999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Adaptive association analysis of rare variants with an ordinal trait based on Cauchy combination test

2023-01-09 03:10:16LINanxingCHENLiliWEIQianran
黑龍江大學自然科學學報 2022年3期

LI Nanxing, CHEN Lili, WEI Qianran

(School of Mathematical Sciences, Heilongjiang University, Harbin 150080, China)

Abstract: In large-scale biobanks, ordinal traits are common data types, which are used to reflect the human preference, behavior and condition of disease, so, it is valuable to analyze ordinal traits in association analysis.In addition, rare variants can explain additional disease heritability and play an important role in association studies.Therefore, to test association between rare variants and an ordinal trait, a new adaptive association method(CCT-OR)based on Cauchy combination test is proposed, which defines the weighted sum of transformed P values as test statistic.Finally, to further eliminate the noise caused by non-causal variants, an adaptive test statistic is proposed.Simulation studies show that compared to several comparison methods, our proposed method(CCT-OR)is more powerful and robust to the direction of effect of causal variants, and can guard against the effect of non-causal variants.

Keywords: association analysis; rare variant; ordinal trait; ordinal logistic regression

0 Introduction

Large-scale biobanks contain hundreds of thousands of genotyped and extensively phenotyped subjects, which are valuable to identify genetic mechanism[1].In biobanks, there are many ordinal categorical data from surveys and questionnaires[2].These ordinal data reflect human satisfaction, preferences, and behaviors.For such ordinal traits, because there is not any underlying measurable scale, it is not appropriate to take the ordinal trait as a quantitative variable and use the linear regression model.In addition, it is inappropriate to dichotomize the ordinal trait into two categories and use logistic regression model, that would be just emblematic of the power loss.

Both genetic epidemiology studies and electronic health records provide hundreds of thousands of clinically relevant ordinal traits that are associated with the multiple underlying traits[3].Though multivariate association analysis can be carried out based on multiple underlying traits, this method requires more parameters and it is hard to interpret results.However, many association methods pay more attention to dichotomous and/or quantitative traits, seldom to ordinal traits.

With the development of DNA sequencing technology, rare variants(minor allele frequency(MAF)< 5%)can be detected and play an important role in association studies.Due to low MAFs of rare variants, it is not optimal to test a single rare variant by association methods to test a common variant.Hence, a lot of association methods have been proposed to detect the collective effect of multiple rare variants in a gene or region.For rare-variant association studies, burden tests and non-burden tests are the most widely used, such as the sum test(SUM)[4], the weighted sum test(WSS)[5], and the sequence kernel association test(SKAT)[6].However, these methods have advantages and disadvantages, underlying genetic mechanisms are commonly unknown.To further improve power, Seunggeun et al.put forward a data-adaptive optimal test(SKAT-O)[7], which is a linear combination of burden test and SKAT.

To detect rare variants associated with an ordinal trait, we propose a new association method(termed CCT-OR)based on Cauchy combination test[8], which defines the weighted sum of transformedPvalues as test statistic.

1 Materials and methods

Suppose that there arenunrelated individuals, who are sequenced in a gene or region with C rare variants.For theith individual,Yi∈{0,1,…,J}denotes the ordinal trait value,Gic∈{0,1,2}denotes the genotype score at thecth variant site, andXi=(Xi1,Xi2,…,XiL)Tdenotes covariate vector,c=1,2,…,C,i=1,2,…,n.

To enrich association signals of extremely rare variants(a minor-allele count less than a certain number, e.g.,10), the burden method is first used to aggregate extremely rare variants.Then we test the aggregated rare variants and the other rare variants, respectively.Let genotype scores of the aggregated rare variants and the other rare variants beGi0,Gi1,…,GiS.

To test the significance of single variant, we use the ordinal logistic regression model

whereγjis the intercept with ascending level, andγ0≤γ1≤…≤γJ-1;αsrepresents the genetic effect of thesth variant,s=0,1,…,S;β=(β1,β2,…,βL)Tis the regression coefficient vector for covariates.Thus the likelihood ratio test is used to test the null hypothesisH0:αs=0, and the test statistic is given by

Then,p0,p1,…,pSare respectively transformed to Cauchy variables, and weighted combination of these Cauchy variables is taken as the test statistic

(1)

Because there are some non-causal variants in a gene or region, which may cause the noise and affect the performance of association test, we finally use the adaptive association method to exclude the noise caused by non-causal variants.The detailed procedure is as follows.

2)Use the firstk+1smallestpvaluesp′0,p′1,…,p′kto construct statistic

(2)

and obtainS+1 statistics andPvalues, denoted asTCCT-OR-kandpTCCT-OR-k,k=0,1,…,S.

3)The overall statistic is given by

(3)

and obtainPvalue of the statisticTby permutation process.

Because the smallerPvalue is, the more significant an association test is, the idea of statistic(3)is that more significant variants are combined, and the noise caused by non-causal variants is excluded as much as possible.

2 Simulation studies

2.1 Simulation design

Based on the simulation design of Sha et al.[10], we emerge four genes(ADAMTS4, PDE4B, MSH4, and ELAVL4)of GAW17 into a gene with 100 variants.According to the genotype scores of 697 individuals in the gene, we can generate genotype scores ofnsubjects.

To evaluate type Ⅰ error rates, we use the linear regression model

Y=0.5x1+0.5x2+e

(4)

to generate quantitative traits, wherex1andeare two covariates,x1~b(1,0.5), andx2~N(0,1);eis error term, ande~N(0,1).

To evaluate power, the linear regression model

(5)

is used to generate quantitative traits, wherex1,eandeare the same as equation(4);αiandβjare constants and determined by the heritability and minor allele frequencies of rare causal variants, that is

(6)

Finally, we use 20%, 40%, 60% and 80% sample percentiles to discretizeYand obtain five categories of ordinal traitYord(= 0,1,2,3,4).In simulation study, we compare CCT-OR with SKAT, SKAT-O, SUM, and WSS.Except for CCT-OR, other methods treat the outcome as dichotomized variable.Specifically, the individual belongs to the control group if the value of ordinal trait is 0; otherwise, the one belongs to the case group.

2.2 Simulation results

To evaluate Type Ⅰ error rates and power,Pvalues are estimated by 1 000 replications, rare variant threshold is set to 0.05, and the sample size is set to 1 000.

For 1 000 replications, the 95% confidence intervals of the estimated type I error rates are(0.003 8, 0.016)and(0.036 2, 0.063 7)at nominal levels 0.01 and 0.05.So, Table 1 shows that all methods can control type I error rates.

Table 1 Type Ⅰ error rates

Table 2 shows that with the increasing of heritability, power of all methods increases, and CCT-OR is more powerful than other methods.The reason for better performance is that CCT-OR uses the ordinal logistic regression model to construct the relationship between an ordinal trait and a rare variant, and makes use of the ordinal feature of traits.Therefore, CCT-OR is an effective method for analyzing ordinal traits.Because only deleterious variants are considered as causal ones in this scenario, WSS is more powerful than SKAT and SKAT-O.From Table 3, we find that CCT-OR is robust to the direction of effect of rare causal variants.In the presence of deleterious and protective variants, SKAT and SKAT-O work better than SUM and WSS.Table 4 presents that power of all methods improves with the increasing of proportion of causal variants.Table 5 shows that by increasing the sample size, the power of all methods can be improved.What’s more, CCT-OR can improve the power rapidly.

Table 2 Power for different heritability

Table 3 Power for different proportions of protective variants

Table 4 Power for different proportions of causal variants

Table 5 Power for different sample sizes

In conclusion, when analyzing ordinal traits, CCT-OR can improve the power of association test and make use of the ordinal feature of traits, compared with methods for dichotomous and/or quantitative traits.

3 Conclusions

In large-scale biobanks, ordinal traits are common data types, which are used to reflect the human behavior and stage of disease.Therefore, it is necessary to develop powerful association methods for analyzing ordinal traits.In this work, we propose an association method(CCT-OR)to detect rare variants associated with an ordinal trait.CCT-OR can guard against the effect of non-causal variants, is robust to the direction of effect of causal variants, and is a powerful association method.So, as an association method for ordinal traits, CCT-OR is valid and feasible.

In view of unknown genetic mechanisms, rare or common variants may be causal in a gene or region, so it is necessary for us to simultaneously detect rare and common causal variants in the future.In addition, ordinal traits are widely observed and sample size distribution for different categories can be unbalanced in biobanks, which can result in inflated type Ⅰ error rates and loss of power.So, we will pay attention to the effect of the unbalanced sample size distribution on association test for analyzing ordinal traits.

Acknowledgments

This research was supported by the Natural Science Foundation of Heilongjiang Province of China(LH2019A020).The Genetic Analysis Workshops are supported by GAW grant R01 GM031575 from the National Institute of General Medical Sciences.Preparation of the Genetic Analysis Workshop 17 Simulated Exome Dataset was supported in part by NIH R01 MH059490 and used sequencing data from the 1 000 Genomes Project(http://www.1000genomes.org).

主站蜘蛛池模板: 久久久久88色偷偷| 亚洲国产系列| 韩日无码在线不卡| 五月婷婷综合网| 国产成人夜色91| 久久精品免费看一| 在线人成精品免费视频| 在线日本国产成人免费的| 一区二区午夜| 熟妇无码人妻| av午夜福利一片免费看| 97免费在线观看视频| 在线中文字幕日韩| 国内精品视频| 国产精品亚欧美一区二区三区| 青草国产在线视频| 少妇被粗大的猛烈进出免费视频| 欧美国产在线一区| 亚洲福利网址| 欧美午夜理伦三级在线观看 | 国产黄在线免费观看| 国产麻豆va精品视频| 国产原创演绎剧情有字幕的| 欧美在线一级片| 免费不卡视频| 波多野结衣二区| 亚洲人成在线免费观看| 国产毛片一区| 久久国产av麻豆| 日韩欧美高清视频| 狠狠ⅴ日韩v欧美v天堂| 国产一区亚洲一区| 爆操波多野结衣| 91欧美在线| 夜夜操天天摸| a级毛片免费网站| 无码日韩视频| 国产精品无码一二三视频| 欧美综合区自拍亚洲综合绿色| 偷拍久久网| 国产va在线观看免费| 日本不卡在线视频| 国产97区一区二区三区无码| 午夜视频在线观看免费网站 | 天堂亚洲网| 99er精品视频| 99久久免费精品特色大片| 69精品在线观看| 欧美精品成人| 毛片基地视频| 色综合激情网| 亚洲欧美综合精品久久成人网| 极品私人尤物在线精品首页| 91免费国产在线观看尤物| 色综合天天综合| 欧美日韩精品一区二区视频| 亚洲三级片在线看| 亚洲无码高清一区二区| 国产aⅴ无码专区亚洲av综合网| 国产偷国产偷在线高清| 久久久久人妻一区精品| 中文字幕在线播放不卡| 国产白丝av| 色男人的天堂久久综合| 久久伊人久久亚洲综合| 久久伊人色| av手机版在线播放| 米奇精品一区二区三区| 美女无遮挡拍拍拍免费视频| 欧美国产日产一区二区| 久久激情影院| 青草精品视频| 精品伊人久久大香线蕉网站| 国产屁屁影院| 免费看美女自慰的网站| 制服丝袜在线视频香蕉| 精品無碼一區在線觀看 | 天天干天天色综合网| 丝袜美女被出水视频一区| 国产高清色视频免费看的网址| 99精品国产自在现线观看| 亚洲精品福利视频|