李慧,田家瑤,龐姍姍,龔國利
納米纖維素晶體增強補強聚乙烯醇薄膜性能研究現狀
李慧a,田家瑤a,龐姍姍a,龔國利b
(陜西科技大學 a.設計與藝術學院 b.食品與生物工程學院,西安 710021)
綜述近幾年有關將納米填料納米纖維素晶體(CNC)作為增強補強劑,提高聚乙烯醇(PVA)薄膜的物理性能方面的研究,以期為PVA薄膜材料的進一步開發和應用提供參考。通過對相關文獻進行收集與整理,闡述PVA/CNC復合薄膜的應用現狀,介紹CNC的形貌特性、化學改性及成膜方式對改善PVA/CNC薄膜物理性能的研究現狀,綜述CNC分散性、交聯劑和成膜條件對提高PVA/CNC復合薄膜物理性能的影響。通過增加CNC在PVA基體中的分散性,針對不同用途選擇對應的成膜方式,這樣可有效改善PVA薄膜的力學性能、阻隔性能和耐水性等,提高PVA薄膜的使用價值。
聚乙烯醇;納米纖維素晶體;復合薄膜;物理性能
2021年7月,國家發展和改革委員會等多部門印發了《“十四五”循環經濟發展規劃》的通知,其中提到了塑料污染全鏈條治理專項行動,在“禁塑”的同時,積極穩妥地推廣可降解塑料[1]。相對于普通的塑料聚合物,可生物降解塑料最終分解成水和二氧化碳,這減小了對環境的污染,對保護生態平衡有著重要的意義。目前,可生物降解塑料包括聚己內酯、聚乙烯醇、聚丁二酸丁二醇酯、聚乳酸等。其中,聚乙烯醇(PVA)是一種可生物降解的水溶性高分子聚合物,具有成膜性能優良、熱穩定性良好、結晶度較高等特點[2-3],常被用來制備可降解薄膜和水凝膠。PVA分子鏈上存在大量裸露的羥基,易與環境中的水分子產生氫鍵作用,經吸水塑化后,其薄膜的拉伸強度下降,導致PVA薄膜的耐水性較差。尤其是在高濕度環境中,PVA的力學性能和氣體阻隔性能明顯下降。實驗表明,可通過納米補強、復配增塑、酯化交聯和共混雜化等方法對PVA進行改性處理,以改進PVA耐水性差的缺點[4-7]。其中,納米補強不僅可提高PVA的耐水性和機械強度,還可拓展PVA薄膜的功能性,比如導電性、導熱性、阻燃性等。納米纖維素晶體(CNC)是一種纖維素衍生物,具有比表面積大、結晶度高、親水性強、強度大、彈性模量大、官能團豐富等優異性能,常被用作聚合物納米復合材料的增強、補強填料[8-11]。CNC表面的大量羥基與PVA分子鏈上的羥基之間可形成分子間氫鍵作用,促進結晶,限制PVA分子鏈的運動,進而提高PVA/CNC復合薄膜的力學性能、熱穩定性和耐水性等[12]。
我國是全球最大的PVA生產國。據報道,2021年我國的PVA年產量為99.6萬t,占全球產能的50%以上,產能利用率呈上升態勢。近幾年來,CNC增強PVA薄膜及其在食品包裝、農業生產、醫藥材料、電氣設備等領域的相關研究逐漸成為熱點[13-16]。CNC作為納米增強、補強填料,可與PVA共混制備PVA/CNC復合薄膜。由于納米粒子的尺寸效應、形態、CNC在基體中的團聚現象會影響與PVA的混合均勻性,因此導致復合膜的綜合性能下降[17-18]。
文中就CNC在增強、補強PVA/CNC復合薄膜物理、力學性能領域的研究進展進行綜述,提出改善薄膜物理、力學性能的建議,為PVA/CNC復合薄膜的研究提供參考。
PVA/CNC復合材料具有良好的阻隔性、耐水性、穩定性和力學性能,在食品包裝、醫療材料、傳感器等應用領域表現出顯著的優勢。文中對PVA/CNC復合薄膜的應用領域進行了總結,見表1。Nuruddin等[19]探討了PVA/CNC薄膜在高阻隔包裝的適用性,與傳統的工程化聚合物相比,PVA/CNC薄膜表現出優異的阻隔性能,甚至優于高屏蔽的乙烯?乙烯醇共聚物薄膜。Jahan等[20]利用PVA/CNC開發出通過捕獲二氧化碳提高沼氣質量的納米復合膜,研究發現,膜對二氧化碳的滲透性和選擇性會隨著CNC含量的增加而增加。Han等[21]基于纖維素納米晶?聚苯胺(CNC?PANI)復合材料,利用其在聚乙烯醇(PVA)基質中的滲透導電網絡,開發了一款多功能天然皮膚型復合薄膜,將其作為柔性應變生物傳感器。該復合薄膜顯示出較強的機械強度(50.62 MPa)和高靈敏度(測量系數為11.467),利用干鑄和浸涂技術控制CNC?PANI填充物的排列,可調整其傳感能力。該方法在可穿戴電子學、人造皮膚電子學和機器人制造領域有著潛在的應用價值。Chowdhury等[22]研究了PVA/CNC復合膜的熱導率,與常用于柔性電子器件的塑料薄膜相比,CNC/PVA復合薄膜的導熱系數提高了4~14倍,同時表現出優越的局部熱點散熱能力,為CNC/PVA復合膜在柔性電子器熱管理中的潛在應用提供了基礎。Lam等[23]將甘蔗渣中提取的CNC與PVA合成組織支架,利用CNC固有的剛性和優異的生物兼容性增強了PVA材料的強度、彈性和保水性。該支架無細胞毒性,與人體皮膚細胞有良好的黏附性,表明PVA/CNC支架在生物醫學領域具有研究價值。
研究CNC的尺寸和形態,以及交聯劑和成膜工藝,對提高PVA/CNC復合薄膜的力學性能、耐水性、熱穩定性、阻隔性等具有理論參考價值,對拓寬PVA/CNC復合薄膜應用領域具有重要意義。
表1 PVA/CNC材料應用領域

Tab.1 Application fields of PVA/CNC materials
通過分離植物、藻類、海洋動物及細菌等,即可得到CNC。通常,CNC的長度為100~750 nm,直徑為2~25 nm,呈棒狀或針狀結構。根據來源和制備方法的不同,CNC的尺寸、形態和結晶度有著顯著差異,進而會影響其增強、補強效果[24-25]。
酸水解天然纖維素通過斷裂纖維素分子鏈中無定型區的葡萄糖單元間β?1,4糖苷鍵制備CNC,結晶區排列緊密有序,不易被酸催化降解,進而制得結晶度較高的CNC。酸解時間越長,則CNC的尺寸越小,形態可由棒狀結構轉變為球狀結構。當無定形區被降解時,CNC的結晶度得到提高[26]。經硫酸水解后,CNC具有大量羥基和磺酸基的功能化表面,可與PVA分子鏈上的羥基形成強烈的分子間氫鍵作用,這會提高CNC在PVA基體中的分散性,進而改善PVA/CNC復合薄膜的力學性能。Kassab等[27]通過硫酸水解得到了CNC、纖維素納米纖維CNF和纖維素微纖維CMF。CNC和CNF相較于CMF,對PVA薄膜的增強效果更好,PVA/CNC15(酸解15 min)復合薄膜的拉伸強度和斷裂伸長率相較于PVA薄膜,分別提高了約26.3%和12.7%,PVA/CNF復合薄膜的拉伸強度和斷裂伸長率分別提高了約48.6%和33.8%,PVA/CMF的拉伸強度和斷裂伸長率分別降低了約20.8%和67.0%。這是由于CNC和CNF的尺寸更小、長徑比更高,導致PVA大分子鏈與納米級纖維之間的分散性良好,且產生了較強的界面相互作用,進而使PVA/CNC、PVA/CNF復合薄膜的力學性能得到顯著改善。微米級尺寸的CMF在PVA基體中發生了團聚現象,導致PVA/CMF復合薄膜的力學性能下降。Kassab等[28]對比研究了不同水解時間的CNC對PVA的增強效果,水解15 min和30 min后的CNC均呈針狀結構,CNC15的平均直徑和長度分別為(9±3)nm和(354±101)nm,CNC30的平均直徑和長度分別為(5±2)nm和(329±98)nm。尺寸較小的CNC30在PVA基體中分散得更均勻,且其結晶度比CNC15的結晶度約高12%,對PVA薄膜力學性能的影響較大。當CNC15的質量分數為8%時,其彈性模量和拉伸強度分別增加了約107%和78%。當CNC30的質量分數為5%和8%時,PVA/CNC30復合薄膜較PVA薄膜的最大應變分別降低了約29%和34%。這是由于剛性納米顆粒CNC的硬化效應,導致局部應力集中,隨著CNC含量的增加,最大應變逐漸降低。在類似研究中,酸解45 min后的CNC45呈棒狀結構,直徑和長度分別為(20±5)nm和(290±20)nm,相較于水解300 min后呈球狀的CNC300,CNC45對PVA/CNC復合薄膜的綜合性能的改善效果較好。當CNC45的質量分數為5%時,復合薄膜的吸水率相較于PVA薄膜的下降了約25.32%,拉伸強度提高了約168%。一方面,CNC45與PVA形成的分子間氫鍵作用,減少了PVA鏈上游離羥基與水分子的結合,降低了復合薄膜的吸水性,促進了復合薄膜的結晶,提高了復合薄膜的力學性能。另一方面,CNC45的剛性特性也使其在PVA基體中有著顯著的增強、補強效果,顯著提高了PVA/CNC復合薄膜的拉伸強度[29]。Xu等[30]采用酶解法分離出平均直徑為30 nm的球狀結構SCNC,以及長度為400~500 nm、寬度為20 nm的棒狀結構RCNC。長徑比較大的RCNC在PVA基體內部形成了大量的橋鍵網絡結構,對PVA薄膜力學性能的改善效果更加突出。當RCNC的質量分數為1.0%時,PVA/RCNC復合薄膜的拉伸強度和彈性模量分別比PVA薄膜的約高100.62%和120.97%。當RCNC的質量分數達到2%時,由于棒狀結構RCNC發生了團聚現象,PVA/RCNC復合薄膜的力學性能反而下降。與RCNC相比,尺寸較小的SCNC在PVA基體中的分散性能更好。當SCNC的質量分數為2%時,PVA/SCNC復合薄膜的拉伸強度和彈性模量達到最大值,分別比PVA薄膜的提高了約69.88%和38.92%。總結了不同形貌CNC對復合薄膜性能的影響,見表2。
CNC在PVA基體中的不均勻分散導致CNC發生了聚集,使得復合薄膜表面發生了應力集中現象,嚴重影響了CNC對PVA薄膜物的增強、補強效果。為了改善CNC在PVA基體中的分散性,可采用物理、化學及生物法對其進行改性,通過引入穩定電荷,或對CNC表面分子進行修飾,生成新的基團,以改善CNC的表面極性,提高CNC與PVA間產生氫鍵的能力,從而改善CNC的分散性。其中,化學改性方法具有反應快、取代度高等優點,改性后CNC的穩定性、分散性好,可見化學改性方法是一種優異的CNC改性方法,常見的方法有酯化改性、接枝共聚改性等[31-32]。
酯化改性利用有機酸或無機含氧酸與CNC表面游離羥基發生脫水生成酯的化學反應,經酯化改性后CNC的羥基數量減少、結晶度增加,其表面呈現疏水性,在溶液中的分散性得到提高。Yang等[33]研究了CNC與通過檸檬酸改性后的纖維素納米晶體mCNC對PVA薄膜的增強效果,與CNC相比,mCNC的比表面積較大,能夠與PVA產生較強的氫鍵作用,從而增加復合薄膜的力學性能。通過掃描電鏡未觀察到復合薄膜表面出現團聚及分離相,因此表明mCNC的分散性良好。未經改性CNC的含量較高時,易發生團聚,分散性較差,這嚴重影響了PVA/CNC復合薄膜的柔韌性,而mCNC對復合薄膜柔韌性的影響較小。當CNC和mCNC的質量分數為10%時,PVA/mCNC復合薄膜的斷裂伸長率較PVA/CNC復合薄膜的提高了約67%,表明分散性能良好的mCNC在改善PVA/CNC復合薄膜柔韌性方面具有良好效果。與PVA薄膜相比,PVA/mCNC復合薄膜的拉伸強度和彈性模量分別提高了約48.6%和115.8%,這也表明mCNC在增強、補強PVA/CNC復合薄膜的力學性能方面具有積極的作用。此外,mCNC的結晶度較高,水分子難以進入結晶區,導致mCNC增強、補強PVA薄膜的耐水性能得到顯著提高,相較于PVA/CNC復合薄膜,PVA/mCNC復合薄膜的水接觸角提高了約19%。
表2 不同形貌CNC對復合薄膜性能的影響

Tab.2 Effect of CNC with different morphologies on properties of composite films
接枝共聚改性通過引入其他聚合物的方法,改善CNC與PVA的互溶性,從而提高CNC在PVA基體中的分散性。Li等[34]利用聚丙烯酰胺接枝纖維素納米晶(CNC?g?PAM)改性PVA,通過掃描電鏡與透射電鏡觀察到CNC在PVA基體中的分散性良好,無團聚現象發生。這是因為PAM與PVA之間形成的分子間氫鍵作用有助于提高CNC在PVA基體中的分散性,隨著CNC?g?PAM含量的增加,復合薄膜的彈性模量得到顯著提高。Wang等[35]以乳酸(LA)為連接分子,將離子液體(IL)[VBIm][BF4]接枝到硫酸水解的CNC表面,在水相介質中成功制備了陽離子化的CNC(CNC?LA?IL),與PVA共混制備得到了PVA/CNC?LA?IL納米復合膜。研究表明,離子液體的阻塞效應有效減少了CNC分子間氫鍵的數量,提高了CNC在PVA基體中的分散性能。接枝在CNC表面的[VBIm]+與游離的[BF4]?分別與PVA的羥基氧和質子形成了離子相互作用,LA的羰基與PVA的羥基形成了分子間氫鍵作用,增強了CNC?LA?IL與PVA之間的界面相互作用力,提高了PVA/CNC? LA?IL納米復合薄膜的力學性能。與純PVA薄膜相比,PVA/CNC?LA?IL納米復合膜的拉伸強度和韌性分別提高了約92%和166%。
化學交聯通過交聯劑與PVA和CNC之間形成化學鍵的方式,得到了致密穩定的三維交聯網絡結構,減小了PVA/CNC復合薄膜在水中的溶解度,有效提高了其熱穩定性、力學性能和耐水性[36]。常用的化學交聯劑有醛、酸酐、羧酸等,其中醛類交聯劑因交聯度高而被廣泛應用。戊二醛(GD)是常見的醛類交聯劑,在PVA/CNC共混體系中,戊二醛與PVA/CNC的羥基發生縮醛反應,形成了致密的交聯網絡結構,達到了增強復合薄膜力學性能和耐水性的目的[37]。Yang等[38]利用GD交聯PVA/CNC/木質素納米顆粒(LNP)制備了納米復合薄膜,CNC?LNP與PVA之間的氫鍵作用和GD的交聯作用共同抑制了PVA分子鏈的運動,形成了穩定的交聯網絡結構,PVA/CNC/LNP復合薄膜的熱穩定性、耐水性和拉伸強度得到顯著提高。
雖然醛類交聯劑能增強薄膜的力學性能、耐水性和熱穩定性,但此類交聯劑具有一定的潛在毒性。無毒且安全性良好的酸或酸酐可與PVA形成酯鍵,減少PVA分子鏈上羥基的數量,并形成穩定的交聯網絡結構,減小PVA薄膜在水中的溶解度,增強復合薄膜的耐水性和力學性能[39]。Song等[40]以馬來酸酐(MAH)為交聯劑,制備了結構穩定的MAH交聯PVA/CNC復合薄膜,與PVA薄膜相比,交聯PVA/CNC復合薄膜的熱穩定性和拉伸強度分別提高了約30.4%和30.36%,吸水率降低了約44.9%。這表明交聯對提高PVA/CNC復合薄膜在高濕度環境下的應用有著積極的影響。Shalom等[41]研究了多元羧酸1,2,3,4?丁烷四羧酸(BTCA)作為交聯劑對PVA/CNC復合薄膜物理、力學性能的改善效果,交聯極大地增加了PVA/CNC復合薄膜的耐水性和力學性能。當相對濕度為50%時,與未交聯的PVA薄膜相比,交聯PVA/CNC復合薄膜的拉伸強度和韌性分別提高了約29.3%和262%,這表明交聯可有效增強PVA/CNC復合薄膜的力學強度和韌性。在水中浸泡12 h后,與PVA薄膜相比,交聯PVA/CNC復合薄膜的吸水率降低了約370%,表現出優異的耐水性能。洪錚錚等[42]研究了聚丙烯酸(PAA)對PVA/CNC復合薄膜物理、力學性能的影響。基于酯化交聯和CNC的高比表面積,增大了PVA/CNC/PAA復合薄膜的氫鍵和范德華力作用,在相對濕度為0%時,與PVA薄膜相比,交聯PVA/CNC/PAA復合薄膜的拉伸強度和斷裂伸長率分別提高了約11.6%和42.4%。在相對濕度為100%時,PVA/CNC/PAA復合薄膜的斷裂伸長率相較于 PVA薄膜,提高了約184.2%,這證明PAA能夠顯著改善PVA/CNC復合薄膜在高濕環境下的機械強度和韌性。
流延成膜法是一種廣泛應用于制備均一高分子共混體系復合薄膜的方法,可通過將CNC懸浮液與PVA溶液在一定條件下充分攪拌混合,在模具上澆鑄、干燥制備CNC/PVA復合薄膜[43]。Dey等[44]采用流延成膜法制備了厚度為0.1 mm的PVA/CNC復合薄膜,當CNC與PVA的質量比為1∶4時,制備的復合薄膜結構均勻、致密,物理性能最佳,拉伸強度和斷裂伸長率較PVA薄膜分別增加了約50%和62.9%。Li等[45]在PVA?co?PE納米纖維懸浮液中加入CNC,在環氧樹脂基體上流延成膜,得到厚度約為90 μm的CNC/PVA?co?PE復合薄膜,該薄膜表面平整光滑,其最高透光率達到91.2%,表現出良好的透明性。當CNC的質量分數為2%時,CNC/PVA? co?PE復合薄膜的拉伸強度提高到PVA?co?PE復合薄膜的近1.7倍,說明CNC對復合薄膜的機械強度具有明顯的改善作用。Nassima等[46]將CNC、氧化石墨烯納米片(GON)與PVA共混,采用流延成膜法制備了PVA/CNC/GON復合薄膜,成膜表面均勻平整,結構致密穩定,與PVA薄膜相比,PVA/CNC/GON復合薄膜的拉伸強度、韌性和彈性模量分別提高了約124%、159%、320%。
采用流延成膜法制備PVA/CNC復合薄膜,操作相對簡單,該膜可用做包裝膜、保護膜和防護膜等。雖然流延成膜法有利于PVA與CNC的均勻混合,能有效提高PVA/CNC復合薄膜的力學性能,但該法對溶液的流動性要求較高,且需注意控制材料的厚度和干燥過程,在操作時需要注意雜質污染和成膜不均勻等情況[47]。
靜電紡絲法通過噴涂技術制備厚度均勻的PVA/CNC復合薄膜,具有流延成膜法無法比擬的優點,如成膜快、工藝可控等,且能改變復合薄膜的滲透性和導熱性等,是一種通過紡絲纖維均勻緊密堆積的成膜方法。靜電紡絲法能夠直接、連續地制備PVA纖維,得到具有高長徑比、高比表面積和多孔結構等特點的纖維[48]。CNC的添加有利于提高PVA靜電紡絲纖維材料的力學性能,尤其是硫酸水解后的CNC表面帶有負電荷,在紡絲中高電荷密度可增加噴射流上的靜電壓,克服聚合物溶液的表面張力,形成噴射細流,固化后得到均勻纖細且力學性能良好的PVA/CNC納米復合纖維[49-51]。此外,在電場力的作用下,CNC在PVA基體中可有序整齊地排列,由靜電紡絲法制備的PVA/CNC復合薄膜的結構更加致密穩定,可有效提高PVA/CNC復合薄膜的物理、力學性能[52]。Park等[53]通過靜電紡絲法制備了厚度約為50 μm的PVA/CNC復合薄膜,納米紡絲纖維的直徑為120~411 nm,通過TEM觀察到寬度為(7±2)nm,長度為(300±10)nm的CNC納米粒子在纖維中均勻分散,PVA/CNC納米紡絲纖維排列整齊,PVA/CNC復合薄膜的彈性模量和拉伸強度較PVA薄膜最大提高了約83%和52.3%。基于CNC與PVA之間的氫鍵作用,PVA/CNC復合薄膜的骨架剛度增加,導熱率提高到PVA靜電紡絲薄膜的近3.5倍。Huan等[54]采用靜電紡絲法制備了直徑約為200 nm的PVA/CNC納米紡絲纖維堆積成膜,對比了PVA薄膜和PVA/CNC靜電紡絲復合薄膜的力學性能,研究結果表明,隨著CNC濃度的增加,成膜纖維的排列由松散堆積逐漸轉變為緊密排列,當CNC的質量分數為20%時,PVA/CNC靜電紡絲復合薄膜的拉伸強度較PVA薄膜提高了約140%。
采用靜電紡絲法制備PVA/CNC復合薄膜,可有效提高其機械強度,并可通過調節成膜厚度、孔隙率、紡絲纖維的排列方式、纖維直徑等相關參數,以及添加抗菌劑、包埋酶制劑等方式對PVA/CNC靜電紡絲復合薄膜進行功能化修飾,開發的PVA/CNC靜電紡絲復合薄膜在包裝材料、過濾材料及傳感器等方面得到廣泛應用[55-57]。然而,采用靜電紡絲法制備的PVA/CNC復合薄膜同樣會受到諸多因素的影響,例如PVA/CNC紡絲液的黏度、導電率和表面張力等。除此之外,電壓、噴射距離、溫度、濕度、氣流等變量對PVA/CNC復合薄膜的性能也有顯著影響[58-59]。
相較于靜電紡絲法,層層自組裝法制備的薄膜受外因的影響較小,可通過構造多層自組裝結構、調整自組裝層厚度及排列方式等途徑提高PVA/CNC復合薄膜的力學性能。層層自組裝法是基于逐層交替沉積而形成多層聚合物的方法,具有多層結構形貌和多層界面效應的優點,不僅可以控制薄膜的厚度和結構,還可以通過引入納米材料、生物大分子和導電聚合物等方法改善薄膜的物理、力學性能[60-61]。CNC與PVA之間可通過氫鍵作用自組裝成相互連接的多層薄膜結構,進而增加PVA/CNC復合薄膜的力學性能和氣體阻隔性能[62]。Ogunsona等[63]采用層層自組裝法制備了PVA/CNC復合薄膜,利用CNC與PVA間的氫鍵作用構建了多層復合薄膜結構,通過分子間氫鍵形成厚度約為23 μm的束狀網絡結構的CNC層,可比PVA層承受更大的應力作用。與流延成膜相比,層層自組裝的PVA/CNC復合薄膜的拉伸強度和彈性模量得到大幅提高,當CNC的質量分數為10%時,三層結構的PVA/CNC復合薄膜(PCP結構)的彈性模量和拉伸強度分別增加了約2 300%和415%,且氧氣滲透被完全阻斷,表明多層結構的PVA/CNC復合薄膜的力學性能和氣體阻隔性能得到顯著提升。
由于層層自組裝法制備的PVA/CNC復合薄膜主要依靠PVA與CNC之間的氫鍵作用,因而存在穩定性不足的問題,且操作耗時較長,成膜厚度也有一定的局限性。不過,采用層層自組裝法制備的PVA/CNC復合薄膜具有多層結構和多界面效應等特點,有利于改善復合薄膜的機械強度、滲透效果和導電能力,在食品包裝、藥物緩釋、選擇性滲透薄膜、生物傳感器等領域應用廣泛[64-67]。
總結了不同成膜方式對復合薄膜性能的影響因素及優缺點,如表3所示。不同成膜方式對復合薄膜的結構及性能的影響差別較大,可根據實際應用需要選擇相應的成膜方式。
表3 PVA/CNC復合薄膜成膜方式及其優缺點

Tab.3 Forming method of PVA/CNC composite films and its advantages and disadvantages
PVA是一種具有良好成膜性、力學性能、生物相容性的生物可降解材料,將CNC與PVA共混制備復合薄膜,可以改善PVA遇水易溶脹的缺陷,提升其耐水性、物理性能、力學性能,滿足實際應用中的不同需求。通過研究CNC的形貌,CNC在PVA基體中的分散情況,以及化學交聯改性、成膜工藝等,可為改善PVA/CNC復合薄膜的力學性能、氣體阻隔性、耐熱性等提供研究思路,拓寬PVA/CNC復合薄膜的功能,并推動其在諸多領域的應用。目前,針對PVA/CNC復合薄膜的研究主要集中于對合成途徑和改性方法的研究,未來可嘗試研究多種因素的協同效應對PVA/CNC復合薄膜物理、力學性能的影響,關注復合薄膜制備過程的環境污染和資源過度消耗等問題,評估PVA/CNC復合薄膜的降解能力和降解機理,進一步提高PVA/CNC復合薄膜的綜合使用性能。
[1] 潘永剛. 《“十四五”循環經濟發展規劃》解讀——加快廢舊物資循環利用體系建設構建循環經濟發展新格局[J]. 再生資源與循環經濟, 2021, 14(7): 23.
PAN Yong-gang. Interpretation of the "14th Five-Year" Circular Economy Development Plan — Accelerating the Construction of Waste Materials Recycling System and Constructing a New Pattern of Circular Economy Development[J]. Recyclable Resources and Circular Economy, 2021, 14(7): 23.
[2] ASLAM M, MUHAMMAD K A, MAZHAR Z. Polyvinyl Alcohol: A Review of Research Status and Use of Polyvinyl Alcohol Based Nanocomposites[J]. Polymer Engineering & Science, 2018, 58(12): 2119-2132.
[3] NOSHIRVANI N, HONG W, GHANBARZADEH B, et al. Study of Cellulose Nanocrystal Doped Starch-Polyvinyl Alcohol Bionanocomposite Films[J]. International Journal of Biological Macromolecules, 2018, 107(Pt B): 2065-2074.
[4] 楊眉, 陳袁曦, 于冬云, 等. 細菌纖維素/聚乙烯醇復合材料的制備及性能[J]. 工程塑料應用, 2017, 45(8): 20-24.
YANG Mei, CHEN Yuan-xi, YU Dong-yun, et al. Preparation and Characterization of Bacterial Cellulose/Poly(Vinyl Alcohol) Composites[J]. Engineering Plastics Application, 2017, 45(8): 20-24.
[5] 鄧雨希, 關鵬飛, 左迎峰, 等. 基于互穿交聯結構的PVA–硅酸鈉雜化改性楊木的制備與性能[J]. 材料導報, 2021, 35(10): 10221-10226.
DENG Yu-xi, GUAN Peng-fei, ZUO Ying-feng, et al. Preparation and Properties of PVA-Sodium Silicate Hybrid Modified Poplar with Interpenetrating and Cross-Linking Structure[J]. Materials Reports, 2021, 35(10): 10221-10226.
[6] SIRVI? J A, HONKANIEMI S, VISANKO M, et al. Composite Films of Poly(Vinyl Alcohol) and Bifunctional Cross-Linking Cellulose Nanocrystals[J]. ACS Applied Materials & Interfaces, 2015, 7(35): 19691-19699.
[7] 黎根盛, 曾暉, 李瑞, 等. 水溶性PVA薄膜的制備及其改性研究進展[J]. 合成樹脂及塑料, 2021, 38(2): 77-79.
LI Gen-sheng, ZENG Hui, LI Rui, et al. Preparation and Modification of Water-Soluble PVA Films[J]. China Synthetic Resin and Plastics, 2021, 38(2): 77-79.
[8] KARGARZADEH H, MARIANO M, HUANG J, et al. Recent Developments on Nanocellulose Reinforced Polymer Nanocomposites: A Review[J]. Polymer, 2017, 132: 368-393.
[9] KARGARZADEH H, HUANG J, LIN N, et al. Recent Developments in Nanocellulose-Based Biodegradable Polymers, Thermoplastic Polymers, and Porous Nanocomposites[J]. Progress in Polymer Science, 2018, 87: 197-227.
[10] 張電子, 史豪, 張曉潭, 等. MC尼龍6/纖維素納米晶復合材料原位制備及性能[J]. 工程塑料應用, 2021, 49(7): 1-7.
ZHANG Dian-zi, SHI Hao, ZHANG Xiao-tan, et al. In-Situ Preparation and Performance of MC Nylon 6/Cellulose Nanocrystalline Composites[J]. Engineering Plastics Application, 2021, 49(7): 1-7.
[11] 張春梅, 宋玉, 劉雙會, 等. 聚乳酸/改性纖維素納米晶的熱穩定性和結晶性能[J]. 工程塑料應用, 2020, 48(6): 103-107.
ZHANG Chun-mei, SONG Yu, LIU Shuang-hui, et al. Thermal Stability and Crystallization Properties of Polylactide/Modified Cellulose Nanocrystals[J]. Engineering Plastics Application, 2020, 48(6): 103-107.
[12] YOUNAS M, NOREEN A, SHARIF A, et al. A Review on Versatile Applications of Blends and Composites of CNC with Natural and Synthetic Polymers with Mathematical Modeling[J]. International Journal of Biological Macromolecules, 2019, 124: 591-626.
[13] BI Jing-ran, TIAN Chuan, ZHANG Gong-liang, et al. Novel Procyanidins-Loaded Chitosan-Graft-Polyvinyl Alcohol Film with Sustained Antibacterial Activity for Food Packaging[J]. Food Chemistry, 2021, 365: 130534.
[14] LIU Xian, CHEN Chang-jie, SUN Jiu-sheng, et al. Development of Natural Fiber-Based Degradable Nonwoven Mulch from Recyclable Mill Waste[J]. Waste Management, 2021, 121: 432-440.
[15] SHARMA D, SATAPATHY B K. Optimally Controlled Morphology and Physico-Mechanical Properties of Inclusion Complex Loaded Electrospun Polyvinyl Alcohol Based Nanofibrous Mats for Therapeutic Applications[J]. Journal of Biomaterials Science, Polymer Edition, 2021, 32(9): 1182-1202.
[16] LIU Huan-huan, SONG Wei, YU Ye, et al. Black Phosphorus-Film with Drop-Casting Method for High-Energy Pulse Generation from Q-Switched Er-Doped Fiber Laser[J]. Photonic Sensors, 2019, 9(3): 239-245.
[17] FAN Li, ZHANG Hui, GAO Meng-xi, et al. Cellulose Nanocrystals/Silver Nanoparticles:Preparation and Application in PVA Films[J]. Holzforschung, 2020, 74(5): 523-528.
[18] POPESCU M C. Structure and Sorption Properties of CNC Reinforced PVA Films[J]. International Journal of Biological Macromolecules, 2017, 101: 783-790.
[19] NURUDDIN M, CHOWDHURY R A, SZETO R, et al. Structure-Property Relationship of Cellulose Nanocrystal-Polyvinyl Alcohol Thin Films for High Barrier Coating Applications[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 12472-12482.
[20] JAHAN Z, NIAZI M B K, H?GG M B, et al. Cellulose Nanocrystal/PVA Nanocomposite Membranes for CO2/ CH4Separation at High Pressure[J]. Journal of Membrane Science, 2018, 554: 275-281.
[21] HAN Lian, ZHANG Hao-yu, YU Hou-yong, et al. Highly Sensitive Self-Healable Strain Biosensors Based on Robust Transparent Conductive Nanocellulose Nanocomposites: Relationship Between Percolated Network and Sensing Mechanism[J]. Biosensors and Bioelectronics, 2021, 191: 113467.
[22] CHOWDHURY R A, RAI A, GLYNN E, et al. Superior, Processing-Dependent Thermal Conductivity of Cellulose Nanocrystal-Poly(Vinyl Alcohol) Composite Films[J]. Polymer, 2019, 164: 17-25.
[23] LAM N T, CHOLLAKUP R, SMITTHIPONG W, et al. Utilizing Cellulose from Sugarcane Bagasse Mixed with Poly(Vinyl Alcohol) for Tissue Engineering Scaffold Fabrication[J]. Industrial Crops and Products, 2017, 100: 183-197.
[24] LI Zhang-kang, BAI Hui-yu, ZHANG Sheng-wen, et al. DN Strategy Constructed Photo-Crosslinked PVA/ CNC/P(NIPPAm-co-AA) Hydrogels with Temperature-Sensitive and PH-Sensitive Properties[J]. New Journal of Chemistry, 2018, 42(16): 13453-13460.
[25] 金克霞, 江澤慧, 馬建鋒, 等. 纖維素納米晶基導電復合材料的應用進展[J]. 材料導報, 2020, 34(S2): 1521-1524.
JIN Ke-xia, JIANG Ze-hui, MA Jian-feng, et al. Application Progress of Cellulose Nanocrystals-Based Electroconductive Composites[J]. Materials Reports, 2020, 34(S2): 1521-1524.
[26] RASHEED M, JAWAID M, PARVEEZ B, et al. Morphological, Chemical and Thermal Analysis of Cellulose Nanocrystals Extracted from Bamboo Fibre[J]. International Journal of Biological Macromolecules, 2020, 160: 183-191.
[27] KASSAB Z, EL ACHABY M, TAMRAOUI Y, et al. Sunflower Oil Cake-Derived Cellulose Nanocrystals: Extraction, Physico-Chemical Characteristics and Potential Application[J]. International Journal of Biological Macromolecules, 2019, 136: 241-252.
[28] KASSAB Z, ABDELLAOUI Y, SALIM M H, et al. Micro- and Nano-Celluloses Derived from Hemp Stalks and Their Effect as Polymer Reinforcing Materials[J]. Carbohydrate Polymers, 2020, 245: 116506.
[29] 李育飛. 聚乙烯醇/纖維素復合材料的制備與性能研究[D]. 無錫: 江南大學, 2016: 14-24.
LI Yu-fei. Study on Preparation and Properties of Poly(Vinyl Alcohol)/Cellulose Composites[D]. Wuxi: Jiangnan University, 2016: 14-24.
[30] XU Jia-tong, CHEN Xiao-quan, SHEN Wen-hao, et al. Spherical vs Rod-Like Cellulose Nanocrystals from Enzymolysis: a Comparative Study as Reinforcing Agents on Polyvinyl Alcohol[J]. Carbohydrate Polymers, 2021, 256: 117493.
[31] 徐峻, 高藝, 吳祺祺, 等. 纖維素納米晶的改性對其晶體結構及性能的影響[J]. 高分子材料科學與工程, 2021, 37(3): 66-71.
XU Jun, GAO Yi, WU Qi-qi, et al. Effect of Modification of Cellulose Nanocrystals on Crystal Structure and Properties[J]. Polymer Materials Science & Engineering, 2021, 37(3): 66-71.
[32] FOTIE G, GAZZOTTI S, ORTENZI M A, et al. Implementation of High Gas Barrier Laminated Films Based on Cellulose Nanocrystals for Food Flexible Packaging[J]. Applied Sciences, 2020, 10(9): 3201.
[33] YANG Wei-jun, HE Xiao-yan, LUZI F, et al. Thermomechanical, Antioxidant and Moisture Behaviour of PVA Films in Presence of Citric Acid Esterified Cellulose Nanocrystals[J]. International Journal of Biological Macromolecules, 2020, 161: 617-626.
[34] LI Ben-gang, WU Chao, ZHANG Yan-dan, et al. Microstructure and Thermal and Tensile Properties of Poly(Vinyl Alcohol) Nanocomposite Films Reinforced by Polyacrylamide Grafted Cellulose Nanocrystals[J]. Journal of Macromolecular Science, Part B, 2020, 59(4): 223-234.
[35] WANG Li, HU Jie, LIU Yun-xiao, et al. Ionic Liquids Grafted Cellulose Nanocrystals for High-Strength and Toughness PVA Nanocomposite[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38796-38804.
[36] LI Zhang-kang, WANG Da-wei, BAI Hui-yu, et al. Photo-Crosslinking Strategy Constructs Adhesive, Superabsorbent, and Tough PVA-Based Hydrogel Through Controlling the Balance of Cohesion and Adhesion[J]. Macromolecular Materials and Engineering, 2020, 305(1): 1900623.
[37] MEHROTRA T, ZAMAN M N, PRASAD B B, et al. Rapid Immobilization of Viablein Polyvinyl Alcohol/Glutaraldehyde Hydrogel for Biological Treatment of Municipal Wastewater[J]. Environmental Science and Pollution Research, 2020, 27(9): 9167-9180.
[38] YANG Wei-jun, QI Guo-chuang, KENNY J M, et al. Effect of Cellulose Nanocrystals and Lignin Nanoparticles on Mechanical, Antioxidant and Water Vapour Barrier Properties of Glutaraldehyde Crosslinked PVA Films[J]. Polymers, 2020, 12(6): 1364.
[39] SUGANTHI S, MOHANAPRIYA S, RAJ V, et al. Tunable Physicochemical and Bactericidal Activity of Multicarboxylic-Acids-Crosslinked Polyvinyl Alcohol Membrane for Food Packaging Applications[J]. ChemistrySelect, 2018, 3(40): 11167-11176.
[40] SONG Mei-li, YU Hou-yong, GU Ji-ping, et al. Chemical Cross-Linked Polyvinyl Alcohol/Cellulose Nanocrystal Composite Films with High Structural Stability by Spraying Fenton Reagent as Initiator[J]. International Journal of Biological Macromolecules, 2018, 113: 171-178.
[41] SHALOM T B, NEVO Y, LEIBLER D, et al. Cellulose Nanocrystals (CNCS) Induced Crystallization of Polyvinyl Alcohol (PVA) Super Performing Nanocomposite Films[J]. Macromolecular Bioscience, 2019, 19(3): 1800347.
[42] 洪錚錚, 蔣學, 王鴻博, 等. 丙烯酸原位聚合改性纖維素納米晶體/聚乙烯醇復合膜的制備及性能[J]. 高分子材料科學與工程, 2018, 34(2): 163-167.
HONG Zheng-zheng, JIANG Xue, WANG Hong-bo, et al. Preparation and Properties of Cellulose Nanocrystalline and Polyvinyl Alcohol Modified by Poly(acrylic acid) Films[J]. Polymer Materials Science & Engineering, 2018, 34(2): 163-167.
[43] SHAHEER A K, ATAUR R, FATIMA B D I. The Impact of Film Thickness on the Properties of ZnO/PVA Nanocomposite Film[J]. Materials Research Express, 2021, 8(7): 075002.
[44] DEY D, DHARINI V, PERIYAR S S, et al. Physical, Antifungal, and Biodegradable Properties of Cellulose Nanocrystals and Chitosan Nanoparticles for Food Packaging Application[J]. Materials Today: Proceedings, 2021, 38: 860-869.
[45] LI Mu-fang, ZHAO Xu, LI Ying-ying, et al. Synergistic Improvement for Mechanical, Thermal and Optical Properties of PVA-co-PE Nanofiber/Epoxy Composites with Cellulose Nanocrystals[J]. Composites Science and Technology, 2020, 188: 107990.
[46] NASSIMA E M, MOUNIR E A, AZIZ F, et al. Synergistic Effect of Cellulose Nanocrystals/Graphene Oxide Nanosheets as Functional Hybrid Nanofiller for Enhancing Properties of PVA Nanocomposites[J]. Carbohydrate Polymers, 2016, 137: 239-248.
[47] JAHAN Z, NIAZI M B K, H?GG M B, et al. Decoupling the Effect of Membrane Thickness and CNC Concentration in PVA Based Nanocomposite Membranes for CO2/CH4Separation[J]. Separation and Purification Technology, 2018, 204: 220-225.
[48] LIN J H, CHIANG K C, HUANG C L, et al. Preparation and Property Evaluations of Polyvinyl Alcohol (PVA)/ Graphene Nanosheets (GNs) Composite Nanofibrous Mats by Using Electrospinning[J]. Advanced Materials Research, 2014, 910: 226-229.
[49] HAN Jing-quan, WANG Si-wei, ZHU Sai-ling, et al. Electrospun Core-Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44624-44635.
[50] SUN Wei, HUANG Liang-liang, ZHANG Pei-hua. Preparation and Properties of Chitosan/Polyvinyl Alcohol Blended Fiber Membrane for Medical Dressing[J]. Journal of Donghua University (English Edition), 2019, 36(5): 466-470.
[51] ZHAO Xiao-juan, ZHENG Hong-zhi, QU Dan, et al. A Supramolecular Approach towards Strong and Tough Polymer Nanocomposite Fibers[J]. RSC Advances, 2018, 8(19): 10361-10366.
[52] 王棟, 宣麗慧, 李超, 等. 靜電紡纖維素納米晶體/殼聚糖–聚乙烯醇復合納米纖維的制備與表征[J]. 復合材料學報, 2018, 35(4): 964-972.
WANG Dong, XUAN Li-hui, LI Chao, et al. Preparation and Characterization of Electrospun Cellulose Nanocrystals/Chitosan-Polyvinyl Alcohol Composite Nanofibers[J]. Acta Materiae Compositae Sinica, 2018, 35(4): 964-972.
[53] PARK Y, YOU M, SHIN J, et al. Thermal Conductivity Enhancement in Electrospun Poly(Vinyl Alcohol) and Poly(Vinyl Alcohol)/Cellulose Nanocrystal Composite Nanofibers[J]. Scientific Reports, 2019, 9: 3026.
[54] HUAN Si-qi, BAI Long, CHENG Wan-li, et al. Manufacture of Electrospun All-Aqueous Poly(Vinyl Alcohol)/Cellulose Nanocrystal Composite Nanofibrous Mats with Enhanced Properties through Controlling Fibers Arrangement and Microstructure[J]. Polymer, 2016, 92: 25-35.
[55] LI Ke, LI Chuan-ming, TIAN Hua-feng, et al. Multifunctional and Efficient Air Filtration: A Natural Nanofilter Prepared with Zein and Polyvinyl Alcohol[J]. Macromolecular Materials and Engineering, 2020, 305(8): 2000239.
[56] PURWAR R, SRIVASTAVA C M. Electrospun Sericin/PVA/Clay Nanofibrous Mats for Antimicrobial Air Filtration Mask[J]. Fibers and Polymers, 2016, 17(8): 1206-1216.
[57] 鄧理, 張建奇, 孫浩, 等. 基于靜電紡絲納米纖維膜的光纖溫濕度傳感器[J]. 激光與光電子學進展, 2021, 58(9): 196-202.
DENG Li, ZHANG Jian-qi, SUN Hao, et al. Optical Fiber Temperature and Humidity Sensor Based on Film Prepared by Electrospinning Nanofibers[J]. Laser & Optoelectronics Progress, 2021, 58(9): 196-202.
[58] JIRKOVEC R, ERBEN J, SAJDL P, et al. The Effect of Material and Process Parameters on the Surface Energy of Polycaprolactone Fibre Layers[J]. Materials & Design, 2021, 205: 109748.
[59] JIANG Guo-jun, JOHNSON L, XIE Sheng. Investigations into the Mechanisms of Electrohydrodynamic Instability in Free Surface Electrospinning[J]. Open Physics, 2019, 17(1): 313-319.
[60] CHAUDHARI S, CHO K, JOO S, et al. Layer-by-Layer of Graphene Oxide-Chitosan Assembly on PVA Membrane Surface for the Pervaporation Separation of Water-Isopropanol Mixtures[J]. Korean Journal of Chemical Engineering, 2021, 38(2): 411-421.
[61] PAN Ying, LIU Long xiang, SONG Lei, et al. Reinforcement of Layer-by-Layer Self-Assembly Coating Modified Cellulose Nanofibers to Reduce the Flammability of Polyvinyl Alcohol[J]. Cellulose, 2019, 26(5): 3183-3192.
[62] KANDEH S H, AMINI S, EBRAHIMZADEH H. Simultaneous Trace-Level Monitoring of Seven Opioid Analgesic Drugs in Biological Samples by Pipette-Tip Micro Solid Phase Extraction Based on PVA-PAA/CNT-CNC Composite Nanofibers Followed by HPLC-UV Analysis[J]. Microchimica Acta, 2021, 188(8): 275.
[63] OGUNSONA E O, MEKONNEN T H. Multilayer Assemblies of Cellulose Nanocrystal-Polyvinyl Alcohol Films Featuring Excellent Physical Integrity and Multi-Functional Properties[J]. Journal of Colloid and Interface Science, 2020, 580: 56-67.
[64] RIVERO P J, ESPARZA J, SAN MARTíN R, et al. Antibacterial Activity of Photocatalytic Metal Oxide Thin Films Deposited by Layer-by-Layer Self-Assembly[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(5): 2855-2863.
[65] LI Xin, VIEWEGER M, GUO Pei-xuan. Self-Assembly of Four Generations of RNA Dendrimers for Drug Shielding with Controllable Layer-by-Layer Release[J]. Nanoscale, 2020, 12(31): 16514-16525.
[66] LI Yu-feng, TANG Zong-jun, WANG Wen-lin, et al. Improving Air Barrier, Water Vapor Permeability Properties of Cellulose Paper by Layer-by-Layer Assembly of Graphene Oxide[J]. Carbohydrate Polymers, 2021, 253: 117227.
[67] CORREIA A R, SAMPAIO I, COMPARETTI E J, et al. Detecting Cancer Cells with a Highly Sensitive LBL-Based Biosensor[J]. Talanta, 2021, 233: 122506.
Research Status of Properties of CNC Reinforced PVA Films
LI Huia,TIAN Jia-yaoa,PANG Shan-shana,GONG Guo-lib
(a. School of Art and Design, b. School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, China)
The work aims to review research on the enhancement of the physical properties of PVA films by using nanocellulose crystal (CNC) as the reinforcing agent, improve the research on physical properties of PVA films, so as to provide reference for the further development and application of PVA film materials. In this work, through the collection and sorting of relevant literature, the application progress of PVA/CNC composite film was described. The progress of improving the physical properties of PVA/CNC film by the morphology characteristics, chemical modification and film forming method of CNC were introduced. The effects of CNC dispersion, crosslinking agent and film forming conditions on improving the physical properties of PVA/CNC composite films were reviewed. By increasing the dispersion of CNC in PVA matrix and selecting corresponding film forming methods for different uses, the mechanical properties, barrier properties and water resistance of PVA film can be effectively improved, thus the use value of PVA film can be improved.
polyvinyl alcohol; cellulose nanocrystals; composite films; physical property
TQ325.9
A
1001-3563(2023)03-0023-09
10.19554/j.cnki.1001-3563.2023.03.004
2022?05?27
陜西省科技廳重點項目(2019NY?194);陜西省西安市未央區科技計劃(202038);陜西省重點研發計劃(2021NY?124)
李慧(1976—),女,博士,副教授,主要研究方向為高分子功能膜材料。
責任編輯:彭颋