崔勇,唐嘯虎,張偉,李學田,邵忠財,邵鴻媚
溶液法制備銅鋇錫硫硒和銅鍶錫硫硒薄膜
崔勇,唐嘯虎,張偉,李學田,邵忠財,邵鴻媚
(沈陽理工大學 環境與化學工程學院,沈陽 110159)
在玻璃基底上制備2種銅鋇錫硫和銅鍶錫硫薄膜,研究薄膜硒化過程中硒化時間對薄膜形貌以及晶體生長的影響。采用配位能力強的二甲基亞砜作為溶劑溶解金屬氯化物-氯化亞銅、氯化鋇、氯化亞錫、氯化鍶前體鹽以及硫脲,二甲基亞砜溶劑中硫原子具有的孤對電子可以與銅離子、鋇離子、錫離子、鍶離子進行配位,避免了金屬硫化物沉淀的產生,制備的分子前體溶液可以在空氣中穩定存在。采用液相旋涂的方法在鍍有鉬薄膜的玻璃基底上旋涂分子前體溶液,隨后在充滿氮氣手套箱中320 ℃加熱板上退火制備銅鋇錫硫和銅鍶錫硫預制膜,使用高溫硒化這一可以顯著改善銅基薄膜晶體質量的手段進行處理,引入硒原子部分替換硫原子,制備銅鋇錫硫硒和銅鍶錫硫硒薄膜。使用XRD、SEM、XPS分析表征手段對制備的銅鋇錫硫硒和銅鍶錫硫硒薄膜進行結構、形貌、元素價態表征。硒化后的銅鋇錫硫硒和銅鍶錫硫硒薄膜表現出良好的晶體結構,XRD顯示組成銅鋇錫硫硒和銅鍶錫硫硒薄膜由大晶粒組成。硒化后的銅鋇錫硫硒薄膜表面由大晶粒組成,形成連續薄膜,不同硒化溫度下的銅鋇錫硫硒薄膜表面有孔洞出現。隨著硒化溫度的升高,銅鋇錫硫硒薄膜中的小粒子層逐漸消失。硒化后的銅鍶錫硫硒薄膜表面晶體層比較稀疏,無法形成連續薄膜,因此無法用于制備薄膜太陽能電池;銅離子、鋇離子、錫離子、鍶離子、硫離子、硒離子的價態分別為+1、+2、+4、+2、?2、?2。旋涂制備的銅鋇錫硫薄膜經過高溫硒化之后,銅鋇錫硫硒薄膜晶體組成比較致密,組裝的玻璃基底/金屬鉬/銅鋇錫硫硒薄膜/硫化鎘/氧化鋅/銦錫導電玻璃/鋁薄膜太陽能電池,表現出光電轉換信號。制備的銅鋇錫硫硒薄膜太陽能電池的短路電流密度為63 μA/cm2,開路電壓為0.169 V。
銅鋇錫硫硒薄膜;銅鍶錫硫硒薄膜;硒化;薄膜表征;光電轉換
近年來,多元銅基硫化物薄膜作為太陽能電池吸光層材料成為研究熱點,作為太陽能電池吸光層材料具有成本低、吸光系數高、效率穩定不衰減等優勢,其代表材料為銅鋅錫硫硒薄膜太陽能電池[1-8]。2012年美國IBM公司Mitzi課題組使用肼溶液法制備了光電轉換效率達到12.6%的銅鋅錫硫硒/硫化鎘異質節薄膜太陽能電池[9],該效率的薄膜太陽能電池為當時銅鋅錫硫硒薄膜太陽能電池光電轉換效率的世界記錄。經過9年的研究優化,銅鋅錫硫硒薄膜太陽能電池的光電轉換效率仍然在12.6%左右徘徊,效率仍然沒有大幅進展。銅鋅錫硫硒具有四方相結構,在該結構中,金屬陽離子(銅離子、鋅離子、錫離子)在晶胞中具有固定的位置。無論使用溶液法還是真空沉積的手段制備銅鋅錫硫硒吸光層薄膜,為獲得較高的光電轉換效率,都需要經過高溫硒化這一過程,促使組成薄膜的晶粒長大,這樣才能獲得較好的光電轉換效率。在高溫硒化的過程中,銅鋅錫硫預制膜中的鋅原子與錫原子會發生無序重排,引起晶格扭曲,導致銅鋅錫硫硒半導體材料的光學帶隙發生改變,引起帶隙拖尾,影響太陽能電池中的開路電壓,進而影響太陽能電池器件的光電轉換效率。科研人員通過加壓硒化的手段優化硒化工藝,提升效率,但是結果顯示:使用該方法制備的銅鋅錫硫硒薄膜太陽能電池的光電轉換效率為12.4%[10-11]。
根據以上問題,科研人員考慮使用離子半徑較大的元素取代銅鋅錫硫材料中的鋅元素,制備具有穩定相結構的銅基多元硫化物材料。因為不同金屬陽離子半徑差距大,金屬陽離子在晶胞中占據的位置固定,不會引起離子遷移,因此形成的多元硫化物結構穩定。金屬鋇離子半徑為0.149 nm,遠大于鋅離子半徑0.088 nm,而且銅鋇錫硫的光學帶隙與銅鋅錫硫相近,二者具有相似的光電性質[12-18],因此使用鋇離子代替銅鋅錫硫薄膜中的鋅離子,解決四元銅基硫化物薄膜結構穩定性的問題,被認為是一條行之有效的途徑來提高多元銅基硫化物薄膜太陽能電池效率。
基于以上的理論分析,科研人員開始對銅鋇錫硫硒這種新型的薄膜太陽能電池材料開展試驗研究。美國Duke大學的Mitzi研究組使用磁控濺射的手段,共濺射Cu、Sn、BaS 3種靶材,制備銅鋇錫硫薄膜,隨后經過580 ℃高溫硒化,獲得銅鋇錫硫硒薄膜。制備的玻璃基底/鉬/銅鋇錫硫硒/硫化鎘/氧化鋅/銦錫導電玻璃/鋁電極的薄膜太陽能電池獲得超過5%的光電轉換效率[19]。近日Mitzi研究組使用Ge元素代替Sn元素制備了Cu2BaGeSe4薄膜,并與Cu2BaSnS4薄膜在光學性質上進行了對比研究[20]。美國托雷多大學Yan Yanfa課題組同樣使用磁控濺射的手段共濺射Cu、SnS、Ba 3種靶材制備銅鋇錫硫硒薄膜,隨后構筑的銅鋇錫硫硒薄膜太陽能電池獲得2.03%的光電轉換效率,開路電壓達到1.1 V[21]。雖然磁控濺射法制備的銅鋇錫硫硒薄膜太陽能電池獲得了一定的效率,但是由于磁控濺射成本高,不易產業化,因此開拓化學法制備銅鋇錫硫硒薄膜受到了科研人員的關注。來自美國南加州大學的Mc Carthy通過使用硫醇和胺溶解金屬鹽的手段,制備了銅鋇錫硫薄膜,并對薄膜進行了細致表征,但是并沒有制備太陽能電池器件[22]。國內中南大學劉芳洋教授課題組使用金屬鹽作為前體,有機溶劑作為溶劑,硫脲提供硫源,成功制備了光電轉換效率達到1.72%的銅鋇錫硫薄膜太陽能電池。目前該光電轉換效率是溶液法制備銅鋇錫硫太陽能電池最高的光電轉換效率[23]。本文以金屬氯化物為金屬源,硫脲為硫源,二甲基亞砜為溶劑,采用旋涂的手段制備銅鋇錫硫和銅鍶錫硫多元銅基硫化物薄膜,研究了硒化時間對以上2種薄膜形貌的影響,隨后組裝了玻璃基底/金屬鉬/銅鋇錫硫硒薄膜/硫化鎘/氧化鋅/銦錫導電玻璃/鋁太陽能電池,并獲得了光電轉換信號。
主要材料包括氯化亞銅(CuCl)、氯化亞錫(SnCl2)、氯化鋇(BaCl2)、氯化鍶(SrCl2)、硫酸鎘、硫脲、二甲基亞砜(DMSO),均購于阿拉丁化學試劑有限公司;氨水、無水乙醇購于北京化學試劑有限公司。以上所有試劑均直接使用,未作進一步純化處理。
取一25 mL錐形瓶,將10 mmol氯化亞銅,6 mmol氯化鋇(或者氯化鍶),5 mmol氯化亞錫,通過超聲溶于12 mL二甲基亞砜中;經過1 h超聲溶解后,形成澄清溶液,加入40 mmol硫脲,繼續超聲溶解,超聲水溫不高于30 ℃,再經過1 h超聲溶解后,得到銅鋇錫硫與銅鍶錫硫的前體溶液。
對于銅鋇錫硫與銅鍶錫硫的前體溶液,取180 μL溶液,在2 500 r/min轉速下旋涂35 s,在320 ℃時加熱1~2 min,重復以上過程8~10次,以完全去除有機溶劑,得到銅鋇錫硫與銅鍶錫硫預制薄膜。將制備的銅鋇錫硫與銅鍶錫硫薄膜放入石墨盒進行硒化處理。銅鋇錫硫與銅鍶錫硫薄膜硒化的條件是從室溫迅速升溫到480、510、540 ℃,并保溫15 min,然后快速冷卻至室溫,得到銅鋇錫硫硒與銅鍶錫硫硒薄膜。
首先使用直流磁控濺射在玻璃基底上濺射1~2 μm厚的金屬鉬(濺射條件為氬氣200 W功率條件下,2 Pa濺射5 min,在相同功率下,0.8 Pa濺射5 min),之后將前體溶液旋涂于鉬片之上,旋涂工藝與1.3節相同,隨后進行硒化處理。CdS緩沖層的制備過程與文獻[23]相同。電池阻擋層ZnO的制備是使用射頻磁控濺射完成,其工藝流程與直流磁控濺射類似,濺射參數為:功率100 W,氬氣壓力0.4 Pa,濺射時間5 min。用磁控濺射直流濺射ITO,濺射參數為:功率100 W,氬氣壓力0.5 Pa,濺射時間5 min,蒸鍍鋁電極。選擇鎢絞絲為鋁絲載體,熱蒸鍍電流為50 A,蒸鍍時間為5 min,完成銅鋇錫硫硒薄膜太陽能電池的組裝。
氯化亞銅、氯化亞錫、氯化鋇、氯化鍶與硫脲作為銅鋇錫硫和銅鍶錫硫薄膜的前體,溶解于二甲基亞砜溶劑中,形成均相的分子溶液。二甲基亞砜溶劑中的硫原子中兩對孤對原子與金屬陽離子(銅離子、錫離子、鋇離子、鍶離子)可以進行配位,在硫脲的存在下沒有產生金屬硫化物沉淀,保證了均相溶液的形成,為后續在玻璃基底上沉積的金屬鉬薄膜進行旋涂提供了基礎。結果見圖1。
銅基多元金屬硫化物薄膜需要在硒蒸氣氛圍下進行退火處理,該方法可以獲得大晶粒、緊密堆積的薄膜。將旋涂后的銅鋇錫硫薄膜與銅鍶錫硫薄膜放于裝有硒粒的石墨盒中,在硒蒸氣環境下進行退火處理,得到銅鋇錫硫硒薄膜與銅鍶錫硫硒薄膜。根據圖2a顯示,退火后的銅鋇錫硫硒薄膜與銅鍶錫硫硒薄膜在2=27°左右有尖峰出現,該處的峰即為以上2種薄膜的主峰,該主峰比較尖銳,說明薄膜由大晶粒組成;與銅鋇錫硫硒薄膜的主峰相比,銅鍶錫硫硒薄膜的主峰明顯向大角度移動,造成這一現象的主要原因是鋇離子的半徑要大于鍶離子的半徑。對于多元合金化合物,當合金中的元素發生變化時,XRD的峰位會隨著合金中離子半徑的大小而改變[24-26]。根據圖2b顯示,在不同溫度(480、510、540 ℃)硒蒸氣下退火制備的銅鋇錫硫硒薄膜的主峰都比較尖銳,說明銅鋇錫硫硒薄膜都是由較大晶粒組成。

圖1 不同溶質下形成的均相溶液

圖2 480 ℃硒蒸氣氛圍下退火制備的銅鋇錫硫硒薄膜與銅鍶錫硫硒薄膜的XRD圖譜(a),不同溫度(480、510、540 ℃)硒蒸氣氛圍下退火制備的銅鋇錫硫硒薄膜的XRD圖譜(b)
銅基多元金屬硫化物薄膜在硒蒸氣環境中進行退火處理是改變薄膜晶體質量的有效手段,因此制備的銅鋇錫硫和銅鍶錫硫四元銅基薄膜均在硒蒸氣環境中進行硒化退火[27-29]。由圖3a可以看出,540 ℃硒蒸氣氛圍下退火15 min制備的銅鋇錫硫硒薄膜表面連續,這可能與硒化溫度較高有關;對于銅基多元金屬硫化物薄膜,硒化溫度高,薄膜晶體容易長大。由圖3b可以看出,銅鋇錫硫硒薄膜的截面由緊密堆積的晶粒組成,幾乎無孔洞。銅鍶錫硫硒薄膜表面經過高溫硒化退火后,表面晶粒比較稀疏,無法形成連續的薄膜(圖3c),此種情況可能是銅鍶錫硫薄膜本身對硒化條件比較敏感,銅鍶錫硫晶體在硒化過程中瞬間成核、生長,因此無法形成連續的薄膜,雖然截面的掃描電鏡圖片(圖3d)顯示截面晶粒密實,但是由于表面薄膜不連續,無法進行薄膜太陽能電池器件的組裝。
由圖4b、圖4d、圖4f銅鋇錫硫硒薄膜的截面掃描電鏡照片可以看出,隨著硒化溫度的升高,組成截面的晶體尺寸逐漸增大。480 ℃硒蒸氣氛圍下退火15 min制備的銅鋇錫硫硒薄膜掃描電鏡圖片(圖4f)結果顯示:銅鋇錫硫硒薄膜的截面是三明治結構,既上下層是大晶體組成,中間層由小粒子層組成;當硒化溫度上升到510 ℃時,小粒子層明顯變薄;隨著硒化溫度繼續升高到540 ℃,小粒子層消失,銅鋇錫硫薄膜由上下貫穿的大粒子組成。由圖4a、圖4c、圖4e銅鋇錫硫硒薄膜的表面掃描電鏡照片可以看出,隨著溫度的升高,組成薄膜表面的粒子逐漸增大;在硒化溫度480 ℃下硒化15 min后,組成薄膜的晶粒大小在1.2 μm左右;硒化溫度升高到510 ℃,硒化15 min后,薄膜的晶粒大小增大到1.5 μm左右;硒化溫度繼續升高到540 ℃,硒化15 min后,薄膜的晶粒大小增大到2.4 μm左右。但是薄膜表面仍然存在孔洞,孔洞的存在使得電子-空穴對無法分離,會影響后續組裝的薄膜太陽能電池的光電性能。
圖3 540 ℃硒蒸氣氛圍下退火15 min制備的銅鋇錫硫硒薄膜掃描電鏡圖片結果(a表面形貌,b截面形貌),540 ℃硒蒸氣氛圍下退火15 min制備的銅鍶錫硫硒薄膜掃描電鏡圖片結果(c表面形貌,d截面形貌)
Fig.3 SEM photograph of Cu2BaSn(S,Se)4 thin film after selenizaion for 15 min at 540 ℃ (a: surface morphology, b: cross-section morphology); SEM photograph of Cu2SrSn(S,Se)4 thin film after selenizaion for 15 min at 540 ℃ (c: surface morphology, d: cross-section morphology)

圖4 540 ℃硒蒸氣氛圍下退火15 min制備的銅鋇錫硫硒薄膜掃描電鏡圖片結果(a表面形貌,b截面形貌), 540 ℃硒蒸氣氛圍下退火15 min制備的銅鍶錫硫硒薄膜掃描電鏡圖片結果(c表面形貌,d截面形貌)
銅鋇錫硫硒薄膜與銅鍶錫硫硒薄膜中的陰、陽離子價態使用X射線光電子能譜儀(XPS)進行探測,結果見圖5。929.5 eV(2p2/3)和949.2 eV(2p1/2)的峰位歸屬于一價銅離子(Cu+)。483.7 eV和492.3 eV的分裂縫歸屬于四價錫離子(Sn4+)。二價鋇離子(Ba2+)的分裂峰位于777.9 eV和793.1 eV。二價鍶離子(Sr2+)的3d軌道的分裂峰位于131.7 eV和136.5 eV。負二價硫離子(S2?)2p軌道的分裂峰位于159.5 eV和164.8 eV。位于52 eV的峰是負二價硒離子(Se2?)3d軌道分裂峰。
圖6a給出銅鋇錫硫硒薄膜太陽能電池結構圖,結構中銅鋇錫硫硒作為P型層,硫化鎘作為N型層,本征氧化鋅作為阻擋層,ITO作為導電層。對不同硒化溫度下的銅鋇錫硫硒薄膜均組裝了以上結構的太陽能電池。540 ℃硒化15 min的銅鋇錫硫硒薄膜太陽能電池顯示出光電轉換信號,短路電流密度為63 μA/cm2,開路電壓為0.169 V;而480、510 ℃硒化15 min的銅鋇錫硫硒薄膜的太陽能電池沒有顯現出光電轉換信號。產生這一現象的主要原因是480、510 ℃硒化15 min的銅鋇錫硫硒薄膜具有較多孔洞,影響了光生載流子的分離,掃面電鏡結果顯示:該硒化條件下的薄膜截面呈現出三明治結構的粒子組成,影響了光生載流子的傳輸。540 ℃硒化15 min的銅鋇錫硫硒薄膜雖然具有光電轉換信號,但是短路電流、開路電壓以及填充因子都比較低。雖然硒化溫度升高有利于組成薄膜的粒子長大,薄膜截面由大粒子構成,但是仍然無法消除薄膜表面孔洞對光生載流子傳輸與分離的影響,因此光電轉換性能仍可提升,未來還需要進行大量優化工藝研究,摸索制備銅鋇錫硫硒薄膜工藝,構建具有高光電轉換效率的銅鋇錫硫硒薄膜太陽能電池。

圖5 銅鋇錫硫硒薄膜與銅鍶錫硫硒薄膜中不同離子的XPS圖譜

圖6 銅鋇錫硫硒薄膜太陽能電池結構圖(a),銅鋇錫硫硒薄膜太陽能電池光電轉換效率(b)
通過旋涂法在金屬鉬基底上制備銅鋇錫硫硒和銅鍶錫硫硒薄膜,研究了硒化溫度對薄膜生長工藝的影響。540 ℃硒化15 min制備的銅鍶錫硫硒薄膜表面無法形成大晶粒連續覆蓋的薄膜,相同工藝制備的銅鋇錫硫硒薄膜晶粒較大且可以形成連續覆蓋的薄膜,組裝的玻璃基底/金屬鉬/銅鋇錫硫硒薄膜/硫化鎘/氧化鋅/銦錫導電玻璃/鋁太陽能電池,表現出光電轉換信號,短路電流密度為63 μA/cm2,開路電壓為0.169 V。使用二甲基亞砜作為溶劑,氯化物金屬鹽作為金屬前體,硫脲作為硫源這一方法為制備多元硫化物金屬薄膜提供了一條路徑。
[1] Nisika, KAUR K, KUMAR M. Progress and Prospects of CZTSSe/CdS Interface Engineering to Combat High Open-Circuit Voltage Deficit of Kesterite Photovoltaics: A Critical Review[J]. Journal of Materials Chemistry A, 2020, 8(41): 21547-21584.
[2] XIAO Hai-qin, ZHOU Wen-hui, KOU Dong-xing, et al. Boosting the Efficiency of Solution-Based CZTSSe Solar Cells by Supercritical Carbon Dioxide Treatment[J]. Green Chemistry, 2020, 22(11): 3597-3607.
[3] SON D H, KIM S H, KIM S Y, et al. Effect of Solid-H2S Gas Reactions on CZTSSe Thin Film Growth and Photo-voltaic Properties of a 12.62% Efficiency Device[J]. Jour-nal of Materials Chemistry A, 2019, 7(44): 25279-25289.
[4] GUO Hong-ling, WANG Gang, MENG Ru-tao, et al. An Efficient Li+-Doping Strategy to Optimize the Band Ali-gnment of a Cu2ZnSn(S, Se)4/CdS Interface by a Se & LiF Co-Selenization Process[J]. Journal of Materials Che-mistry A, 2020, 8(42): 22065-22074.
[5] POLIZZOTTI A, REPINS I L, NOUFI R, et al. The State and Future Prospects of Kesterite Photovoltaics[J]. Ene-rgy & Environmental Science, 2013, 6(11): 3171-3182.
[6] SHI Xi-nan, WANG Yu-xiang, YU Hui, et al. Signifi-cantly Improving the Crystal Growth of a Cu2ZnSn(S, Se)4Absorber Layer by Air-Annealing a Cu2ZnSnS4Pre-cursor Thin Film[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 41590-41595.
[7] WALLACE S K, MITZI D B, WALSH A. The Steady Rise of Kesterite Solar Cells[J]. ACS Energy Letters, 2017, 2(4): 776-779.
[8] DESHMUKH S D, ELLIS R G, SUTANDAR D S, et al. Versatile Colloidal Syntheses of Metal Chalcogenide Nanoparticles from Elemental Precursors Using Amine- Thiol Chemistry[J]. Chemistry of Materials, 2019, 31(21): 9087-9097.
[9] WANG Wei, WINKLER M T, GUNAWAN O, et al. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465.
[10] JEDLICKA E, et al. Sn4+Precursor Enables 12.4% Effi-cient Kesterite Solar Cell from DMSO Solution with Open Circuit Voltage Deficit below 0.30 V[J]. Science China Materials, 2021, 64(1): 52-60.
[11] GONG Yuan-cai, ZHANG Yi-fan, ZHU Qiang, et al. Identify the Origin of the Voc Deficit of Kestertie Solar Cells from the Two Reaction Paths Induced by Sn2 and Sn4 Precursors in DMSO Solution[J]. 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), 2021: 1995- 1997.
[12] CHAKRABORTY R, SIM K M, SHRIVASTAVA M, et al. Colloidal Synthesis, Optical Properties, and Hole Transport Layer Applications of Cu2BaSnS4(CBTS) Nanocrystals[J]. ACS Applied Energy Materials, 2019, 2(5): 3049-3055.
[13] SONG J, TEYMUR B, ZHOU Yi-hao, et al. Porous Cu2BaSn(S, Se)4Film as a Photocathode Using Non- Toxic Solvent and a Ball-Milling Approach[J]. ACS App-lied Energy Materials, 2021, 4(1): 81-87.
[14] XIE Juan, YI Qing-hua, ZHANG Fa-yun, et al. Large- Grained Cu2BaSnS4Films for Photocathodes[J]. ACS App-lied Materials & Interfaces, 2019, 11(36): 33102-33108.
[15] GE Jie, ROLAND P J, KOIRALA P, et al. Employing Overlayers to Improve the Performance of Cu2BaSnS4Thin Film Based Photoelectrochemical Water Reduction Devices[J]. Chemistry of Materials, 2017, 29(3): 916-920.
[16] TEYMUR B, ZHOU Yi-hao, NGABOYAMAHINA E, et al. Solution-Processed Earth-Abundant Cu2BaSn(S, Se)4Solar Absorber Using a Low-Toxicity Solvent[J]. Chemi-stry of Materials, 2018, 30(17): 6116-6123.
[17] CROVETTO A, NIELSEN R, STAMATE E, et al. Wide Band Gap Cu2SrSnS4Solar Cells from Oxide Precur-sors[J]. ACS Applied Energy Materials, 2019, 2(10): 7340-7344.
[18] ZHOU Yi-hao, SHIN D, NGABOYAMAHINA E, et al. Efficient and Stable Pt/TiO2/CdS/Cu2BaSn(S, Se)4Photo-cathode for Water Electrolysis Applications[J]. ACS Ene-rgy Letters, 2018, 3(1): 177-183.
[19] Shin D, Zhu T, Huang X, et al. Earth-Abundant Cha-lcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu2BaSn(S, Se)4Absorber[J]. Advanced Materials, 2017, 29(24): 1606945.
[20] KIM Y, HEMPEL H, LEVCENCO S, et al. Optoelec-tronic Property Comparison for Isostructural Cu2BaGeSe4and Cu2BaSnS4Solar Absorbers[J]. Journal of Materials Chemistry A, 2021, 9(41): 23619-23630.
[21] GE Jie, KOIRALA P, GRICE C R, et al. Oxygenated CdS Buffer Layers Enabling High Open-Circuit Voltages in Earth-Abundant Cu2BaSnS4Thin-Film Solar Cells[J]. Advanced Energy Materials, 2017, 7(6): 1601803.
[22] MCCARTHY C L, BRUTCHEY R L. Solution Deposited Cu2BaSnS4-xSefrom a Thiol-Amine Solvent Mixture[J]. Chemistry of Materials, 2018, 30(2): 304-308.
[23] CHEN Zhu, SUN Kai-wen, SU Zheng-hua, et al. Solution- Processed Trigonal Cu2BaSnS4Thin-Film Solar Cells[J]. ACS Applied Energy Materials, 2018, 1(7): 3420-3427.
[24] PAN Dao-cheng, AN Li-jia, SUN Zhong-ming, et al. Syn-thesis of Cu-in-S Ternary Nanocrystals with Tunable Stru-cture and Composition[J]. Journal of the American Che-mical Society, 2008, 130(17): 5620-5621.
[25] PAN Dao-cheng, WANG Xiao-lei, ZHOU Z H, et al. Syn-thesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps[J]. Chemistry of Materials, 2009, 21(12): 2489-2493.
[26] RIHA S C, PARKINSON B A, PRIETO A L. Compo-sitionally Tunable Cu2ZnSn(S1-xSe)4Nanocrystals: Probing the Effect of Se-Inclusion in Mixed Chalcogenide Thin Films[J]. Journal of the American Chemical Society, 2011, 133(39): 15272-15275.
[27] DUAN Bi-wen, LOU Li-cheng, MENG Fan-qi, et al. Two- Step Annealing CZTSSe/CdS Heterojunction to Improve Interface Properties of Kesterite Solar Cells[J]. ACS App-lied Materials & Interfaces, 2021, 13(46): 55243-55253.
[28] YIN Kang, XU Xiao, WANG Mu-yu, et al. A High- Efficiency (12.5%) Kesterite Solar Cell Realized by Crys-tallization Growth Kinetics Control over Aqueous Solu-tion Based Cu2ZnSn(S, Se)4[J]. Journal of Materials Che-mistry A, 2022, 10(2): 779-788.
[29] LIU Xu, ZHOU Fang-zhou, SONG Ning, et al. Exploring the Application of Metastable Wurtzite Nanocrystals in Pure-Sulfide Cu2ZnSnS4Solar Cells by Forming nearly Micron-Sized Large Grains[J]. Journal of Materials Che-mistry A, 2015, 3(46): 23185-23193.
Solution Process to Fabricate Cu2BaSn(S,Se)4and Cu2SrSn(S,Se)4Thin Film
,,,,,
(School of Environment and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China)
Solution way to fabricate Cu-based thin film solar cell absorb layer is low-cost and easy operated method compared to vacuum vapor deposition way. In this paper, two kinds of Cu-based thin film- Cu2BaSn(S,Se)4and Cu2SrSn(S,Se)4are prepared on the Mo coated on the glass substrate via solution process. The effects of selenization time on the as-prepared Cu2BaSn(S,Se)4and Cu2SrSn(S,Se)4thin film for morphology and crystal growth are studied. DMSO, which is a kind of benign solvent, is used to dissolve copper chloride、barium chloride、tin chloride、strontium chloride metal salts and thiourea in order to form homogeneous solution. The homogeneous solution can be formed because the two pairs of lone electrons in sulfur atom can be coordinated with metal cations (copper ion, tin ion, barium ion and strontium ion). Therefore no metal sulfide precipitation is generated during the dissolved process and homogeneous solution can be stable existed in the air. Homogeneous metal precursor solutions are spin-coated on the Mo coated on the glass substrate, and Cu2BaSnS4and Cu2SrSnS4thin films are obtained after as-prepared thin film annealed on the hotplate with 320 ℃ in the glovebox filled with nitrogen. Selenization process is an important and effective way to improve the crystal quality of as-prepared Cu2BaSnS4and Cu2SrSnS4thin film, because Se atoms can substitute S atom and the grains that are composed of Cu2BaSnS4and Cu2SrSnS4thin film can be growth larger during the selenization process, and Cu2BaSn(S,Se)4and Cu2SrSn(S,Se)4thin film are obtained. The analytic methods of XRD、XPS and SEM are used to characterize the structure、valence state、surface and cross-section morphology of the obtained Cu2BaSn(S,Se)4and Cu2SrSn(S,Se)4thin film. After selenization, Cu2BaSn(S,Se)4and Cu2SrSn(S,Se)4thin film display good crystal structure. The crystals composed of Cu2BaSn(S,Se)4and Cu2SrSn(S,Se)4thin film are large grains which can be inferred from the XRD patterns. The surface of Cu2BaSn(S,Se)4thin film is composed of large grains to form continuous film. There are pinholes on the surface of Cu2BaSn(S,Se)4thin film at different selenization temperatures. The structure of Cu2BaSn(S,Se)4thin film cross-section displays that small grain layer will eliminate gradually with the increased temperature for the selenization process. For the Cu2SrSn(S,Se)4thin film, the crystal density on the surface of Cu2SrSn(S,Se)4thin film is relatively sparse and cannot form continuous film after selenization; it illustrates that Cu2SrSn(S,Se)4thin film is sensitive to the selenization process. Therefore, it could not be used to prepare thin film solar cells; the valence states of copper ion, barium ion, tin ion, strontium ion, sulfide ion and selenide ion are +1, +2, +4, +2, ?2 and ?2 respectively. After high temperature selenization, large grain composed the Cu2BaSn(S,Se)4thin film are prepared. The crystal composition of Cu2BaSn(S,Se)4thin film is relatively dense. The as-fabricated glass/Mo/Cu2BaSn(S,Se)4/CdS/i-ZnO/ITO/Al heterojunction Cu-based thin film solar cell display the photoresponse behavior under 1.5 AM illumination. The parameters of as-fabricated Cu2BaSn(S,Se)4thin film solar cell are listed as follows: the short current is 63 μA/cm2, and the open voltage is 0.169 V.
Cu2BaSn(S,Se)4; Cu2SrSn(S,Se)4; selenization; thin film characterization; photoelectric conversion
tb43;TM914.4+2
A
1001-3660(2022)12-0295-08
10.16490/j.cnki.issn.1001-3660.2022.12.030
2021–12–15;
2022–02–28
2021-12-15;
2022-02-28
遼寧省教育廳青年育苗項目(LG202021);國家自然科學基金資助項目(52004165)
Supported by the Project of Young Scientific and Technological Talents Program Supported by Liaoning Provincial Department of Education (LG202021); National Natural Science Foundation of China (52004165)
崔勇(1983—),男,博士,副教授,主要研究方向為薄膜的制備以及在能源轉換器件中的應用。
CUI Yong (1983-), Male, Doctor, Associate professor, Research focus: preparation of thin film and application in the fields of and energy conversion device.
邵鴻媚(1986—),女,博士,副教授,主要研究方向為能源材料的制備以及在器件中的應用。
SHAO Hong-mei (1986-), Female, Ph. D., Associate professor, Research focus: preparation of energy materials and application in the fields of and energy conversion device.
崔勇, 唐嘯虎, 張偉, 等. 溶液法制備銅鋇錫硫硒和銅鍶錫硫硒薄膜[J]. 表面技術, 2022, 51(12): 295-302.
CUI Yong, TANG Xiao-hu, ZHANG Wei, et al. Solution Process to Fabricate Cu2BaSn(S,Se)4and Cu2SrSn(S,Se)4Thin Film[J]. Surface Technology, 2022, 51(12): 295-302.
責任編輯:萬長清