999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

鋼?CFRP異質(zhì)復(fù)合B柱的彎曲實(shí)驗(yàn)分析

2023-02-03 00:58:22馬治軍黃朝陽滕昊林建平
精密成形工程 2023年1期
關(guān)鍵詞:復(fù)合材料工藝實(shí)驗(yàn)

馬治軍,黃朝陽,滕昊,林建平

復(fù)合材料成形

鋼?CFRP異質(zhì)復(fù)合B柱的彎曲實(shí)驗(yàn)分析

馬治軍1,黃朝陽1,滕昊2,林建平2

(1.上海賽科利汽車模具技術(shù)應(yīng)用有限公司,上海 202106;2.同濟(jì)大學(xué) 機(jī)械與能源工程學(xué)院,上海 200092)

為提高B柱的抗彎性能,通常會(huì)在B柱上額外焊接補(bǔ)丁板,但同時(shí)也增加了B柱的重量。在原始B柱上鋪設(shè)碳纖維增強(qiáng)復(fù)合材料(CFRP),獲得鋼?CFRP異質(zhì)復(fù)合B柱,取消B柱的鋼制加強(qiáng)板,實(shí)現(xiàn)B柱的輕量化。通過熱沖壓制備原始B柱及帶補(bǔ)丁板B柱,并以原始B柱為凹模,采用真空袋壓工藝制備鋼?CFRP異質(zhì)復(fù)合B柱。基于2018版C?NCAP側(cè)面碰撞實(shí)驗(yàn)要求,設(shè)計(jì)B柱三點(diǎn)彎曲夾具,進(jìn)行原始B柱、帶補(bǔ)丁板B柱及鋼?CFRP異質(zhì)復(fù)合B柱的三點(diǎn)彎曲實(shí)驗(yàn),并對其重量及彎曲性能進(jìn)行分析。原始B柱重量4.1 kg,三點(diǎn)彎曲實(shí)驗(yàn)測得其剛度為0.763 kN/mm,最大載荷為21.59 kN,平均力為14.52 kN;帶補(bǔ)丁板B柱質(zhì)量為5.6 kg,三點(diǎn)彎曲實(shí)驗(yàn)測得其剛度為1.095 kN/mm,最大載荷為31.08 kN,平均力為18.38 kN;鋼?CFRP異質(zhì)復(fù)合B柱總質(zhì)量4.7 kg,三點(diǎn)彎曲試驗(yàn)測得其剛度為1.071 kN/mm,最大載荷為31.76 kN,平均力為19.58 kN。在保持剛度、最大載荷及平均力等彎曲力學(xué)性能不變的前提下,相對于帶補(bǔ)丁板B柱,鋼?CFRP異質(zhì)復(fù)合B柱可以減輕質(zhì)量0.9 kg,并且吸能更優(yōu),實(shí)現(xiàn)了B柱的輕量化。

碳纖維增強(qiáng)復(fù)合材料;真空袋壓工藝;鋼?CFRP異質(zhì)復(fù)合B柱;三點(diǎn)彎曲;輕量化

金屬-碳纖維增強(qiáng)復(fù)合材料(Carbon Fiber Reinforced Plastic,CFRP)異質(zhì)復(fù)合構(gòu)件將金屬與CFRP連接后一起進(jìn)行承載,可提高構(gòu)件的拉伸、彎曲、抗沖擊等力學(xué)性能[1-5],進(jìn)而助力實(shí)現(xiàn)零件的輕量化設(shè)計(jì)。根據(jù)金屬和CFRP成形先后順序及連接方式,目前金屬-CFRP異質(zhì)復(fù)合結(jié)構(gòu)成形工藝路線可以分為4類:金屬和CFRP分別制造成形后,再采用膠、鉚、焊等手段進(jìn)行連接[6-9];金屬零件成形后,以金屬零件為模,同時(shí)進(jìn)行CFRP成形及金屬和CFRP的連接[10-11];金屬和CFRP同步成形并實(shí)現(xiàn)連接[12-13];先將金屬和CFRP采用熱壓或熱壓罐成形等工藝制備成金屬?CFRP異質(zhì)復(fù)合板,再采用其他成形工藝制備為需要的形狀[14-17]。

金屬-FRP異質(zhì)構(gòu)件被廣泛應(yīng)用于航空領(lǐng)域及汽車領(lǐng)域,如機(jī)翼、機(jī)身蒙皮、車身等[18-21]。2015年,寶馬公司首先在其7系車上應(yīng)用了金屬-CFRP異質(zhì)復(fù)合構(gòu)件,如車頂橫梁、B柱、C柱、門檻梁及中央通道上,使整車重量減輕了130 kg[22]。陸冉[23]基于成形加膠接的成形工藝制造了鋼-CFRP異質(zhì)復(fù)合B柱,對制造的CFRP B柱補(bǔ)丁板進(jìn)行了三點(diǎn)彎曲仿真與實(shí)驗(yàn),在剛度不變情況下,實(shí)現(xiàn)了補(bǔ)丁板質(zhì)量減輕31%。熊長麗[24]先采用單向碳纖維布和樹脂傳遞模塑工藝制造了CFRP補(bǔ)丁板,再將補(bǔ)丁板和鋼質(zhì)B柱膠粘在一起,在總剛度不變的情況下,補(bǔ)丁板減重70%。

文中以某汽車帶補(bǔ)丁板B柱為研究對象,在保持剛度、強(qiáng)度、平均力等指標(biāo)不變的情況下,以鋼制B柱構(gòu)件為模,制作了鋼-CFRP異質(zhì)復(fù)合B柱,并通過三點(diǎn)彎曲實(shí)驗(yàn)與分析,為鋼-CFRP異質(zhì)復(fù)合B柱的應(yīng)用提供技術(shù)參考。

1 鋼-CFRP異質(zhì)復(fù)合B柱的成形工藝與三點(diǎn)彎曲實(shí)驗(yàn)

1.1 鋼-CFRP異質(zhì)復(fù)合B柱的真空袋壓成形制造

本研究中的鋼-CFRP異質(zhì)復(fù)合B柱是在已經(jīng)成形的原始B柱上鋪設(shè)碳纖維增強(qiáng)復(fù)合材料,采用真空袋壓工藝制成。具體成形制造工藝流程:采用熱沖壓成形工藝制備原始B柱;對鋼板進(jìn)行表面處理,主要目的是提高鋼與CFRP之間的結(jié)合性能,故對鋼板表面進(jìn)行噴砂處理;在原加強(qiáng)板位置鋪設(shè)復(fù)合材料預(yù)浸料,共鋪設(shè)5層12K雙向預(yù)浸料,其單向拉伸強(qiáng)度為983 MPa;將鋪設(shè)好CFRP預(yù)浸料的B柱依次用隔離膜、透氣氈、真空袋等進(jìn)行包裹;將真空袋打包好的鋼-CFRP異質(zhì)復(fù)合B柱放進(jìn)熱壓罐中,并通過真空快速接頭與真空泵連接,固化成形,完成鋼- CFRP異質(zhì)復(fù)合B柱的制作。

1.2 鋼-CFRP異質(zhì)復(fù)合B柱三點(diǎn)彎曲實(shí)驗(yàn)

根據(jù)2018版C-NCAP側(cè)面碰撞實(shí)驗(yàn)要求[25],研究設(shè)計(jì)了三點(diǎn)彎曲夾具。其中,沖頭半徑為125 mm,2個(gè)支撐腳架半徑為10 mm,如圖1所示。B柱根據(jù)側(cè)面碰撞實(shí)驗(yàn)中沖擊位置放置于2個(gè)支撐上,三點(diǎn)彎曲實(shí)驗(yàn)在MTS萬能實(shí)驗(yàn)機(jī)上進(jìn)行,沖頭下壓速率為15 mm/min。實(shí)驗(yàn)在室溫下共進(jìn)行3組,分別是原始B柱(無補(bǔ)丁板)、帶補(bǔ)丁板B柱及鋼-CFRP異質(zhì)復(fù)合B柱。以沖頭與B柱接觸開始的時(shí)刻為實(shí)驗(yàn)起始點(diǎn),沖頭下壓80 mm時(shí)實(shí)驗(yàn)停止。

圖1 B柱三點(diǎn)彎曲實(shí)驗(yàn)

2 鋼-CFRP異質(zhì)復(fù)合B柱三點(diǎn)彎曲實(shí)驗(yàn)結(jié)果與分析

在MTS萬能實(shí)驗(yàn)機(jī)上獲得B柱三點(diǎn)彎曲實(shí)驗(yàn)的載荷-位移曲線,如圖2所示,各個(gè)B柱的失效形式如圖3所示,可見原始B柱(無補(bǔ)丁板)的失效形式為壓潰失效;帶補(bǔ)丁板的B柱主要失效形式為補(bǔ)丁板焊點(diǎn)失效之后的壓潰失效;鋼-CFRP異質(zhì)復(fù)合B柱沒有出現(xiàn)整體CFRP脫粘的現(xiàn)象,主要的失效形式為中間位置CFRP的斷裂及斷裂處附近界面脫粘,表明真空袋壓工藝可以較好實(shí)現(xiàn)CFRP的成形與鋼?CFRP界面的連接。

圖2 B柱三點(diǎn)彎曲實(shí)驗(yàn)的載荷-位移曲線

由圖2可知,當(dāng)沖頭位移小于9.8 mm時(shí),原始B柱和鋼-CFRP異質(zhì)復(fù)合B柱的承載小于帶補(bǔ)丁板B柱;當(dāng)沖頭加載到14.5 mm左右時(shí),鋼-CFRP異質(zhì)復(fù)合B柱的載荷已經(jīng)達(dá)到了補(bǔ)丁板B柱的強(qiáng)度;當(dāng)沖頭加載到16.9 mm時(shí),由于發(fā)生了焊點(diǎn)失效,補(bǔ)丁板B柱載荷出現(xiàn)突然下降,隨著載荷增大,越來越多焊點(diǎn)出現(xiàn)失效;鋼-CFRP異質(zhì)復(fù)合B柱在沖頭分別加載到20.2 mm時(shí),CFRP開始斷裂,載荷出現(xiàn)突然下降;原始B柱、帶補(bǔ)丁板B柱和鋼?CFRP異質(zhì)復(fù)合B柱分別在沖頭加載到34.5、33.8、40.1 mm處時(shí)載荷達(dá)到峰值。此外,鋼?CFRP異質(zhì)復(fù)合B柱達(dá)到峰值后,其對抗侵入量與吸能效應(yīng)明顯優(yōu)于帶補(bǔ)丁板B柱。

所有B柱的剛度、最大載荷、平均力的具體數(shù)值如表1和圖4所示。通過補(bǔ)丁板和CFRP對鋼板進(jìn)行補(bǔ)強(qiáng),均可提高B柱的剛度、最大載荷、平均力等指標(biāo),但兩者增強(qiáng)方式存在一定區(qū)別。鋼-CFRP異質(zhì)復(fù)合B柱質(zhì)量相對于帶補(bǔ)丁板B柱減少了0.9 kg,剛度、最大載荷、平均力分別達(dá)到了帶補(bǔ)丁板B柱的98%、102%、107%,表明鋼-CFRP異質(zhì)復(fù)合B柱吸能效果優(yōu)于帶補(bǔ)丁板B柱,實(shí)現(xiàn)了B柱的輕量化設(shè)計(jì)。

圖3 B柱失效圖

表1 B柱力學(xué)性能對比

Tab.1 Comparison of mechanical properties of B-pillar

圖4 B柱力學(xué)性能對比

3 結(jié)論

通過CFRP替代鋼制補(bǔ)丁板,實(shí)現(xiàn)了B柱輕量化設(shè)計(jì)。基于2018版C-NCAP側(cè)面碰撞實(shí)驗(yàn)要求設(shè)計(jì)了B柱三點(diǎn)彎曲夾具,并進(jìn)行了原始B柱、帶補(bǔ)丁板B柱及鋼?CFRP異質(zhì)復(fù)合B柱的三點(diǎn)彎曲實(shí)驗(yàn),通過對比各個(gè)B柱的質(zhì)量、剛度、最大載荷、平均力,可以得出以下主要結(jié)論。

1)通過真空袋壓工藝可較好地同時(shí)實(shí)現(xiàn)CFRP成形與鋼-CFRP的界面連接。

2)在保持剛度、最大載荷及平均力等彎曲力學(xué)性能不變的前提下,鋼-CFRP異質(zhì)復(fù)合B柱相對帶補(bǔ)丁板B柱可以減輕質(zhì)量0.9 kg,實(shí)現(xiàn)B柱的輕量化。

[1] VASUDEVAN A, KUMAR B N, Depoures M V, et al. Tensile and Flexural Behaviour of Glass Fibre Reinforced Plastic - Aluminium Hybrid Laminate Manufactured by Vacuum Resin Transfer Moulding Technique (VARTM)[J]. Materials Today: Proceedings, 2021, 37: 2132-2140.

[2] ZHENG Zi-han, DU Yan-sheng, CHEN Zhi-hua, et al. Experimental and Theoretical Studies of FRP-Steel Composite Plate under Static Tensile Loading[J]. Construction and Building Materials, 2021, 271: 121501.

[3] DHALIWAL G S, NEWAZ G M. Experimental and Numerical Investigation of Flexural Behavior of Carbon Fiber Reinforced Aluminum Laminates[J]. Journal of Reinforced Plastics and Composites, 2016, 35(12): 945-956.

[4] YAO Lu, SUN Guang-yong, HE Wen-tao. Investigation on Impact Behavior of FMLS under Multiple Impacts with the Same Total Energy: Experimental Characterization and Numerical Simulation[J]. Composite Structures, 2019, 226: 111218.

[5] TAHERZADEH-FARD A, LIAGHAT G, AHMADI H, et al. Experimental and Numerical Investigation of the Impact Response of Elastomer Layered Fiber Metal Laminates (EFMLs)[J]. Composite Structures, 2020, 245: 112264.

[6] WANG Zhen, LI Cheng-gao, SUI Li-li, et al. Effects of Adhesive Property and Thickness on the Bond Performance between Carbon Fiber Reinforced Polymer Laminate and Steel[J]. Thin-Walled Structures, 2021, 158: 107176.

[7] RAO H M, KANG Ji-dong, HUFF G, et al. Impact of Specimen Configuration on Fatigue Properties of Self-Piercing Riveted Aluminum to Carbon Fiber Reinforced Polymer Composite[J]. International Journal of Fatigue, 2018, 113: 11-22.

[8] NAGATSUKA K, XIAO B, WU L, et al. Dissimilar Materials Joining of Metal/Carbon Fibre Reinforced Plastic by Resistance Spot Welding[J]. Welding International, 2018, 32(7): 505-512.

[9] 蔣浩, 廖宇軒, 李光耀, 等. 碳纖維-鋁合金電磁鉚接工藝及性能研究[J]. 精密成形工程, 2021, 13(4): 37-44.

JIANG Hao, LIAO Yu-xuan, LI Guang-yao, et al. Study on Process and Mechanical Properties of CFRP/Al Electromagnetic Riveted Structures[J]. Journal of Netshape Forming Engineering, 2021, 13(4): 37-44.

[10] ALABTAH F G, MAHDI E. The Effect of Sizing Optimization on the Interface between High Strength Steel and Fiber Reinforced Composite[J]. Composite Structures, 2021, 266: 113740.

[11] TAYLOR T, PENNEY D, YANAGIMOTO J. One-Step Process for Press Hardened Steel-Carbon Fiber Reinforced Thermoset Polymer Hybrid Parts[J]. Steel Research International, 2020, 91(10): 2000085.

[12] GUO Yu-qin, ZHAI Chang-pan, LI Fu-zhu, et al. Formability, Defects and Strengthening Effect of Steel/CFRP Structures Fabricated by Using the Differential Temperature Forming Process[J]. Composite Structures, 2019, 216: 32-38.

[13] MENNECART T, HIEGEMANN L, KHALIFA N B. Analysis of the Forming Behaviour of In-Situ Drawn Sandwich Sheets[J]. Procedia Engineering, 2017, 207: 890-895.

[14] SINKE J. Forming Technology for Composite/Metal Hybrids[M]// Composites Forming Technologies. Amsterdam: Elsevier, 2007: 197-219.

[15] RUSSIG C, BAMBACH M, HIRT G, et al. Shot Peen Forming of Fiber Metal Laminates on the Example of GLARE?[J]. International Journal of Material Forming, 2014, 7(4): 425-438.

[16] CAREY C, CANTWELL W J, DEARDEN G, et al. Towards a Rapid, Non-Contact Shaping Method for Fibre Metal Laminates Using a Laser Source[J]. The International Journal of Advanced Manufacturing Technology, 2010, 47(5): 557-565.

[17] 韓奇鋼, 孫延標(biāo), 楊文珂, 等. 纖維/金屬層狀復(fù)合材料的研究及應(yīng)用進(jìn)展[J]. 精密成形工程, 2019, 11(1): 17-24.

HAN Qi-gang, SUN Yan-biao, YANG Wen-ke, et al. The Development in Research and Application of Fiber Metal Laminated Composites[J]. Journal of Netshape Forming Engineering, 2019, 11(1): 17-24.

[18] CHEN Yi-zhe, WANG Yi-chun, WANG Hui. Research Progress on Interlaminar Failure Behavior of Fiber Metal Laminates[J]. Advances in Polymer Technology, 2020, 2020: 1-20.

[19] VLOT A, GUNNINK J W. Fibre Metal Laminates: An Introduction[M]. Dordrecht: Kluwer Academic Publishers, 2001.

[20] ALDERLIESTEN R. On the Development of Hybrid Material Concepts for Aircraft Structures[J]. Recent Patents on Engineering, 2009, 3(1): 25-38.

[21] B?TTCHER A, OPDEMOM H. Series-Production Adhesive Process for Hybrid Components[J]. Lightweight Design Worldwide, 2019, 12(6): 48-53.

[22] NICO D M. BMW 7 Series' Carbon Core more important that you might think[EB/OL]. (2015-09-01) [2021-07-01].https://www.bmwblog.com/2015/09/01/bmw-7-series-carbon-core-more-important-that-you-might-think/.

[23] 陸冉. 面向輕量化的CFRP汽車B柱逆向設(shè)計(jì)與仿真分析[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2020: 56-66.

LU Ran. Reverse Design and Simulation Analysis for Lightweight CFRP Vehicle B-Column[D]. Yangzhou: Yangzhou University, 2020: 56-66.

[24] 熊長麗. 碳纖維復(fù)合材料汽車B柱加強(qiáng)板的輕量化設(shè)計(jì)研究[D]. 長春: 吉林大學(xué), 2018: 54-57.

XIONG Chang-li. Study on Lightweight Design of Automotive B-Pillar Reinforced Plate with Carbon Fiber Reinforced Plastic Material[D]. Changchun: Jilin University, 2018: 54-57.

[25] C?NCAP 管理規(guī)則[S]. 天津:中國汽車技術(shù)研究中心有限公司, 2018.

C-NCAP Management Regulation Official[S]. Tianjin: China Automotive Technology & Research Center Co., Ltd., 2018.

Bending Test Analysis of Steel-CFRP Hybrid Composite B-Pillar

MA Zhi-jun1, HUANG Zhao-yang1, TENG Hao2, LIN Jian-ping2

(1. Shanghai Superior Die Technology Co., Ltd., Shanghai 202106, China; 2. College of Mechanical Engineering, Tongji University, Shanghai 200092, China)

In order to improve the bending resistance of B-pillar, additional patch plates are usually welded to the B-pillar, which increases the weight of the B-pillar at the same time. The work aims to lay carbon fiber reinforced composite (CFRP) on the original B-pillar to obtain the steel-CFRP hybrid composite B-pillar, and eliminate the steel reinforced plate to realize the lightweight of B-pillar.The original B-pillar and B-pillar with patch plate were prepared by hot stamping. The steel-CFRP hybrid composite B-pillar was fabricated by vacuum bag pressure molding with the original B-pillar as the die. Based on the requirements of C-NCAP side impact test (2018 Edition), a three-point bending fixture for B-pillar was designed, and three-point bending test was carried out to original B-pillar, B-pillar with patch plate and steel-CFRP hybrid composite B-pillar. The original B-pillar had the weight of 4.1 kg, stiffness of 0.763 kN/mm measured by three-point bending test, maximum load of 21.59 kN and average force of 14.52 kN. The B-pillar with patch plate had the weight of 5.6 kg, stiffness of 1.095 kN/mm measured by three-point bending test, maximum load of 31.08 kN and average force of 18.38 kN. The steel-CFRP hybrid composite B-pillar had the total weight of 4.7 kg, stiffness of 1.071 kN/mm measured by three-point bending test, maximum load of 31.76 kN and average force of 19.58 kN. Under the premise of maintaining the bending mechanical properties such as stiffness, maximum load and average force, the weight of steel-CFRP hybrid B-pillar can be reduced by 0.9 kg compared with that of B-pillar with patch plate, and the energy absorption is better, which realizes the lightweight design of B-pillar.

carbon fiber reinforced plastic; vacuum bag pressure molding; steel-CFRP hybrid composite B-pillar; three-point bending; lightweight

10.3969/j.issn.1674-6457.2023.01.013

TD406

A

1674-6457(2023)01-0101-05

2022?01?17

2022-01-17

馬治軍(1988—),男,博士,主要研究方向?yàn)闊岢尚武摴に嚰捌漭p量化。

MA Zhi-jun (1988-), Male, Doctor, Research focus: hot forming steel process and its lightweight.

滕昊(1996—),男,博士研究生,主要研究方向?yàn)殇?CFRP異質(zhì)復(fù)合構(gòu)件力學(xué)性能及界面結(jié)合性能。

TENG Hao (1996-), Male, Doctoral candidate, Research focus: mechanical properties and interface bonding properties of steel-CFRP hybrid composite structures.

馬治軍, 黃朝陽, 滕昊, 等. 鋼?CFRP異質(zhì)復(fù)合B柱的彎曲實(shí)驗(yàn)分析[J]. 精密成形工程, 2023, 15(1): 101-105.

MA Zhi-jun, HUANG Zhao-yang, TENG Hao, et al. Bending Test Analysis of Steel-CFRP Hybrid Composite B-Pillar[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 101-105.

猜你喜歡
復(fù)合材料工藝實(shí)驗(yàn)
記一次有趣的實(shí)驗(yàn)
轉(zhuǎn)爐高效復(fù)合吹煉工藝的開發(fā)與應(yīng)用
山東冶金(2019年6期)2020-01-06 07:45:54
做個(gè)怪怪長實(shí)驗(yàn)
5-氯-1-茚酮合成工藝改進(jìn)
民機(jī)復(fù)合材料的適航鑒定
復(fù)合材料無損檢測探討
電子測試(2017年11期)2017-12-15 08:57:13
NO與NO2相互轉(zhuǎn)化實(shí)驗(yàn)的改進(jìn)
實(shí)踐十號(hào)上的19項(xiàng)實(shí)驗(yàn)
太空探索(2016年5期)2016-07-12 15:17:55
一段鋅氧壓浸出與焙燒浸出工藝的比較
TiO2/ACF復(fù)合材料的制備及表征
主站蜘蛛池模板: 国产男女免费视频| 国产乱人伦精品一区二区| 国产专区综合另类日韩一区| 国产精品19p| 香蕉久人久人青草青草| 国产成人福利在线| 偷拍久久网| 国产无码高清视频不卡| 欧美日韩导航| 精品五夜婷香蕉国产线看观看| 亚洲一区色| 国产成人综合网| 亚亚洲乱码一二三四区| 亚洲第一成网站| 美女内射视频WWW网站午夜| 麻豆精品视频在线原创| 久久久久青草线综合超碰| 亚洲国产精品无码AV| 高潮毛片免费观看| 在线观看精品国产入口| 国产精品无码久久久久AV| 欧美激情视频一区| 亚洲国产精品久久久久秋霞影院| 久久女人网| 免费啪啪网址| 久久这里只有精品国产99| 国产成人一区| 国产精品一区二区国产主播| 女人天堂av免费| 国产免费自拍视频| 国产一区亚洲一区| a毛片免费观看| 自拍偷拍欧美日韩| 久久精品人妻中文系列| 伊人国产无码高清视频| 99人妻碰碰碰久久久久禁片| 国产精品福利一区二区久久| 在线高清亚洲精品二区| 波多野结衣中文字幕久久| 高清国产va日韩亚洲免费午夜电影| 亚洲成人精品久久| 伊人久久大香线蕉影院| 99久久精品国产综合婷婷| 国产福利2021最新在线观看| 成年人免费国产视频| 5555国产在线观看| 99re精彩视频| 亚洲开心婷婷中文字幕| 欧美中文字幕一区| 亚洲av无码专区久久蜜芽| 久久一本精品久久久ー99| 天天综合网色中文字幕| 国产精品久线在线观看| 在线观看无码av免费不卡网站| 欧美日本视频在线观看| 91精品国产91久久久久久三级| 亚洲精品国产综合99久久夜夜嗨| 日韩AV手机在线观看蜜芽| 欧美精品另类| 视频二区欧美| 在线观看亚洲国产| 91热爆在线| 免费又爽又刺激高潮网址 | 国产精品私拍在线爆乳| 91麻豆精品国产高清在线| 成人综合网址| 国产人成在线观看| 欧美激情第一区| 亚洲啪啪网| 国产精品免费p区| 精品国产网站| 色成人亚洲| 国产又大又粗又猛又爽的视频| 国产精品成人免费视频99| 久久精品国产免费观看频道| 婷婷丁香在线观看| 婷婷六月激情综合一区| 国模沟沟一区二区三区| 欧美a在线| 久久亚洲国产视频| 国产人人乐人人爱| 亚洲精品视频免费看|