劉文政,平鳳姣,白雪冰,房玉林,董樹萌,楊繼紅,袁春龍,來疆文
葡萄枝條資源化利用研究現狀及進展
劉文政,平鳳姣,白雪冰,房玉林,董樹萌,楊繼紅※,袁春龍,來疆文
(1. 西北農林科技大學葡萄酒學院,楊凌 712100;2. 西北農林科技大學寧夏賀蘭山東麓葡萄酒試驗示范站,永寧 750104)
中國是葡萄生產大國,隨著葡萄產業的發展,每年修剪產生大量葡萄殘枝,因葡萄枝條資源化利用率低而引起資源浪費和環境污染等突出問題。因此,葡萄枝條作為可再生生物質資源,其開發利用既可以減輕環境污染,改善生態環境,創造新的經濟增長點,推進美麗鄉村建設,也符合“雙碳”發展目標,是實現資源、環境和經濟可持續發展的有效途徑。該研究圍繞葡萄枝條資源化開發利用總目標,從肥料化、燃料化、原料化3個方面對葡萄枝條資源化綜合利用現狀和研究進展做了系統分析,總結了現有發展存在的問題,并對未來前景進行了展望,以期為葡萄枝條高值高效資源化綜合利用和農業綠色可持續發展提供參考。
環境工程;生物質;資源化;葡萄枝條綜合利用;可持續發展
葡萄是世界上產量最大,種植面積最廣的水果之一,可鮮食、制干,也可用于釀酒。據聯合國糧農組織(Food and Agriculture Organization of the United Nations,FAO)統計數據,2019年全球葡萄種植面積為692.6萬hm2,總產量達7 700萬t。中國是葡萄生產大國,產量和種植面積分居世界第一、第二位[1]。在葡萄種植生產管理中,對枝條進行整形修剪是每年必需的一項作業流程,枝條修剪將產生大量葡萄殘枝[2-3]。然而,長期以來,受農業生產方式、葡萄枝條綜合利用技術水平、葡萄種植管理模式等多因素影響,葡萄枝條處理方式、渠道比較單一,資源稟賦得不到體現。中國每年有近千萬噸葡萄枝條隨意棄置腐爛或露天直接焚燒,造成嚴重的環境污染和安全隱患問題,且導致資源的極大浪費[4-5]。據Pizzi等[6]研究,露天直接焚燒1 t葡萄枝條將向大氣排放51 kg的CO和5.1 kg的總懸浮顆粒物,若采用此方式,中國每年將產生約15萬t的CO和1.5萬t的總懸浮顆粒物。
葡萄修剪殘枝產出量高、處理難度大、環境影響突出。2021年國家發展改革委等10部門聯合發布了《關于“十四五”大宗固體廢棄物綜合利用的指導意見》[7],提出要推進農業副產物資源化綜合利用,加快建立綠色低碳循環農業產業體系,為建設美麗中國提供重要支撐,也是實現“碳達峰、碳中和”目標的重要途徑之一。葡萄枝條作為農業副產物在生物質資源化利用方面的研究是當前農業資源循環利用的熱點和難點問題[8-9]。文獻調研發現,葡萄枝條可進行多途徑的高值化利用,如開發高性能燃料、生物炭、纖維素納米晶體、聚乙烯復合材料等,也可作為提取生物活性物質的原料,如多酚、低聚糖、乳酸、揮發性物質等,還可作為堆肥、造紙等原料。因此,合理有效地處理葡萄殘枝,積極開展葡萄枝條資源化利用的研究,使其變廢為寶,無論從農業可持續發展和美麗鄉村構建方面,還是當前“碳達峰、碳中和”國家戰略目標的實現方面,均將起到積極的促進作用。本文圍繞葡萄枝條資源化綜合利用的總目標,結合國內外研究現狀,系統論述葡萄枝條在肥料化、燃料化和原料化3個方面的利用現狀與研究進展,并對其發展前景進行展望。該項研究可為葡萄枝條高效高值資源化利用提供參考,同時對于其他木質纖維素生物質農業副產物的資源化高效利用也具有一定的科學指導意義。
近二十年來,中國葡萄種植面積和產量呈逐年增長的趨勢(圖1)。截至2020年,中國葡萄種植面積為76.8萬hm2,產量為1.48×103萬t。葡萄枝條修剪量的統計分析是其開展資源化合理利用的前提,有研究指出葡萄枝條修剪量與果實負載量之間存在一定的比例關系,Sánchez等[10]研究發現,當年葡萄果實負載量與修剪枝條產量之間的比例約為1∶0.8;也有研究利用每棵葡萄樹修剪所產生的殘枝質量進行評估,如Sun等[11]選取中國8個主要葡萄產區的28個調查點,每個地點隨機選取40~50棵葡萄樹,收集修剪殘枝、稱其質量并取均值,將每棵樹的平均質量(kg/棵)作為相應地點的修剪殘枝量,得到鮮食葡萄和釀酒葡萄的修剪殘枝量分別為2.74和1.53 kg/棵;此外,有研究報道采用單位面積統計方法對葡萄殘枝修剪量進行的評估,如Dávila等[12]、Peralbo-Molina等[13]在各自的文獻中指出葡萄殘枝修剪量分別為2~4和1.4~2 t/hm2。鑒于各國的葡萄種植方式、管理模式等有所差異,對于中國而言,主要以鮮食葡萄種植為主,架形通常采用棚架型或V字型,單位面積殘枝修剪量與國外有所不同。綜合來看,Sun等[11]所做的系統性研究較為符合中國葡萄實際生產情況,本文參考該研究成果,以鮮食葡萄修剪殘枝量2.74 kg/棵進行評估,結合國內葡萄種植密度為2 000~3 330棵/hm2,由此估算,中國每年修剪產生的葡萄殘枝約為750萬t。

圖1 (2001—2020)年中國葡萄種植面積及產量.(數據源自FAO)
表1所示為葡萄枝條的化學成分組成。由表1可知,葡萄枝條富含木質素、纖維素,且兩者質量占比均在280~500 mg/g范圍以內,半纖維素含量相對較少,最多一般不超過纖維素的10%,由此葡萄枝條表現出柔韌的物理特性。葡萄枝條中還含有較高含量的膳食纖維和果膠,其中總膳食纖維質量占比最高可達981.2 mg/g,且含有一定量的可溶性糖以及蛋白質,凸顯出葡萄枝條在食品衛生領域的開發潛力。此外,枝條的C∶N比約為60∶1,每千克葡萄枝條(干基)最高約含975 g的有機物質、8.0 g的N、2.6 g的P和8.6 g的K,且化學成分以酚類化合物、揮發性物質、礦物質和蛋白質等形式存在[11],是極具利用價值的可再生生物質資源,在醫療、化工、食品、生物醫藥、新材料等領域具有廣闊的應用前景。

表1 葡萄枝條化學成分組成[11,14-15]
根據國內外葡萄枝條生物質資源化綜合利用的文獻調研,相關研究內容主要集中在葡萄枝條的肥料化、原料化以及燃料化3個領域,如圖2所示。

圖2 葡萄枝條資源化綜合利用途徑
葡萄枝條因含有豐富的氮、磷、鉀及有機質等植物生長所必須的營養元素,兼具改善土壤結構、提升土壤肥力、促進作物生長等作用,適于作為肥料加以利用,其肥料化利用方式可分為:粉碎后直接還田、堆肥化處理等。
2.1.1 粉碎后直接還田
葡萄枝條粉碎后直接還田是指采用機械粉碎裝置將葡萄枝條粉碎后直接拋撒于田間地表或利用耕整機械將枝屑與土壤混勻掩埋等方式,并在微生物作用下對枝條進行腐解,實現葡萄枝條的肥料化利用。該方式在改良土壤的同時,可提升土壤固碳能力,即減少農業生產中二氧化碳、甲烷等的排放,增加土壤碳儲量,是實現農業“碳達峰、碳中和”的有效路徑之一。目前相關研究集中于機具優化和還田技術探究。
在粉碎機具結構優化方面,研究人員分別開發了集撿拾、輸送、粉碎、拋撒等功能為一體的機械粉碎裝置[16]和直接就地粉碎還田機[17]等機械處理設備,試制了物理樣機,具有良好的撿拾和粉碎性能,撿拾率大于97%,粉碎合格率在85%以上,為提升葡萄枝條粉碎質量提供了技術支撐和裝備支持。
在還田技術研究方面,為探究葡萄枝條直接粉碎還田的可行性,首先對葡萄枝條的有機質和養分進行了分析[11],如通過理化分析方法測定分析植物生長所必需的氮磷鉀含量等。進一步地,開展還田效應分析,對比葡萄枝條在圓盤耙和旋耕機兩種不同耕作方式下與土壤混埋還田對不同粒徑土壤團聚體形成、團聚體穩定性及碳含量的影響,第一年枝條還田試驗發現表層土壤容重由1.49 mg/m3降低至1.44 mg/m3,表明枝條還田有利于改善土壤結構及理化性狀,而兩種耕作方式對土壤碳保持產生負面影響[18-19];為尋求葡萄園在減少化肥施用而不影響葡萄產量及品質的有效路徑,一項為期兩年的試驗探究了葡萄枝條與豆科作物覆蓋聯合施用的潛在效益,分析發現該組合模式可確保土壤硝酸鹽對葡萄植株生理基本需求,是替代化肥施用的有效方式之一[20];也有研究利用盆栽試驗分析添加葡萄枝對葡萄樹體生長及土壤真菌群落結構等的影響[21],可知適量添加葡萄枝(土壤∶枝條=50∶1)利于木質素降解,可優化土壤真菌群落結構,促進樹體生長發育,并降低葡萄感染病害的風險。可見,枝條粉碎還田是一項有效、便捷的“就地應用”處理模式,為短期內處理大量葡萄殘枝提供方法參考。
2.1.2 堆肥化處理
堆肥化主要依靠自然界的微生物對有機質有控制地進行生物降解,生成可被植物吸收利用的有效態氮、磷、鉀化合物,同時可合成提升土壤肥力的重要活性物質腐殖質[22]。目前,葡萄枝條堆肥化的研究主要涉及堆肥化過程分析、堆肥對土壤和植物生長的影響。
葡萄枝條堆肥化過程分析方面,探明堆肥機理是研究的重點。王引權[23]結合常規生物化學分析方法和傅里葉變換紅外光譜分析技術,對不同初始C∶N比條件下葡萄枝條的堆肥化過程進行效應分析,結果表明,不同初始C∶N比葡萄枝條的有機物質轉化特征基本相似,即OH、CH3和CH2基化合物均隨著堆肥化進程的深入而減少,標志著脂肪族化合物減少,芳香族化合物增加以及有機物產生了明顯的礦化作用。為進一步高效地降解葡萄枝條以獲取高質量堆肥化效果,部分學者引入蚯蚓堆肥技術開展葡萄枝條堆肥化過程分析,在實驗室條件下利用蚯蚓對葡萄枝條等廢棄物進行降解處理并跟蹤觀察生物量和酶活性的演變情況[24-25],并采用定量聚合酶鏈式反應(PCR)和變性梯度凝膠電泳(DGGE)分析方法[26],監測了葡萄枝條等農業廢棄物在蚯蚓堆肥和成熟期的微生物群落、酶活性和蠕蟲生物量間的動態變化情況,發現蚯蚓堆肥期間細菌、真菌和-蛋白桿菌數量分別下降了77%、94%和71%,而-蛋白桿菌和放線桿菌數量增加了62%~79%,表明蚯蚓對葡萄枝條堆肥化進程具有顯著的促進作用。因此,研究微生物群落演變及生物化學變化是探明堆肥化過程機理的關鍵,為堆肥技術的提升提供支持。
堆肥對土壤以及植物生長的影響研究方面,主要是開展堆肥后效分析。Chan等[27]選取6個葡萄園開展為期3年的葡萄枝堆肥田間覆蓋試驗,以探究堆肥施用對葡萄生長的影響,發現將153 m3/hm2的葡萄枝堆肥覆蓋于葡萄園可增加果實產量1 t/hm2,降低果實含酸量,并提升果實鉀元素含量。Nicolás等[28]在半干旱土壤中進行9個月的培養試驗,表明土壤有機質含量受改良劑性能和穩定性的影響較大,其中葡萄枝條堆肥更有利于腐殖化;Gaiotti等[29]指出,施用葡萄枝條堆肥使土壤總氮、有機質的質量(干質量)分別增加0.5%~0.7%和3.1~5.9 g/kg,作物根系密度增長51根/m2,果實產量增加15%~24%,且果實品質有所提升。由此可知,葡萄枝條堆肥化處理可作為土壤調節劑,增加土壤有機質,減少化肥施用。
2.1.3 生物炭制備
葡萄枝條熱解制備生物炭技術逐漸成為肥料化利用研究的熱點,生物炭是有機物質在密閉低氧環境中,經加熱分解產生的固態物質[30],可改善酸化土質、提升土壤保水能力及增加作物產量。Manyà等[31]通過慢熱解試驗研究了熱解壓力、峰值溫度和粒徑對葡萄枝條衍生生物炭潛在穩定性的影響,結果表明粒徑是決定生物炭潛在穩定性的關鍵因素,固定碳產量、芳烴百分比和pH值隨粒徑增加而增大;Azuara等[32]采用CO2代替N2作為熱解環境,分析CO2對葡萄枝條熱解過程的影響,當峰值溫度為600 ℃、壓力由0.1增至1.1 MPa時,枝條在CO2熱解環境下生物炭的碳化效率和質量產率基本一致,可作為替代昂貴惰性氣體N2的有效方法,且增加了CO的產率;Libutti等[33]開展了一項旨在評估葡萄枝條生物炭等不同有機改良劑對瑞士甜菜生長情況的短期定量和定性試驗,而甜菜質量和產量均無顯著提升,可能原因在于試驗時間太短;Nunes等[34]分析了葡萄枝的化學特性以及材料在熱解過程中的行為機制,碳化后樣品含水量、揮發性成分、灰分含量、固定碳質量分數等的均值分別為1.34%、33.90%、7.28%和58.82%,是制備生物炭的理想原料,并可作為改良劑用于土壤修復和碳封存。
葡萄枝條碳、氫、氧等元素含量高,而氮、硫含量低,具有很高的能量儲存,是一種良好的燃料化原料資源。燃料化利用的研究主要集中于生物質能源潛力評估與燃料轉化方式,其中根據燃料轉化方式又可分為直燃技術、氣體燃料制備、液體燃料制備和固體燃料制備等。
2.2.1 生物質能源潛力評估
生物質能源化開發是緩解當前化石燃料短缺的有效途徑之一。對葡萄枝條生物質能源進行評估,探明生物質能潛力,是發展生物質能產業的基礎[35]。已有專家學者對葡萄枝條的生物質能源潛力開展了研究,如測定了葡萄枝的熱值[36],對其生物質能進行了定量分析[37],探究了品種、種植模式和灌溉等因素的影響,結果表明,標準架形的枝條修剪產量為2.15 t/hm2,比Y型架修枝量多25%,且灌溉可使葡萄生物量增長42%;同時構建了生物量評估回歸模型,經驗證模型誤差約為0.2 t/hm2,模型較為準確。此外,通過商業案例分析發現[38],將葡萄枝回收發電可降低電力消耗成本,降幅約為5.26%,且年CO2排放將減少約3.78 t,具有顯著的經濟效益和生態效益。也有研究選取不同地區、品種和年份的葡萄枝進行化學表征,通過試驗并結合地里信息系統(GIS)對其能量潛力(燃料、發電)做進一步評估,經燃燒試驗發現葡萄枝條具有較高的熱值為1.69×104kJ/kg和中等程度的灰分產出量及氣溶膠排放率,不存在因S或Cl等元素引起的腐蝕現象,且重金屬含量很低[39-41]。可見,葡萄枝整體表現出良好的燃料特性,在生物燃料方面具有較高的發展潛力,可作為規模供熱、供電等的理想替代燃料。
2.2.2 直燃技術
直燃技術是生物質能源轉化中較為傳統的技術,從能量轉換觀點來看,生物質直燃是通過燃燒將化學能轉化為熱能加以利用。目前,直燃技術在葡萄枝條利用方面的研究主要集中于熱開采及發電,該技術的核心在于燃燒設備。Vamvuka等[42]基于流化床試驗對葡萄枝條燃燒所產生的飛灰和底灰進行了表征,探究了結垢機制,結果表明灰分中CaO、K2O、P2O5和Ni含量較高,且氧化物含量隨燃燒溫度升高而增加,水浸可顯著降低易導致結垢的問題元素K、Na、P、Cl等的含量,因此低溫燃燒或水浸有利于減輕結垢問題;José等[43-44]在錐形噴流床燃燒器內開展燃燒試驗,通過流體動力學和熱學理論,分析了燃燒氣體的演變過程,并引入Pd催化燃燒技術,有效削弱了揮發性有機化合物的生成,CO和碳氫化合物濃度分別減少了25%和63%,CO2濃度增加了40%,總CO2/CO比例超過10%,對燃燒效率及性能的提升起到了積極影響;Fernández-Puratich等[45]對葡萄枝屑進行了能量值(熱值、灰分含量等)分析,并與常用的固體生物燃料(松木)在CO2總排放量(TCO2)上進行了對比,發現葡萄枝條具有較低的TCO2排放,并利用葡萄枝條代替商用燃料,每年可為葡萄園節省401美元/hm2的燃料開支,其燃燒灰燼代替化肥可節省約8美元/hm2的肥料開支,生態效益和經濟效益顯著??傊?,直燃技術是一項便捷、操作簡單的燃料化利用方式,燃燒設備與催化劑的引入是提升該技術的關鍵,同時應考慮燃燒后殘渣的回收再利用,以加強資源化利用率。
2.2.3 氣體燃料制備
氣體燃料的制備通常采用生物質氣化技術,根據氣化工藝不同,可進一步分為直接氣化和沼氣發酵兩類,其中直接氣化是將粉碎的固態生物質在缺氧條件下經干燥、熱解、燃燒和還原等工藝,生成由CO、H2、CH4和CnHm的混合可燃氣體。國內外學者在能量潛力[46]、生物質氣化發電及環境可持續性[47-48]、產氫和沼氣制備[49-50]等方面對葡萄枝氣化燃料的開發進行了探索,研究發現,葡萄枝條制備氣體燃料替代傳統燃料發電可節約29%~60%的能源,環境效益高達98%,且甲烷產量一般能達到30.2~342 L/kg,表明葡萄枝條適于氣體燃料的開發。為了提升沼氣制備效率,Pérez-Rodríguez等[51-52]對葡萄枝條進行酶水解、超聲波和分級擠壓等預處理,過程中木質素的降解加快,促進了厭氧微生物進入木質纖維素基質,甲烷產出量提升約40%,因此,采用合理地預處理方式對于葡萄枝條沼氣制備具有一定的促進作用。此外,有研究通過氣化試驗進行葡萄枝氣化過程熱化學和生化反應機理研究[53-54],評估并構建了氣化過程動力學模型[50],利于氣化技術在葡萄枝燃料化利用中的發展。
2.2.4 液體燃料制備
液體燃料的制備主要采用液化技術,即依靠微生物或酶的作用,對生物質能進行生物轉化,生產乙醇等液體燃料。該技術的生產過程、反應機理和反應動力學等與白酒釀造基本一致,在生產工藝、裝備和技術方面可借鑒現有經驗,是近些年發展較快的生物質能轉換技術,也是較為理想的資源化利用途徑之一。在葡萄枝條液化制備醇類燃料研究方面,主要集中于纖維素降解及乙醇轉化率提升等。首先,通過蒸汽爆破預處理并結合水解、發酵等試驗,對葡萄枝進行表征和化學成分分析,測定了灰分、提取物、木質素、葡聚糖、寡聚糖、乙?;馁|量占比分別為3.0%、12.2%、31.6%、28.4%、2.6%和3.9%,可見葡萄枝是生物乙醇生產的合適原材料,并初步明確了乙醇制備的條件[55-56];之后,基于生物煉制的技術理念,分析葡萄枝制備生物乙醇的過程,重點在于木質素結構的變化,提出了提升纖維素降解率和乙醇轉化率的處理方式和手段,如兩步自水解、微波輔助處理等[57]。此外,利用堿性預處理、酶水解等分析了丙酮-丁醇-乙醇發酵生產生物丁醇的可行性,將碳酸鈣替換為蛋殼粉作為緩沖劑,使生物丁醇產量保持在7 g/L以上,有效降低了生產成本[58]。然而,以葡萄枝條等纖維素生物質為原料制取醇類燃料在技術方面尚不成熟,仍處于實驗室階段,存在轉化率低、能耗大等問題,需開展深入研究。
2.2.5 固體燃料制備
固體燃料的制備通常采用固化技術,根據轉化方式不同可分為碳化和固化成型。其中,碳化是在缺氧或絕氧環境中經高溫熱裂解后生成的固態產物;固化成型是經生物質壓塊制備成體積小、密度高的顆粒燃料。
葡萄枝條碳化方面,顆粒燃料的碳化制備過程、燃燒特性等是研究重點,研究人員利用熱催化重整技術[59]、標準化等容爆炸試驗[60]分別對葡萄枝生物質燃料潛力、碳化燃料的爆炸特性進行了研究;為明確適宜葡萄枝碳化生產條件,分析了碳化溫度和時間對顆粒燃料特性的影響,得出300 ℃、2 h碳化條件下可獲取優質生物炭[61];也有研究利用經驗方法[62]和新的熱解方法[63]分別探究了葡萄枝條在發電方面替代煤炭的潛力,從葡萄枝中獲取具有與標準化亞煙煤理化特性相當的單一碳化產品,評估和比較了反應溫度、時間和氣氛等對生物質熱解的影響,表明葡萄枝具備代替煤作為生物燃料的潛力。
葡萄枝條固化成型方面,主要研究了生物質顆粒燃料物料及燃燒特性。將葡萄枝顆?;瞥深w粒燃料,開展鍋爐燃燒試驗,探究葡萄枝顆粒燃料的燃燒特性,結果表明顆粒燃料具有較高的能量儲存,同時與露天直接燃燒進行了對比,結果顯示鍋爐燃燒可顯著提升燃燒效率,減少TSP、CO、NOX的等污染物的排放[6,64-66];同時,有研究針對葡萄枝顆粒燃料的物料特性進行離散元關鍵參數標定,構建了DEM模型[67],為模擬分析顆粒燃料的運輸、儲存等處理過程提供模型參考;此外,對葡萄枝顆粒燃料的經濟效益和生態效益進行了系列研究,發現采用生物質轉化技術制備燃料顆粒效益顯著,是實現資源化利用的有效途徑[68-69]。近年來,為進一步提升顆粒燃料的燃燒性能,開發了熱化學處理技術,引入自然干燥和強制干燥進行顆粒還原技術,并進行生物量分級和致密化處理,經微熱電聯產的廢熱發電效率可達97%,為獲取清潔能源提供了替代方案[70]。
此外,為了促進葡萄枝條等農林業廢棄物的燃料化利用,研究人員研制開發了配套的粉碎收集等機械設備,如可就地生產顆粒燃料的移動式生物質粉碎成型聯合機[71]、移動式枝條粉碎機[72]、葡萄修剪殘枝收集與加工機械化系統[73]等,提升了葡萄枝等生物質獲取及利用效率。
葡萄枝條原料化利用可獲取高性能、高附加值產品,是極具潛力和發展前景的生物資源[74],已成為學界的研究熱點。目前,葡萄枝原料化利用方式主要包括高值化合物提取、造紙、板材加工、吸附劑制備等,其中高值化合物有多酚物質、低聚糖、還原糖、蛋白質等。
2.3.1 高值化合物提取
1)多酚類化合物
葡萄枝中含有較為豐富的多酚類物質[13,75],在多酚化合物利用方面的研究主要集中于酚類物質提取、作為釀酒添加劑等。
① 酚類物質提取
酚類物質是植物生長代謝過程的次生產物,是一類具有生物活性的天然化合物,從化學結構上來說,其囊括了從低分子質量的簡單酚類到具有高聚合結構的大分子聚合物[14],種類形式較多。現有關于葡萄枝提取酚類物質的研究在食品、醫藥、化妝品等領域展現出了廣闊的應用和發展潛力。提取是分離、純化和利用酚類物質的主要環節,根據提取手段和方式的不同,葡萄枝酚類物質提取形式有溶液提取、超聲波輔助提取、微波輔助提取、固液萃取、過熱液體提取、亞臨界水提取、高壓放電提取等。如表2所示為近年來國內外研究學者在葡萄枝酚類物質提取方面的相關研究成果,由表2可知,研究主要集中于葡萄枝酚類提取物功能特性、提取工藝參數優化以及不同提取方式對比分析等方面。

表2 葡萄枝酚類物質提取研究現狀
在葡萄枝酚類提取物功能特性研究方面,涉及抗氧化活性、保鮮防腐、抑菌能力、抗炎作用等,均表現出較好的效果。如有研究選取不同品種葡萄枝,利用脫脂甲醇[76]、亞臨界水提取[86]、稀釋法[95-96]、歐姆加熱[97]等方式獲取酚類物質,探究并發現提取的酚類物質具有較強的抗氧化活性和一定的抗菌、抗癌及保鮮防腐作用;為進一步驗證葡萄枝提取物在醫學領域中的應用潛力,研究人員采用動物、飲食和試驗設計方法評估了葡萄枝提取物對飼喂高脂血癥飼料的倉鼠早期動脈粥樣硬化的影響,通過飼喂葡萄枝多酚提取物,與對照組相比,倉鼠的主動脈脂肪含量和超氧陰離子(O2??)的產生分別降低了67%和40%,而在血漿中對氧磷酶濃度升高了29%,表明葡萄枝多酚提取物對心血管、代謝等疾病具有預防作用[98];也有研究利用液萃取技術獲取葡萄枝水提液,將其施用于葡萄葉片,發現提取液葉面施用可提高葡萄產量和品質,降低葡萄酒酒精度,進而改善葡萄酒品質[99-100]。
在最佳提取工藝參數確定方面,研究人員基于特定提取手段,利用試驗設計或響應面分析法進行葡萄枝酚類物質提取工藝參數優化,優化的工藝參數對于具體類別酚類物質提取率的提升效果顯著。高園等[14]利用單因素試驗和正交試驗涉及方法,基于超聲波輔助技術確定了葡萄枝提取酚類物質的最佳工藝條件,提取率最高可達97.38%;Jesus等[92]通過試驗設計對常規處理加熱和微波輔助加熱提取下的總酚類化合物及其抗氧化活性進行了優化,并獲取了兩種處理方式優化條件下多酚質量占比分別為2.17和2.37 g/100 g,且微波輔助處理能減少提取時間和能耗;Rajha等[88, 93]采用響應面方法明確了-環糊精提取葡萄枝多酚的最佳參數為:37.7 mg/mL-環糊精水溶液,66.6 ℃下提取48 h,結合酶水解前高壓放電預處理的方法,多酚、還原糖和可溶性木質素的提取率分別提升了72%、43%和104%,廢渣中木質素質量占比減少了10%。
在不同提取方式對比分析方面,通過選取不同的提取方式開展葡萄枝酚類物質提取試驗對比研究,以明確較優的提取手段或方法,為實際生產提供技術指導。如Rajha等[94]選用高壓脈沖電場提取、高壓放電提取、超聲波輔助提取等3種方法提取葡萄枝多酚和蛋白并進行對比分析,發現高壓放電輔助方式提取率最高,但增加了組織和細胞損傷;Delgado-Torre等[90]開展多元試驗設計,比較過熱液體提取、微波輔助提取、超聲波輔助提取等3種方法,明確了每種方法的最佳提取條件,其中過熱液體提取方式最佳條件為體積濃度80%的水乙醇溶液、pH值3、180 ℃,微波輔助提取方式的最佳條件為140 W、5 min,超聲波輔助提取方式則在280 W、50%占空比、7.5 min的超聲條件下萃取效率較高;Moreira等[91]基于兩種不同葡萄枝品種,探究了微波輔助提取、亞臨界水提取、常規(溶液)提取3種方法提取效果,結果表明微波輔助提取和亞臨界水提取2種方法提取物濃度最高。
由此可知,葡萄枝條多酚類化合物的提取極具實際生產價值,可開發高附加值產品,進一步加強該類物質功能性研究顯得尤為必要;同時,葡萄枝條酚類物質提取受多種因素的影響,如葡萄枝條品種、類型,提取工藝或方式等,針對不同類型葡萄枝條,優化相應的提取工藝參數或技術方案并配套相應的生產設備,是葡萄枝條酚類物質高效提取的關鍵。
② 釀酒添加劑
葡萄枝經處理可作為與橡木片類似功能的釀酒添加劑,有助于提升葡萄酒的感官質量、穩定性和抗氧化特性等。鑒于此,近年來部分專家學者對葡萄枝作為釀酒添加劑開展了研究。
Torre等[101]是較早開展此類研究的科研團隊,主要進行葡萄枝和橡木片提取物特征的比較分析,通過過熱液體提取方式對提取物進行提取分離,結合氣相色譜-質譜法對提取物成分進行定性和定量分析,比較其異同,證明了葡萄枝和橡木提取物之間具有相似性,可見葡萄枝在釀酒學意義上可用作釀酒添加劑。為深入探究葡萄枝作為釀酒添加劑的開發潛力,Sánchez-Gómez等[102-103]開展了不同烘烤處理下酚類化合物及其揮發性成分變化特征研究,發現酚類物質受烘烤時間和烘烤程度的影響較大,且烘烤程度越高,揮發性物質增量越大,表明烘烤葡萄枝可產生具有高附加值的揮發性物質;Cebrián-Tarancón等[104-105]研究了葡萄枝不同烘烤處理下的化學成分,結合熱重分析、HPLC-DAD-ESI-MS/MS聯用技術,發現葡萄枝揮發性成分與橡木片相似。
以上研究均未將葡萄枝作為添加劑應用于葡萄酒釀造,無法明確其作為添加劑對釀造過程以及酒的品質產生何種影響。為此,Cebrián-Tarancón等[4,106]開展了葡萄枝的釀酒分析,研究不同品種、粒徑、形態、烘烤、劑量、添加時機、浸泡時間等對模型酒的揮發性和酚類物質的影響,發現上述因素綜合表征促使釀酒過程中重要化合物的變化(生成或轉移),進而對葡萄酒品質產生積極影響;此外,該研究團隊對葡萄枝作為釀酒添加劑在殺菌劑殘留和潛在毒性方面進行了風險評估[107],首先利用HPLC-MS/MS方法測定修剪枝經儲藏、烘烤處理后殺菌劑含量,之后運用代謝還原法進行釀酒試驗以探究細胞毒性,結果表明葡萄枝作為釀酒添加劑不會對消費者構成風險。
2)其他高值化合物
葡萄枝條除用于酚類物質提取和應用外,還可通過一定的處理方式和手段從中獲取其他類化合物,如低聚糖、低聚木糖、還原糖、乳酸、生物表面活性劑、纖維素納米晶體等,在醫藥、化工、食品等領域具有廣闊的應用前景,相關研究如表3所示。對于低聚糖提取而言,首先探究了葡萄枝提取低聚糖的可行性,利用自水解處理方式[12],評估了自水解適于葡萄枝預處理,可作為生物質精煉第一階段,且構建了相關力學模型,闡釋水解機理,以獲取高濃度低聚糖[108-109],并在水解過程中提取到具有抗氧化、抗菌活性的酚類化合物[110]及還原糖[111],表明葡萄枝經自水解具有生產糖類及其他高附加值化合物的潛力;為深入探究處理方式對低聚糖提取效果的影響,分別開展了水熱處理[74]、微波加熱[112]和微波輔助[113]提取方法的研究,發現利用水熱處理獲取的提取液經濃縮-滲析實現精制,微波加熱可實現不同相中葡萄枝主要成分的單級分餾,這里除低聚糖外,還可獲取葡萄糖、木糖等成分[114],而微波輔助自水解處理相較于其他方式更省時環保且具備環境可持續性,可作為低聚糖等提取手段的未來發展方向。此外,葡萄枝經水解、微生物發酵可獲取乳酸,以作為食品添加劑用于食品工業生產,其中微生物發酵主要利用戊糖乳桿菌,處理過程中還可獲取木糖醇、生物表面活性劑、苯乳酸和糠醛等[115],相關研究則集中于評估葡萄枝作為有效碳源的可行性[115-116]、優化生產工藝[117]等方面;其中,糠醛也可經水、有機溶劑、H2SO4結合微波反應器分餾獲取[118],并有研究從環境角度評估了生產糠醛和乳酸的環境效益,將其與傳統工藝進行比較,以得到較優的開發利用方案[119]。木質素、纖維素及半纖維素等一般通過水熱預處理與有機溶劑處理來獲取,且在該處理方式下還可得到葡萄糖和酚類物質[120-121];同時,索氏提取結合堿處理方法可獲取高純度纖維素[122-123]。葡萄枝經酸水解可制備纖維素納米晶體,并將其應用于納米復合材料中,可顯著提升復合材料的力學性能[2],同時葡萄枝相關提取物結合制備的納米晶體可開發應用于納米纖維素薄膜[122],為生物基食品包裝材料探索出生物聚合物材料新的替代來源??傊咸阎l提取化合物具有復雜多樣的特點,根據不同類型化合物的提取,優化工藝參數、選取合適的技術手段始終是首要考慮的問題,同時探明提取過程中深層次的反應機理也是研究的重要課題。

表3 葡萄枝其他高值化合物提取研究現狀
2.3.2 生物活性炭制備
生物質活性炭可利用農業副產物作為原料制備,在污染處理、化學、制藥、食品等領域應用前景廣闊。目前,將葡萄修剪殘枝進行生物活性炭開發已成為學界研究熱點之一。
較早研究著眼于評估葡萄枝制備活性炭的可行性方面,通常采用磷酸化學活化[126]、二氧化碳活化[127]等方法,結合理化分析和結構表征,探明葡萄枝是制備活性炭的適宜原料。接著,人們將研究重點轉向工藝手段對活性炭性能的影響上,對比分析了物理活化法、化學活化法所制活性炭的結構特征,發現化學活化較物理活化更能有效地制備多孔性較好的活性炭[128-129]。同時,對所制活性炭的吸附性能進行了探究,如氯化鋅活化所制活性炭對利福平的最大吸附量可達476.2 mg/g[130],且開展了模擬體液中的鎳(II)污染物吸附研究,結果表明其可用于緊急干預鎳中毒及含鎳廢水的處理[131];利用氮氣氛圍下熱解制備的活性炭具有弱堿性和高礦物質含量,可有效吸附水中的鉛和鎘[132];還對CO2物理活化和KOH化學活化所制活性炭的CO2吸附能力進行了對比,發現經CO2物理活化在800 ℃、浸泡時間1 h所制備的活性炭具有較高的CO2吸附率,在工業領域具有廣闊的應用前景[133]。
近年來,活性炭因具有良好孔隙結構及較高碳含量,在燃料電池領域開發方面引起了人們的注意。首先,對物理活化、化學活化所得的活性炭進行了直流電導率與溫度間的影響研究,發現活性炭的體積電導率受多種因素的影響,其中質地和表面化學最為顯著;同時,電導率測量結果表明,活性炭表現出典型的半導體材料特性,其導電過程與能隙有關[134]。有研究對葡萄枝所制活性炭進行了氧還原反應和硼氫化物氧化反應,并與商用活性炭Vulcan XC72對比,可知經化學活化制備的生物基碳負載Pd NPs電催化劑具有更好的催化活性,為推動燃料電池商業化應用提供技術支持[135];進一步地,有研究利用葡萄枝生產的活性基碳用作鈀納米顆粒(Pd NP)的載體,并評估其用于析氫反應的潛在陰極堿性介質,該新型Pd電催化劑在低過電位下的高電流密度方面表現出良好的析氫反應活性[136]。此外,以葡萄枝為模型生物質,研究并生產用于能源儲存和轉換裝置的生物基碳材料,發現熱解與水熱碳化相結合可顯著提升芳香族碳結構、碳含量、電導率和孔隙率等,以獲取適于電化學雙層電容器制備的材料[137]。
葡萄枝條是一種可再生能源,如何“變廢為寶”走資源化綜合利用發展之路,是實現資源、環境和經濟可持續發展的重要途徑,利于“雙碳”目標的有效推進。葡萄枝資源化綜合利用的實施需緊跟實際發展訴求,走有效化、精簡化和高值化的發展路徑。因此,在實施過程中要考慮以下因素:一是低成本、規模化收集葡萄枝條;二是合理高效穩定的轉化和提質技術;三是終端產品能夠較好地符合社會發展需求。然而,鑒于以上發展訴求,目前葡萄枝的資源化綜合利用仍任重道遠。其中,低成本規?;占敲媾R的首要問題,主要原因在于葡萄種植管理方面的機械化水平低,且栽培模式不統一,導致葡萄枝從修剪、收集至處理等各環節的勞動力輸出大、生產成本高、效率低,制約著原料節本高效規?;占吞幚怼5诙c高效穩定轉化提質技術一直是研究的熱點核心問題,根據不同的利用方式提出了系列技術方案,但無論是傳統的或是新近提出的應用技術尚不成熟,均需在實際應用中進一步檢驗。第三點則是所制備的產品應具有實際應有價值和需求,緊跟社會發展,且結合各地實際發展特點進行合理地開發利用。鑒于此,應在以下方面做深入研究:
1)規范栽培模式,提升葡萄種植管理機械化水平。葡萄修剪殘枝高效、規?;占吞幚硎窍到y工程,農機與農藝需結合,即規范葡萄園栽培模式,構建適于機械化作業的行距、架形和株高等,同時應結合葡萄修剪殘枝的物料特征和結構特點,研制開發集撿拾、輸送、粉碎、收集等多功能為一體的機械設備,節本增效。
2)高值高效綜合開發利用,探索綠色發展之路。以高值化、綜合化利用的綠色發展理念為指引,開發高效穩定的轉化提質技術和裝備。
①肥料化利用方面。開發機械化粉碎還田設備是葡萄枝直接粉碎還田的關鍵,葡萄枝富含纖維素、木質素,還田后腐爛降解難度較大,應著力研發粉碎粒度小、效率高、功耗低的粉碎設備;關于堆肥化,則需加強堆肥機理研究,探究堆肥過程腐殖質形成規律及其關鍵影響因素,并利用外源添加劑進行堆肥調控,建立穩定高效的酶促生物化學反應系統,提升堆肥效率和質量;生物炭是堆肥化最具發展潛力的利用方式,應深入開展生物炭制備技術和修飾改性方面的研究,優化完善葡萄枝制備生物炭的技術手段,同時加強生物炭農田應用的固碳減排機制研究,實現葡萄枝在生物炭方面的高效開發利用。
②燃料化利用方面。氣體燃料制備應深入研究厭氧消化過程生物強化機制,提升厭氧發酵效率,并探究沼氣的高效脫硫脫碳技術,實現沼氣向生物天然氣的轉化,同時應開展發酵后沼渣沼液有機肥施用關鍵技術研究,實現沼渣沼液養分的再利用;液體燃料制備則可借鑒石油化工行業的成功經驗,引入化學催化法,篩選適于葡萄枝高效轉化乙醇的催化劑,且要建立低成本的預處理工藝,縮短工藝流程,提升生產效率,此外開發過程廢棄物的合理轉化技術,達到節本增效的目的;固體燃料制備研究重點則應放在烘焙成型過程的傳熱與粘結機理上,同時開發新型高效配套爐具與成型設備,實現成型燃料制備的高品質和低能耗。
③原料化利用方面。親脂性提取物、可降解塑料、纖維素納米晶體、燃料電池電極材料、生物活性炭等高值化生物質產品的開發是葡萄枝條利用的發展趨勢,相關原料的提取是開發高值生物質產品的基礎。首先要優化提取過程相關參數及工藝流程,分析提取、轉化、制備目標化合物的過程機理,構建高效轉換體系,耦合多步反應工序,實現提質增效;同時,開發新型高效的配套設備,制定和規范綜合開發利用技術方案和標準,推進高值化合物生產系統的可靠性、穩定性。
葡萄枝條資源化利用可改善生態環境,推進美麗鄉村建設,符合“雙碳”發展目標,是實現資源、環境和經濟可持續發展的重要途徑。本文從肥料化、燃料化、原料化3個方面對葡萄枝條資源化綜合利用現狀和研究進展做了系統總結和梳理。在肥料化利用方面,粉碎后直接還田是短期內高效處理大量修剪殘枝的有效方式,機械化處理設備是關鍵;堆肥化處理受多種因素的影響,如溫度、水分、粒徑、養分、微生物情況等,引入蚯蚓堆肥技術,可提升堆肥效果,同時堆肥可作為土壤調節劑,改善土壤條件,促進作物生長;生物炭制備過程中,粒徑是其穩定性的關鍵因素,且CO2可代替N2作為熱解環境,生物炭農田應用,可用于土壤改良和碳封存。在燃料化利用方面,對葡萄枝的生物質能源潛力評估表明,葡萄枝燃料特性良好,是理想的替代燃料;直燃技術操作簡單,燃燒設備和催化劑是提升燃燒效果的關鍵;氣體與液體燃料的制備,工藝手段對燃料的獲取至關重要,還要進行相應的預處理;固體燃料的制備,其成型過程和燃燒特性是研究的重點,并開展效益分析,取得了較好的結果。在原料化利用方面,酚類物質提取得到了廣泛的研究,并對多種提取方式進行了分析,但目前針對不同類型葡萄枝條并未形成系統有效的提取方案,仍需開展深入研究;對于其他類高值化合物而言,多種類型化合物的提取為開發高值化生物質產品提供了原料支撐;生物活性炭則是葡萄枝原料化開發的熱點之一,在燃料電池等領域應用前景廣闊。
總之,葡萄枝條的開發利用形式多樣,應基于中國農業發展特點及實際需求,優化產業布局,規范栽培模式,提升葡萄種植管理機械化水平,加大葡萄枝條粉碎還田、堆肥、生物炭制備、生物發電、燃料以及生物基材料/化學品等的開發,形成快速高效處理和高值化開發相結合的多元化利用模式。
[1] International Vine and Wine Organization. OIV Database[EB/OL]. (2020-11-20)[2022-04-01]. https: //www. oiv. int/en/.
[2] Achaby M E, Miri N E, Hannache H, et al. Production of cellulose nanocrystals from vine shoots and their use for the development of nanocomposite materials[J]. International Journal of Biological Macromolecules, 2018, 117: 592-600.
[3] Pachón E R, Mandade P, Gnansounou E. Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept[J]. Bioresource Technology, 2020, 303: 122946.
[4] Cebrián-Tarancón C, Sánchez-Gómez R, Cabrita M J, et al. Assessment of vine-shoots in a model wines as enological additives[J]. Food Chemistry, 2019, 288: 86-95.
[5] Sánchez-Gómez R, Alonso G L, Salinas M R, et al. Reuse of vine-shoots wastes for agricultural purposes[J]. Handbook of Grape Processing By-Products, 2017: 79-104.
[6] Pizzi A, Foppa Pedretti E, Duca D, et al. Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects[J]. Renewable Energy, 2018, 121: 513-520.
[7] 國家發展改革委等. 關于“十四五”大宗固體廢棄物綜合利用的指導意見[發改環資〔2021〕381號][EB/OL]. [2022-04-01]. https: //www. ndrc. gov. cn/xxgk/zcfb/ tz/202103/t20210324_1270286. html?code=&state=123.
[8] 張德俐,王芳,易維明,等. 木質纖維素生物質厭氧發酵沼渣熱化學轉化利用研究進展[J]. 農業工程學報,2021,37(21):225-236.
Zhang Deli, Wang Fang, Yi Weiming, et al. Thermochemical conversion and utilization of digestates from anaerobic digestion of lignocellulosic biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 225-236. (in Chinese with English abstract)
[9] 王芳,劉曉風,陳倫剛,等. 生物質資源能源化與高值利用研究現狀及發展前景[J]. 農業工程學報,2021,37(18):219-231.
Wang Fang, Liu Xiaofeng, Chen Lungang, et al. Research status and development prospect of energy and high value utilization of biomass resources[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(18): 219-231. (in Chinese with English abstract)
[10] Sánchez A, Ysunza F, Beltrán-García M J, et al. Biodegradation of viticulture wastes by Pleurotus: a source of microbial and human food and its potential use in animal feeding[J]. Journal of Agricultural & Food Chemistry, 2002, 50(9): 2537-2542.
[11] Sun X Y, Wei X F, Zhang J X, et al. Biomass estimation and physicochemical characterization of winter vine prunings in the Chinese and global grape and wine industries[J]. Waste Management, 2020, 104: 119-129.
[12] Dávila I, Gordobil O, Labidi J, et al. Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing[J]. Bioresource Technology, 2016, 211: 636-644.
[13] Peralbo-Molina á, Luque De Castro M D. Potential of residues from the mediterranean agriculture and agrifood industry[J]. Trends in Food Science & Technology, 2013, 32(1): 16-24.
[14] 高園,房玉林,張昂,等. 葡萄枝條中多酚類物質的超聲波輔助提取[J]. 西北農林科技大學學報(自然科學版),2009,37(9):77-82.
Gao Yuan, Fang Yulin, Zhang Ang, et al. Study on the extraction of polyphenol from grapevine branch by ultrasonic adjunct extraction method[J]. Journal of Northwest A&F University (Nat. Sci. Ed. ), 2009, 37(9): 77-82. (in Chinese with English abstract)
[15] 薛雯,房玉林,孫艷,等. 41種葡萄枝條廢棄物中膳食纖維及營養成分研究[J]. 西北林學院學報,2012,27(5):139-145.
Xue Wen, Fang Yulin, Sun Yan, et al. Dietrary fiber and nutrients from the grape vines of 41 cultivars[J]. Journal of Northwest Forestry University, 2012, 27(5): 139-145. (in Chinese with English abstract)
[16] Adamchuk V, Bulgakov V, Skorikov N, et al. Developing a new design of wood chopper for grape vine and fruit tree pruning and the results of field testing[J]. Agronomy Research, 2016, 14(5): 1519-1529.
[17] 張福印. 葡萄殘枝粉碎還田機的設計與試驗研究[D]. 北京:中國農業大學,2019.
Zhang Fuyin. Design and Experimental Research on Grape Residuum Branches Chopping and Returning Machine[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)
[18] Y?lmaza E, ?anakc?b M, Topakc?b M, et al. Effect of vineyard pruning residue application on soil aggregate formation, aggregate stability and carbon content in different aggregate sizes[J]. Catena, 2019, 183: 1-9.
[19] Yilmaz E, Canakci M, Topakci M, et al. The effects of application of vine pruning residue on soil properties and productivity under mediterranean climate conditions in Turkey[J]. Fresenius Environmental Bulletin, 2017, 26(8): 5447-5457.
[20] Pisciotta A, Lorenzo R D, Novara A, et al. Cover crop and pruning residue management to reduce nitrogen mineral fertilization in mediterranean vineyards[J]. Agronomy (Basel), 2021, 11(1): 164.
[21] 蘇宏,張鶴,黃建全,等. 添加葡萄枝條對土壤真菌群落結構及葡萄樹體生長的影響[J]. 吉林農業大學學報. DOI:10.13327/j.jjlau.2020.6047.
Su Hong, Zhang He, Huang Jianquan, et al. Influence of grape prunings addition on soil fungal community structure and grape tree growth[J]. Journal of Jilin Agricultural University. DOI:10.13327/j.jjlau.2020.6047. (in Chinese with English abstract)
[22] Pergola M, Persiani A, Palese A M, et al. Composting: The way for a sustainable agriculture[J]. Applied Soil Ecology, 2018, 123: 744-750.
[23] 王引權. 葡萄冬剪枝條高溫堆制化機理研究[D]. 蘭州: 甘肅農業大學,2005.
Wang Yinquan. Studies on Composting Mechanism for Vineyard Pruning Residues[D]. Lanzhou: Gansu Agricultural University, 2005. (in Chinese with English abstract)
[24] Nogales R, Cifuentes C, Benitez E. Vermicomposting of winery wastes: a laboratory study[J]. Journal of Environmental Science and Health Part B, 2005, 40(4): 659-673.
[25] Nogales R, Fernández-Gomez M J, Delgado-Moreno L, et al. Eco-friendly vermitechnological winery waste management: A pilot-scale study[J]. SN Applied Sciences, 2020, 2(4): 1-13.
[26] Castillo J M, Romero E, Nogales R. Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes[J]. Bioresource Technology, 2013, 146(10): 345-354.
[27] Chan K Y, Fahey D J, Newell M, et al. Using composted mulch in vineyards-effects on grape yield and quality[J]. International Journal of Fruit Science, 2010, 10(4): 441-453.
[28] Nicolás C, Masciandaro G, Hernández T, et al. Chemical-structural changes of organic matter in a semi-arid soil after organic amendment[J]. Pedosphere, 2012, 22(3): 283-293.
[29] Gaiotti F, Marcuzzo P, Belfiore N, et al. Influence of compost addition on soil properties, root growth and vine performances of Vitis vinifera cv Cabernet sauvignon[J]. Scientia Horticulturae, 2017, 225: 88-95.
[30] Initiative International Biochar. About biochar[EB/OL]. (2021-11-09)[2022-04-01]. https: //biochar-international. org/.
[31] Manyà J J, Ortigosa M A, Laguarta S, et al. Experimental study on the effect of pyrolysis pressure, peak temperature, and particle size on the potential stability of vine shoots-derived biochar[J]. Fuel, 2014, 133: 163-172.
[32] Azuara M, Sáiz E, Manso J A, et al. Study on the effects of using a carbon dioxide atmosphere on the properties of vine shoots-derived biochar[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 719-725.
[33] Libutti A, Trotta V, Rivelli A R. Biochar, vermicompost, and compost as soil organic amendments: Influence on growth parameters, nitrate and chlorophyll content of Swiss chard (L. var.)[J]. Agronomy (Basel), 2020, 10(3): 346.
[34] Nunes L J R, Rodrigues A M, Matias J C O, et al. Production of biochar from vine pruning: Waste recovery in the wine industry[J]. Agriculture (Basel), 2021, 11(6): 489.
[35] 張蓓蓓. 我國生物質原料資源及能源潛力評估[D]. 北京:中國農業大學,2018.
Zhang Beibei. Assessment of Raw Material Supply Capability and Energy Potential of Biomass Resources in China[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)
[36] Jiménez L, González F. Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels[J]. Fuel, 1991, 70(8): 947-950.
[37] Velázquez-Martí B, Fernández-González E, López-Cortés I, et al. Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area[J]. Biomass and Bioenergy, 2011, 35(8): 3453-3464.
[38] Corona G, Nicoletti G. Renewable energy from the production residues of vineyards and wine: Evaluation of a business case[J]. New Medit, 2010, 9(4): 41-47.
[39] Mendfvil M A, Munoz P, Morales M P, et al. Chemical characterization of pruned vine shoots from La Rioja (Spain) for obtaining solid bio-fuels[J]. Journal of Renewable & Sustainable Energy, 2013, 5(3): 033113.
[40] Mendívil M A, Mu?oz P, Morales M P, et al. Energy potential of vine shoots in La Rioja (Spain) and their dependence on several viticultural factors[J]. Ciencia e Investigación Agraria, 2015, 42(3): 443-451.
[41] Manzone M, Paravidino E, Bonifacino G, et al. Biomass availability and quality produced by vineyard management during a period of 15 years[J]. Renewable Energy, 2016, 99: 465-471.
[42] Vamvuka D, Trikouvertis M, Pentari D, et al. Characterization and evaluation of fly and bottom ashes from combustion of residues from vineyards and processing industry[J]. Journal of the Energy Institute, 2017, 90(4): 574-587.
[43] José M J S, Alvarez S, López R. Conical spouted bed combustor for combustion of vine shoots wastes[J]. International Journal of Energy and Environmental Engineering, 2018, 12(3): 275-278.
[44] José San José M, Alvarez S, García I, et al. A novel conical combustor for thermal exploitation of vineyard pruning wastes[J]. Fuel, 2013, 110: 178-184.
[45] Fernández-Puratich H, Hernández D, Tenreiro C. Analysis of energetic performance of vine biomass residues as an alternative fuel for Chilean wine industry[J]. Renewable Energy, 2015, 83: 1260-1267.
[46] Ga?án J, Abdulla A K, Cuerda E M C, et al. Energetic exploitation of vine shoot by gasification processes[J]. Fuel Processing Technology, 2006, 87(10): 891-897.
[47] Unal H, Alibas K. Agricultural residues as biomass energy[J]. Energy Sources, Part B: Economics, Planning, and Policy, 2007, 2(2): 123-140.
[48] Rajabi Hamedani S, Del Zotto L, Bocci E, et al. Eco-efficiency assessment of bioelectricity production from Iranian vineyard biomass gasification[J]. Biomass and Bioenergy, 2019, 127: 1-13.
[49] Nitsos C, Matsakas L, Triantafyllidis K, et al. Evaluation of mediterranean agricultural residues as a potential feedstock for the production of biogas via anaerobic fermentation[J]. BioMed Research International, 2015, 2015: 171635.
[50] Montalvo S, Martinez J, Castillo A, et al. Sustainable energy for a winery through biogas production and its utilization: A Chilean case study[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100640.
[51] Pérez-Rodríguez N, García-Bernet D, Domínguez J M. Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production[J]. Bioresource Technology, 2016, 221: 130-138.
[52] Pérez-Rodríguez N, García-Bernet D, Domínguez J M. Faster methane production after sequential extrusion and enzymatic hydrolysis of vine trimming shoots[J]. Environmental Chemistry Letters, 2018, 16(1): 295-299.
[53] Gomez S J, Causapé M C C, Martinez A A. Tracking variables in crude and treated vine shoots digestion process[J]. Environmental Technology, 1991, 12(4): 349-354.
[54] Biagini E, Barontini F, Tognotti L. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks[J]. Bioresource Technology, 2015, 194: 36-42.
[55] Buratti C, Barbanera M, Lascaro E. Ethanol production from vineyard pruning residues with steam explosion pretreatment[J]. Environmental Progress & Sustainable Energy, 2014, 34(3): 802-809.
[56] Senila L, Neag E, Torok I, et al. Vine shoots waste-new resources for bioethanol production[J]. Romanian Biotechnological Letters, 2020, 25(1): 1253-1259.
[57] Davila I, Gullon P, Labidi J, et al. Assessment of the influence of the temperature in the microwave-assisted alkaline delignification of vine shoots[J]. Chemical Engineering Transactions, 2018, 70: 1687-1692.
[58] Garita-Cambronero J, Paniagua-García A I, Hijosa-Valserohij M, et al. Biobutanol production from pruned vine shoots[J]. Renewable Energy, 2021, 177: 124-133.
[59] J?ger N, Conti R, Neumann J, et al. Thermo-catalytic reforming of woody biomass[J]. Energy Fuels, 2016, 30(10): 7923-7929.
[60] Szamosi Z, Tóth P, Koós T, et al. Explosion characteristics of torrefied wheat straw, rape straw, and vine shoots fuels[J]. Energy Fuels, 2017, 31(11): 12192-12199.
[61] 秦蓓,徐萬里,姚紅宇,等. 炭化溫度和時間對葡萄枝條炭和棉桿炭特性的影響[J]. 西北農業學報,2017,26(11):1672-1680.
Qin Bei, Xu Wanli, Yao Hongyu, et al. Effects of carbonization temperature and time on characteristics of Vitis vinirera and cotton stalk-chars[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(11): 1672-1680. (in Chinese with English abstract)
[62] Nunes L J R. Torrefied biomass as an alternative in coal-fueled power plants: A case study on grindability of agroforestry waste forms[J]. Clean Technologies, 2020, 2(3): 270-289.
[63] Torres R, Valdez B, Bele?o M T, et al. Char production with high-energy value and standardized properties from two types of biomass[J]. Biomass Conversion and Biorefinery, 2021. DOI:10.1007/s13399-021-01498-7.
[64] Mediavilla I, Fernández M J, Esteban L S. Optimization of pelletisation and combustion in a boiler of 17. 5 kWthfor vine shoots and industrial cork residue[J]. Fuel Processing Technology, 2009, 90(4): 621-628.
[65] Picchi G, Silvestri S, Cristoforetti A. Vineyard residues as a fuel for domestic boilers in Trento Province (Italy): Comparison to wood chips and means of polluting emissions control[J]. Fuel, 2013, 113: 43-49.
[66] Nunes L J R, Loureiro L M E F, Sá L C R, et al. Energy recovery of agricultural residues: Incorporation of vine pruning in the iroduction of biomass pellets with ENplus? certification[J]. Recycling, 2021, 6(2): 28.
[67] Ramírez-Gómez á, Gallego E, Fuentes J M, et al. Values for particle-scale properties of biomass briquettes made from agroforestry residues[J]. Particuology, 2014, 12: 100-106.
[68] Rajabi Hamedani S, Colantoni A, Gallucci F, et al. Comparative energy and environmental analysis of agro-pellet production from orchard woody biomass[J]. Biomass and Bioenergy, 2019, 129: 105334.
[69] Ilari A, Toscano G, Foppa Pedretti E, et al. Environmental sustainability of geating systems based on pellets produced in mobile and stationary plants from vineyard pruning residues[J]. Resources, 2020, 9(8): 94.
[70] Torreiro Y, Pérez L, Pi?eiro G, et al. The role of energy valuation of agroforestry biomass on the circular economy[J]. Energies, 2020, 13(10): 2516.
[71] 譚敏堯. 移動式生物質粉碎成型聯合機的設計與研究[D]. 哈爾濱:東北林業大學,2013.
Tan Minyao. Design and Research of Biomass Mobile Crushing Forming Joint Machine[D]. Harbin: Northeast Forest Universtiy, 2013. (in Chinese with English abstract)
[72] 趙洪元. 自走式削片機的設計與研究[D]. 哈爾濱:東北林業大學,2017.
Zhao Hongyuan. Design and Research of Self Propelled Chipper[D]. Harbin: Northeast Forest Universtiy, 2017. (in Chinese with English abstract)
[73] Bisaglia C, Romano E. Utilization of vineyard prunings: A new mechanization system from residues harvest to CHIPS production[J]. Biomass and Bioenergy, 2018, 115: 136-142.
[74] Dávila I, Gullón B, Alonso J L, et al. Vine shoots as new source for the manufacture of prebiotic oligosaccharides[J]. Carbohydrate Polymers, 2019, 207: 34-43.
[75] 郭志君,房玉林,馬立娜. 中國野生刺葡萄冬剪枝條多酚類物質含量及其抗氧化活性研究[J]. 食品科學,2012,33(19):159-163.
Guo Zhijun, Fang Yulin, Ma Lina. Polyphenol content and antioxidant activity of pruned branches of wild spine grape trees (Vitis davidii Foex) in winter[J]. Food Science, 2012, 33(19): 159-163. (in Chinese with English abstract)
[76] Ju Y L, Zhang A, Fang Y L, et al. Phenolic compounds and antioxidant activities of grape canes extracts from vineyards[J]. Spanish Journal of Agricultural Research, 2016, 14(3): e0805.
[77] Salvador ? C, Sim?es M M Q, Silva A M S, et al. Vine waste valorisation: integrated approach for the prospection of bioactive lipophilic phytochemicals[J]. International Journal of Molecular Sciences, 2019, 20(17): 4239.
[78] 孫玉霞,史紅梅,蔣錫龍,等. 響應面法優化葡萄枝條中多酚化合物提取條件的研究[J]. 中國農學通報,2011,27(7):466-471.
Sun Yuxia, Shi Hongmei, Jiang Xilong, et al. Study on the optimum extracting condition of polyphenols in grapevine cane by response surface methodology[J]. Chinese Agricultural Science Bulletin, 2011, 27(7): 466-471. (in Chinese with English abstract)
[79] 張靜,高園,萬力,等. 大孔吸附樹脂分離純化葡萄枝條中多酚類物質[J]. 西北農業學報,2013,22(3):173-177.
Zhang Jing, Gao Yuan, Wan Li, et al. Macroporous resin adsorption for purification of grape polyphenols from grapevine cane[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(3): 173-177. (in Chinese with English abstract)
[80] Porto C D, Natolino A, Scalet M. Ultrasound-assisted extraction of proanthocyanidins from vine shoots of Vitis vinifera[J]. Journal of Wine Research, 2018, 29(4): 290-301.
[81] R?tsep R, Karp K, Maante-Kuljus M, et al. Recovery of polyphenols from vineyard pruning wastes-shoots and cane of hybrid grapevine (sp. ) cultivars[J]. Antioxidants, 2021, 10(7): 1059.
[82] Cebrián C, Sánchez-Gómez R, Salinas M R, et al. Effect of post-pruning vine-shoots storage on the evolution of high-value compounds[J]. Industrial Crops and Products, 2017, 109: 730-736.
[83] Sánchez-Gómez R, Zalacain A, Pardo F, et al. An innovative use of vine-shoots residues and their “feedback” effect on wine quality[J]. Innovative Food Science & Emerging Technologies, 2016, 37: 18-26.
[84] Jesus M S, Ballesteros L F, Pereira R N, et al. Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity[J]. Food Chemistry, 2020, 316: 126298.
[85] Luque-Rodríguez J M, Pérez-Juan P, Luque De Castro M D. Extraction of polyphenols from vine shoots of vitis vinifera by superheated ethanol-water mixtures[J]. Journal of Agricultural and Food Chemistry, 2006, 54(23): 8775-8781.
[86] Moreira M M, Rodrigues F, Dorosh O, et al. Vine-canes as a source of value-added compounds for cosmetic formulations[J]. Molecules, 2020, 25(13): 2969.
[87] Rajha H N, Boussetta N, Louka N, et al. Electrical, mechanical, and chemical effects of high-voltage electrical discharges on the polyphenol extraction from vine shoots[J]. Innovative Food Science & Emerging Technologies, 2015, 31: 60-66.
[88] Rajha H N, Chacar S, Afif C, et al.-cyclodextrin-assisted extraction of polyphenols from vine shoot cultivars[J]. Journal of Agricultural and Food Chemistry, 2015, 63(13): 3387-3393.
[89] Max B, Salgado J M, Cortés S, et al. Extraction of phenolic acids by alkaline hydrolysis from the solid residue obtained after prehydrolysis of trimming vine shoots[J]. Journal of Agricultural and Food Chemistry, 2010, 58(3): 1909-1917.
[90] Delgado-Torre M P, Ferreiro-Vera C, Priego-Capote F, et al. Comparison of accelerated methods for the extraction of phenolic compounds from different vine-shoot cultivars[J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 3051-3060.
[91] Moreira M M, Barroso M F, Porto Jo?o V, et al. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds[J]. Science of The Total Environment, 2018, 634: 831-842.
[92] Jesus M S, Genisheva Z, Romaní A, et al. Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods[J]. Industrial Crops and Products, 2019, 132: 99-110.
[93] Rajha H N, Kantar S E, Afif C, et al. Selective multistage extraction process of biomolecules from vine shoots by a combination of biological, chemical, and physical treatments[J]. Comptes Rendus Chimie, 2018, 21: 581-589.
[94] Rajha H N, Boussetta N, Louka N, et al. A comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots[J]. Food Research International, 2014, 65: 462-468.
[95] 萬力,郭志君,閔卓,等. 野生葡萄枝條多酚粗提物抑菌活性研究[J]. 西北林學院學報,2014,29(1):122-126.
Wan Li, Guo Zhijun, Min Zhuo, et al. Antimicrobial activities of phenolics from Chinese wild grape canes[J]. Journal of Northwest Forestry University, 2014, 29(1): 122-126. (in Chinese with English abstract)
[96] 孫玉霞,蔣錫龍,史紅梅,等. 葡萄枝條提取物的抑菌活性及其在紅地球葡萄防腐保鮮上的應用研究[J]. 食品工業科技,2015,36(2):129-132.
Sun Yuxia, Jiang Xilong, Shi Hongmei, et al. Anti-microbial activity of grape cane extracts and its application on storage of Red Globe grape[J]. Science and Technology of Food Industry, 2015, 36(2): 129-132. (in Chinese with English abstract)
[97] Jesus M S, Carvalho A C, Teixeira J A, et al. Ohmic heating extract of vine pruning residue has anti-colorectal cancer activity and increases sensitivity to the chemotherapeutic drug 5-FU[J]. Foods, 2020, 9(8): 1102.
[98] Romain C, Gaillet S, Carillon J, et al. Vineatrol and cardiovascular disease: Beneficial effects of a vine-shoot phenolic extract in a hamster atherosclerosis model[J]. Journal of Agricultural and Food Chemistry, 2012, 60(44): 11029-11036.
[99] Sánchez-Gómez R, Zalacain A, Pardo F, et al. Moscatel vine-shoot extracts as a grapevine biostimulant to enhance wine quality[J]. Food Research International, 2017, 98: 40-49.
[100] Sánchez-Gómez R, Pérez-álvarez E P, Salinas R, et al. Effect of vine-shoot and oak extract foliar grapevine applications on oenological parameters, phenolic acids and glutathione content of white musts and wines[J]. Oeno One, 2020, 54(1): 145-156.
[101] Torre M P D, Priego-Capote F, Castro M D L. Comparative profiling analysis of woody flavouring from vine-shoots and oak chips[J]. Journal of the Science of Food and Agriculture, 2014, 94(3): 504-514.
[102] Sánchez Gómez R, Zalacain A, Alonso G L, et al. Effect of vine-shoots toasting on the generation of high added value volatiles[J]. Flavour and Fragrance Journal, 2016, 31(4): 293-301.
[103] Sánchez-Gómez R, Zalacain A, Alonso G L, et al. Effect of toasting on non-volatile and volatile vine-shoots low molecular weight phenolic compounds[J]. Food Chemistry, 2016, 204: 499-505.
[104] Cebrián-Tarancón C, Sánchez-Gómez R, Salinas M R, et al. Toasted vine-shoot chips as enological additive[J]. Food Chemistry, 2018, 263: 96-103.
[105] Cebrián-Tarancón C, Sánchez-Gómez R, Gómez-Alonso S, et al. Vine-shoot tannins: Effect of post-pruning storage and toasting treatment[J]. Journal of Agricultural and Food Chemistry, 2018, 66(22): 5556-5562.
[106] Cebrián-Tarancón C, Sánchez-Gómez R, Cabrita M J, et al. Winemaking with vine-shoots modulating the composition of wines by using their own resources[J]. Food Research International, 2019, 121: 117-126.
[107] Cebrián-Tarancón C, Fernández-Roldán F, Sánchez-Gómez R, et al. Vine-shoots as enological additives a study of acute toxicity and cytotoxicity[J]. Foods, 2021, 10(6): 1267.
[108] Gullón B, Eibes G, Dávila I, et al. Valorization of vine shoots based on the autohydrolysis fractionation optimized by a kinetic approach[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14164-14171.
[109] Jesus M S, Romaní A, Genisheva Z, et al. Integral valorization of vine pruning residue by sequential autohydrolysis stages[J]. Journal of Cleaner Production, 2017, 168: 74-86.
[110] Gullón B, Eibes G, Moreira M M, et al. Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots[J]. Industrial Crops and Products, 2017, 107: 105-113.
[111] Amine D, Abdeltif A, Tounsia A, et al. Characterization of cardinal vine shoot waste as new resource of lignocellulosic biomass and valorization into value-added chemical using Plackett-Burman and Box Behnken[J]. Biomass Conversion and Biorefinery, 2021. [2022-04-01]. DOI: 10.1007/s13399-021-01717-1.
[112] Rivas S, Parajó J C. Single-stage fractionation of vine shoots using microwave heating[J]. Applied Sciences, 2021, 11(17): 7954.
[113] Dávila I, Gullón P, Labidi J. Influence of the heating mechanism during the aqueous processing of vine shoots for the obtaining of hemicellulosic oligosaccharides[J]. Waste Management, 2021, 120: 146-155.
[114] Kovacs E, Scurtu D A, Senila L, et al. Green protocols for the isolation of carbohydrates from vineyard vine-shoot waste[J]. Analytical Letters, 2020, 54(1/2): 1-18.
[115] Moldes A B, Torrado A M, Barral M T, et al. Evaluation of biosurfactant production from various agricultural residues by lactobacillus pentosus[J]. Journal of Agricultural and Food Chemistry, 2007, 55(11): 4481-4486.
[116] Rodríguez-Pazo N, Salgado J M, Cortés-Diéguez S, et al. Biotechnological production of phenyllactic acid and biosurfactants from trimming vine shoot hydrolyzates by microbial coculture fermentation[J]. Applied Biochemistry and Biotechnology, 2013, 169(7): 2175-2188.
[117] Moldes A B, Bustos G, Torrado A, et al. Comparison between different hydrolysis processes of vine-trimming waste to obtain hemicellulosic sugars for further lactic acid conversion[J]. Applied Biochemistry and Biotechnology, 2007, 143(3): 244-256.
[118] Rivas S, López L, Vila C, et al. Organosolv processing of vine shoots: Fractionation and conversion of hemicellulosic sugars into platform chemicals by microwave irradiation[J]. Bioresource Technology, 2021, 342: 125967.
[119] Pachón E R, Mandade P, Gnansounou E. Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept[J]. Bioresource Technology, 2020, 303: 122946.
[120] Dávila I, Gullón P, Andrés M A, et al. Coproduction of lignin and glucose from vine shoots by eco-friendly strategies: Toward the development of an integrated biorefinery[J]. Bioresource Technology, 2017, 244: 328-337.
[121] Amendola D, De Faveri D M, Egües I, et al. Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks[J]. Bioresource Technology, 2012, 107: 267-274.
[122] Benito-González I, Jaén-Cano C M, López-Rubio A, et al. Valorisation of vine shoots for the development of cellulose-based biocomposite films with improved performance and bioactivity[J]. International Journal of Biological Macromolecules, 2020, 165: 1540-1551.
[123] Davila I, Robles E, Andres M A, et al. Delignification alternatives of spent solid from autohydrolysis of vine shoots[J]. Chemical Engineering Transactions, 2017, 57: 85-90.
[124] Portilla O M, Rivas B, Torrado A, et al. Revalorisation of vine trimming wastes using Lactobacillus acidophilus and Debaryomyces hansenii[J]. Journal of the Science of Food and Agriculture, 2008, 88(13): 2298-2308.
[125] Bustos G, De la Torre N, Moldes A B, et al. Revalorization of hemicellulosic trimming vine shoots hydrolyzates trough continuous production of lactic acid and biosurfactants by L.[J]. Journal of Food Engineering, 2007, 78(2): 405-412.
[126] Corcho-Corral B, Olivares-Marín M, Fernández-González C, et al. Preparation and textural characterisation of activated carbon from vine shoots () by H3PO4-Chemical activation[J]. Applied Surface Science, 2006, 252(17): 5961-5966.
[127] Nabais J M Valente, Laginhas C, Carrott P J M, et al. Thermal conversion of a novel biomass agricultural residue (vine shoots) into activated carbon using activation with CO2[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(1): 8-13.
[128] Ruiz-Fernández M, Alexandre-Franco M, Fernández González C, et al. Adsorption isotherms of methylene blue in aqueous solution onto activated carbons developed from vine shoots () by physical and chemical methods[J]. Adsorption Science & Technology, 2010, 28(8/9): 751-759.
[129] Ruiz-Fernández M, Alexandre-Franco M, Fernández González C, et al. Development of activated carbon from vine shoots by physical and chemical activation methods Some insight into activation mechanisms[J]. Adsorption, 2011, 17(3): 621-629.
[130] Erdem M, Orhan R, ?ahin M, et al. Preparation and characterization of a novel activated carbon from vine shoots by ZnCl2activation and investigation of its rifampicine removal capability[J]. Water Air Soil Pollut, 2016, 227(7): 226.
[131] ?ali?kan ? E, ?ift?i H, ?ift?i T, et al. Use of activated carbon obtained from waste vine shoots in nickel adsorption in simulated stomach medium[J]. Biomass Conversion and Biorefinery. DOI: 10.1007/s13399-021-01954-4.
[132] Li H Y, Yao D H, Feng Q J, et al. Adsorption of Cd(II) and Pb(II) on biochars derived from grape vine shoots[J]. Desalination and Water Treatment, 2018, 118: 195-204.
[133] Manyà J J, González B, Azuara M, et al. Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2uptake and CO2/N2selectivity[J]. Chemical Engineering Journal, 2018, 345: 631-639.
[134] Barroso-Bogeat A, Alexandre-Franco M, Fernández González C, et al. Temperature dependence of the electrical conductivity of activated carbons prepared from vine shoots by physical and chemical activation methods[J]. Microporous and Mesoporous Materials, 2015, 209: 90-98.
[135] Martins M, ?ljuki? B, Sequeira C A C, et al. Biobased carbon-supported palladium electrocatalysts for borohydride fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(25): 10914-10922.
[136] Cardoso J A S B, ?ljuki? B, Erdem M, et al. Vine shoots and grape stalks as carbon sources for hydrogen evolution reaction electrocatalyst supports[J]. Catalysts, 2018, 8(2): 50.
[137] Hoffmann V, Jung D, Zimmermann J, et al. Conductive carbon materials from the hydrothermal carbonization of vineyard residues for the application in electrochemical double-layer capacitors (EDLCs) and direct carbon fuel cells (DCFCs)[J]. Materials, 2019, 12(10): 1703.
Status and prospect of resource utilization for grape vine stalks
Liu Wenzheng, Ping Fengjiao, Bai Xuebing, Fang Yulin, Dong Shumeng, Yang Jihong※, Yuan Chunlong,Lai Jiangwen
(1.,,712100,;2.,750104,)
Grape () is one of the most widely spread and the largest productive fruit crops in the world. It can be eaten fresh as the table grapes, or used for making wine, jam, and juice. A high productive of grapes is also found in China. For instance, 14.8 million tons of grapes were produced, and the area under the grape cultivation was 7.68×104hm2in China in 2020. The yield and planting area of grape have been ranked at first and second around the world, respectively. There are many pruned grape vine stalks every year, particularly with the development of the grape industry. Grape vine stalks are rich in the lignin, cellulose and hemicellulose, in order to serve as the renewable biomass resource with the high content of nitrogen, phosphorus, potassium, and organic nutrients. However, the utilization rate of grape vine stalks is very low, leading to the waste of biomass resources and environmental pollution. Large-scale utilization and development of grape vine stalks can greatly contribute to the low-carbon economic development, ecological civilization construction, and energy revolution. In addition, it is of great significance to ensure the national strategies implementation in China, such as the beautiful villages’ construction, the goal of “carbon neutrality”, and global climate change. Therefore, this study aims to focus mainly on the general goal of comprehensive utilization of pruned grape vine stalks. Currently, the grape vine stalks are mainly used as the fertilizer, fuel and raw material. Among them, the fertilizer can be mainly divided into returning to the field directly after crushing, and composting. Besides, the aqueous extract and biochar from the grape vine stalks can be applied as the foliar fertilizer and soil amendment, respectively. In fuel, the grape vine stalks have the high energy storage suitable for the production of biomass fuels. The energy potential of biomass resources was also evaluated to identify the fuel convention mode. Moreover, the fuel convention mode of grape vine stalks was divided into the direct combustion, gasification, liquefaction, and carbonization. In raw material, the high value and performance of products were made from the grape vine stalk, due to the richness in biomass contents. Nowadays, the grape vine stalks are used as raw material for the research hotspot. The main utilization modes include the high-value compound extract, study making, particle board manufacturing, and active carbon preparation. A series of investigations were conducted to extract the high-value compounds, such as phenolic, oligosaccharides, reducing sugar, and protein. The extraction included the conventional way, ultrasonic adjunct, microwave-assisted, solid-liquid, superheated liquid, and high-voltage electrical discharges. Overall, the integrated utilization of grape vine stalks is the reasonable way as the renewable energy sources for the sustainable development of resources, environment and economy. Finally, the existing approaches were summarize to evaluate the development prospects for the comprehensive utilization of grape vine stalks. This review can provide a strong reference for the high value and efficiency integrated utilization of grape vine stalks, in order to promote the green and sustainable development of agriculture.
environmental engineering; biomass; resourcization; comprehensive utilization of grape vine stalks; sustainable development
10.11975/j.issn.1002-6819.2022.16.030
S216;TK6
A
1002-6819(2022)-16-0270-14
劉文政,平鳳姣,白雪冰,等. 葡萄枝條資源化利用研究現狀及進展[J]. 農業工程學報,2022,38(16):270-283.doi:10.11975/j.issn.1002-6819.2022.16.030 http://www.tcsae.org
Liu Wenzheng, Ping Fengjiao, Bai Xuebing, et al. Status and prospect of resource utilization for grape vine stalks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(16): 270-283. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.16.030 http://www.tcsae.org
2022-04-01
2022-07-08
國家重點研發計劃項目(2019YFD1002500);寧夏回族自治區重點研發計劃項目(2021BEF02016);中央高?;A科研業務費專項資金項目(2452020201)
劉文政,博士,講師,研究方向為農業副產物資源化利用技術與裝備。Email:lwzheng@nwafu.edu.cn
楊繼紅,博士,副教授,研究方向為葡萄釀酒副產物加工利用技術。Email:yangjihong@nwsuaf.edu.cn