號轉換為電信號的信噪比。
為保證光路的光譜長期穩定及其引起的干涉儀標度因數穩定, 在光路中采取基于高斯譜濾波器的雙光譜整形技術, 高斯譜濾波器可根據光源輸入的譜型進行設計, 進而實現高穩定、 低譜損耗的全光路傳輸方案, 減小全光路的光源相對噪聲, 提升干涉儀的精度水平。
為了保證長期工作條件下的光源功率穩定,光纖干涉儀采取功率自穩定的設計方案, 如圖5 所示。 在光源的輸出端增加分光比為2∶98(分光比可根據光源的實際功率進行調整) 的耦合器, 引出2%的光至探測器中, 通過檢測探測器的光強信號并接入光源驅動及自穩定電路中, 實現對泵浦激光器驅動電流的閉環控制, 進而實現光源功率長期穩定。

圖5 功率自穩定摻鉺光纖光源示意圖Fig.5 Schematic diagram of power self-stable erbium-doped fiber source
為了滿足低噪聲的設計要求, 高精度光纖干涉儀采取基于非線性光放大的光源相對強度噪聲抑制技術。 光路方案如圖4 所示, 將摻鉺光纖光源經1530nm(或1560nm) 光纖濾波器進行光譜整形后, 進入半導體光放大器中, 通過選取合適的參數使半導體光放大器工作在光的飽和吸收區, 對光源進行非線性放大, 并通過偏振度消除抑制的方法, 即可降低光源的相對強度噪聲(13dB 以上)。實測抑制效果如圖6 所示, 可顯著提高光纖干涉儀的精度, 同時該光譜整形方案也可以滿足光纖干涉儀標度因數長期穩定設計的要求。

圖6 基于半導體光放大器的相對強度噪聲抑制曲線Fig.6 Relative intensity noise suppression curves based on semiconductor optical amplifier
干涉儀電路系統一般可采用全數字閉環調制解調技術、 反饋增益誤差控制技術、 光功率自動控制技術、 光源管芯精密溫控技術等4 個閉環回路控制技術, 分別實現高精度角速度信號檢測、 調制增益參數長期穩定、 光源功率及光譜長期穩定、光源發光參數恒溫穩定等功能, 保證光纖干涉儀滿足高精度、 低功耗、 長期參數穩定對電路的設計要求。
(4)還有施工單位招標文件不嚴格,合同簽訂不規范,施工單位利用漏洞,將自身管理不善的成本轉嫁給業主,造成業主的預算超支。
光纖環在實際繞制中難以達到理想的狀態,即使完全按照十六極對稱繞法繞制, 也會出現一定的殘余Shupe 誤差。 考慮到光纖環以及Y 波導的尾纖距離光纖環中點最遠, 是影響光纖干涉儀Shupe 誤差權重最大的部分[22], 通過開展光纖環以及Y 波導尾纖對稱性與光纖干涉儀Shupe 誤差的量化分析與測試對比, 調整尾纖隨光纖環中點的熱對稱性, 可減小光纖環的Shupe 誤差, 降低光纖環的溫度敏感性[23]。
光纖環的熱對稱性補償方法如下: 在光纖環其中一端尾纖接入長度為lx的光纖, 如圖7 所示。 光纖長度的增加使光纖環的中點發生了改變, 整個光纖環的累積溫度誤差也隨之改變。 接入長度為lx的光纖之后, 光纖干涉儀的Shupe 誤差可表示為[23]

圖7 光纖環對稱性偏差長度調整示意圖Fig.7 Schematic diagram of adjusting the length for fiber coil symmetry deviation
式(2)中,L為光纖環長度,D為光纖環直徑平均值,n為光纖的折射率,為光纖的折射率溫度系數,為z處光纖在t時刻的溫度變化率,為z處光纖的折射率熱應力系數,為測試接入的lx段光纖的折射率平均熱應力系數,為t時刻lx段光纖的溫度變化率。
新增光纖lx引起的光纖干涉儀Shupe 誤差變化可表示為
由式(3)可知, 控制接入尾纖的長度能有效控制引入的溫度誤差, 使其與光纖環固有溫度誤差進行疊加或抑制, 實現對光纖環溫度性能的有效調整, 使光纖環溫度誤差值接近目標誤差值, 達到控制光纖環溫度誤差的目的。
通過光纖環熱對稱性補償技術, 可對大型光纖干涉儀約數萬米長的光纖環實現毫米(mm)級熱對稱性控制, 實現光纖環繞制后Shupe 誤差的抑制, 大幅降低光纖環的溫度敏感性。
為了將光纖干涉儀的輸出數據轉換為高精度的世界時, 需要將測試中的測試誤差進行分析、抑制和補償, 對測試過程進行優化, 對測試數據進行濾波與修正處理。
針對光纖干涉儀的實際應用環境和敏感特點,除了慣性儀表常見的測試設備誤差、 輸入條件誤差、 信息讀取誤差、 模型誤差、 數據處理誤差等測試誤差, 基于高精度光纖干涉儀的世界時測量系統的測試誤差還包括局部地質環境變化以及地球潮汐作用下引起的光纖干涉儀輸入軸定向誤差等, 需要從上述誤差中分離出地球自轉的變化等輸入量變化, 如圖8 所示, 需依據不同觀測誤差的影響機理, 細化分解各項觀測誤差, 并采取相應的數據處理與誤差修正方法, 以實現高精度的世界時解算與輸出。

圖8 世界時測量系統的環境誤差示意圖Fig.8 Schematic diagram of environmental errors for the UT1 measurement system
因此, 基于高精度光纖干涉儀的世界時測量系統包括: 測量地球自轉角速度的高精度光纖干涉儀、 多路測量測試平臺傾斜角度的高精度電子水平儀、 多路測量環境以及儀器內部溫度變化的溫度傳感器、 氣壓傳感器、 濕度傳感器、 用于時間同步的原子鐘以及世界時數據解算系統等。
光纖干涉儀觀測地球自轉的基本原理是基于Sagnac 效應, 由Sagnac 效應基本方程出發, 通過利用地固坐標系與局部平臺坐標系之間的旋轉變換關系建立干涉儀觀測方程[24]
式(4)中,Ω′為光纖干涉儀原始輸出的角速度觀測值, 利用光纖干涉儀輸出數字量通過標度因數轉換得到;Ω0為地球平均自轉角速率; ΔΩp為地球瞬時自轉軸極移引起的角速度觀測誤差, 是系統觀測誤差之一; ΔΩdT為干涉儀觀測平臺傾斜變化引起的角速度觀測誤差, 包括非潮汐和潮汐效應引起的地球幾何形變傾斜, 是系統觀測誤差之一; ΔΩdφ為干涉儀測站緯度變化引起的角速度觀測誤差, 主要來自地球潮汐效應, 是系統觀測誤差之一; ΔΩ為地球瞬時自轉角速率變化, 該項是系統主要提取的觀測量之一;xp、yp為瞬時地球自轉極的極坐標;m為地球瞬時自轉角速率變化分量;φ0為干涉儀測站的緯度;λ0為干涉儀測站的經度; dT為干涉儀觀測平臺法線方向在南北方向的傾斜角度變化; dφ為干涉儀測站的緯度變化。
其中, 干涉儀的定向誤差修正方法可以為:利用水平儀觀測結果對原始觀測數據進行傾斜改正, 再利用潮汐模型修正改正過程中引入的地方鉛垂線變化。
地球瞬時自轉軸極移修正主要考慮自轉軸在大氣負荷潮汐引起的地表質量重新分布以及大氣與地球潮汐摩擦產生的耗散作用共同影響下產生的周日、 半日極移影響。
圖9 為使用上述模型之后的地球自轉參數實際測量誤差修正前后的對比結果。 修正之后, 干涉儀測量自轉角速率的精度提升了4 倍以上。

圖9 地球自轉參數測量誤差修正效果Fig.9 Correction effect of measurement error for Earth rotation parameters
光纖干涉儀的角速度輸出與世界時的映射轉換關系如下:
將提取的地球自轉角速度值與地球平均自轉角速度Ω0作差, 可得到地球自轉角速度變化量ΔΩ,通過對t0~t時間段內解算所得的ΔΩ值進行數值積分, 可得到該時間段內(UT1-UTC)值的變化量
如果在光纖干涉儀測量的初始t0時刻標定了初始的[UT1 -UTC]t0值, 則利用光纖干涉儀對地球自轉的實時測量數據, 并依據式(5)連續對解算所得的ΔΩ值進行積分累加, 即可解算得到任意時刻的[UT1 -UTC]t值。 為方便對解算結果進行比對校準, 解算的UT1 參數結果同樣以(UT1 -UTC)的形式給出。
本文研究團隊在解決了上述影響高精度光纖干涉儀互易性誤差、 定向誤差等關鍵技術問題的基礎上, 于2023 年完成了高精度光纖干涉儀的研制, 實物如圖10 所示。 為了更精確、 更穩定地測量地球自轉角速度, 該干涉儀安裝于陜西省秦嶺地區某精密溫控實驗室內, 表頭指天向, 該測試環境具備恒溫、 恒濕、 低噪聲、 低人為擾動等優點。

圖10 2023 年BFOI-1500 高精度光纖干涉儀實物Fig.10 Diagram of high-precision BFOI-1500 in 2023
圖11為高精度光纖干涉儀測試地球自轉角速度以及位于相同測試平臺上水平儀的傾角輸出曲線。 為了更好地展示短期的測試精度以及不同日期的敏感角速度變化, 選擇其中的15 天典型數據進行分析, 時間段為2023 年5 月29 日0 時~2023年6 月13 日0 時, 對應的簡化儒略日(MJD) 為60093 ~60108, 數據時間跨度為15 天, 每個數據間隔為1h。 由圖11 可知, 光纖干涉儀的階段性輸出具有明顯的周期性輸入軸傾斜現象(溫度、 氣壓以及固體潮汐、 極移等因素引起), 與水平儀輸出相關度較高。

圖11 光纖干涉儀角速度輸出與水平儀傾角輸出數據對比曲線Fig.11 Comparison curves between the FOI angular velocity output and the electronic level inclination angle output
采取前文提出的周日項及定向測量誤差消除方法, 誤差改正前后的光纖干涉儀角速度輸出數據如圖12 所示。 可以看出, 周期項誤差和定向誤差基本得到消除, 在溫度與傾角穩定階段(取連續6h 數據), 光纖干涉儀零偏穩定性最好結果為9.7 ×10-7(°) /h(1h, 1σ)。

圖12 光纖干涉儀消除周日項變化以及傾斜改正后的角速度輸出結果Fig.12 Output curves of FOI for eliminating diurnal variations and angular velocity after tilt correction
注: 選取連續6h 數據依據《GJB 2426A-2004光纖陀螺儀測試方法》 第5.12 條零偏系列測試:測試時間應大于1h 或樣本數應在6 次以上。
Allan 方差分析方法是一種對原始數據先進行差分、 然后進行各積分時間下穩定性分析的方法,該方法可大幅消除環境因素引起的漂移對精度的影響, 用該方法分析超高精度光學陀螺儀的噪聲或精度比較合適, 德國的G-ring、 ROMY 等激光陀螺儀均用Allan 方差分析方法得到的參數來描述陀螺的精度水平。 選擇圖12 中經傾斜改正后的數據穩定段進行BFOI 的精度分析, 圖13 為BFOI 的Allan 方差分析曲線。 參照G-ring、 ROMY 等激光陀螺儀的精度評價方法(取Allan 方差曲線的斜率為零的擬合底部值), 即精度指的是零偏不穩定性,圖13 所示的BFOI 的零偏不穩定性優于1.0 ×10-6(°) /h。

圖13 光纖干涉儀Allan 方差分析曲線Fig.13 Allan deviation curve of BFOI
零偏不穩定性這一指標通常反映了儀表在不同積分周期下的精度最優值, 目前本文實現的BFOI-1500 光纖干涉儀精度指標為國際上已報道的光纖干涉儀/光纖陀螺儀最高水平。
根據式(5)對圖12 中的光纖干涉儀角速度改正值進行世界時解算, 將干涉儀初始時刻t0與IERS公報的C04 時間序列[UT1 -UTC]t0相對齊, 將測量解算得到的世界時與IERS 公報的UT1 進行對比驗證, 對比結果如圖14 所示。 數據結果顯示, 在連續15 天的觀測過程中, 世界時測量系統的UT1 測量值較穩定, 其標準偏差約1.5ms, 與IERS 公報值相比對, 世界時測量最大誤差為7ms, 實現了已報道的光纖陀螺儀/干涉儀測量世界時的最高精度水平。 與德國G-ring 激光陀螺儀世界時測量精度(最大誤差2ms)處于一個數量級的水平, 驗證了基于高精度光纖干涉儀的世界時測量系統的UT1 測量功能和高性能。

圖14 基于高精度光纖干涉儀的世界時測量結果及與IERS 對比驗證情況Fig.14 UT1 measurement results based on FOI and comparison with IERS
考慮到本文實現的高精度光纖干涉儀直徑僅1.5m, 相對于德國G-ring 激光陀螺儀的4m ×4m的尺寸, 光纖干涉儀面積僅為激光陀螺儀的1/9,且還有更長的光纖環繞制余量、 更低噪聲的探測與信號處理技術, 因此高精度光纖干涉儀未來有較大的潛力達到甚至超越G-ring 激光陀螺儀的世界時測量精度。
光纖干涉儀除了可測量地球的自轉參數, 也可通過多站點聯合解算的方式來測量地球極移等大地測量參數, 還可用來測量地震、 日月引力潮汐、 大氣角動量等引起氣候環境變化的物理量,在諸多領域具有廣闊的應用前景。