999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Exact Boundary Controllability of Fifth-order KdV Equation Posed on the Periodic Domain

2022-12-28 09:18:20YANGShuningandZHAOXiangqing

YANG Shuning and ZHAO Xiangqing

1 School of Information and Engineering,Zhejiang Ocean University,Zhoushan 316022,China.

2 Department of Mathmatics,Suqian University,Suqian 223800,China.

Abstract. In this paper, we show by Hilbert Uniqueness Method that the boundary value problem of fifth-order KdV equation

Key Words: Fifth-order KdV equation;Hilbert Uniqueness Method;exact controllability.

1 Introduction

In[1,2],the authors have studied the internal controllability of the fifth-order Kortewegde Vries equation posed on a periodic

one can find a control input h∈L2(0,T;Hs(T))such that the system(1.1)admits a solution u∈C(0,T;Hs(T))satisfying

Naturally, we will ask the question that how about boundary controllability of the system.Specifically,is the following system

and that the Sobolev norm

2 Observability inequality

As is well-known,the controllability of the original system is equivalent to the observability of its adjoint system. As preparation for the Hilbert Uniqueness Method argument,we'll establish the critical identity and observability inequality in this section.

2.1 Adjoint system

Firstly,we show the representation of the solution for the adjoint system

2.2 Observability inequality

With the explicit solution(2.2)of adjoint system in hand,we can establish the observability inequality:

We get the left inequality in the general case by a density argument.

2.3 Existence of solution

In order to show the existence of solution to After this transformation,the existence of solution of(2.5)is classic results of semi-group theory.

2.4 Critical Identity

Combine(2.1)and(2.5),we establish the critical identity.

where[x]denotes the integral part of a real numberx.

3) IdentifyingL2(0,2π) with its dual by means of the (conjugate linear) mappingy(·,y)L2(0,2π),we have the following diagram:

where each embedding is dense and compact. Moreover

is a continuous linear form. On the other hand the map

is clearly an automorphism of Hilbert space. Hence for eachS∈[0,T],y(S) is uniquely defined in(H4p)'. Moreover forS∈[0,T],

whereCis a positive constant which does not depend onSor ony0,h0,h1,h2,h3,h4. Since

3 HUM argument

We complete the proof of Theorem 1.1. by applying Hilbert Uniqueness Method argument.

It follows from Lax-Milgram theorem that Λ is invertible. Thus, the system is exact controllable.

4 Concluding remarks

Remark 4.1. (i)IfT=2πthe observability result is obvious. Indeed,for anyuT∈H4p

Remark 4.2.Progress on the internal controllability on the fifth-order Korteweg-de Vries equation have made in the past(see[1,2,7])following the step of that of classic Kortewegde Vries equation.However,for the boundary controllability on the fifth-order Kortewegde Vries equation,there is still a long way to go.

Acknowledgement

This work is financially supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY18A010024)and National Natural Science Foundation of China(No.12075208).

主站蜘蛛池模板: 亚洲精品成人片在线观看| 日韩天堂网| 日韩av电影一区二区三区四区| 一级成人a毛片免费播放| 久久青草免费91线频观看不卡| 国产在线精品99一区不卡| 高清免费毛片| 爱爱影院18禁免费| 国产成人你懂的在线观看| 伊人国产无码高清视频| 国产成年女人特黄特色毛片免 | 国产精品视频系列专区| 欧美a在线| a级毛片视频免费观看| 99这里只有精品免费视频| 国产中文在线亚洲精品官网| 久久国产亚洲偷自| 午夜在线不卡| 久久久91人妻无码精品蜜桃HD| 国产欧美日本在线观看| 99久久精品久久久久久婷婷| 911亚洲精品| 亚欧美国产综合| 欧美成人精品欧美一级乱黄| 欧美一区二区三区不卡免费| 四虎国产永久在线观看| 国产一二视频| 国产精品免费电影| 色婷婷久久| 国产一区二区三区在线观看免费| 特级aaaaaaaaa毛片免费视频| 国产精品一区二区久久精品无码| 欧美第九页| 亚洲午夜综合网| 国产aaaaa一级毛片| 精品三级在线| 亚洲最大福利视频网| 日韩天堂在线观看| 国产欧美日韩va另类在线播放| 中国黄色一级视频| 丝袜国产一区| 精品国产福利在线| 在线观看精品自拍视频| 亚洲成aⅴ人片在线影院八| 国产精品久久自在自线观看| 一级爱做片免费观看久久| 日本精品视频一区二区| 日韩无码视频播放| 美女被操91视频| 区国产精品搜索视频| 少妇露出福利视频| 国产精品成人免费视频99| 国产亚洲美日韩AV中文字幕无码成人| 视频一本大道香蕉久在线播放| 欧美国产中文| 四虎国产成人免费观看| 青草国产在线视频| 久久综合国产乱子免费| 亚洲人成色77777在线观看| 爽爽影院十八禁在线观看| 亚洲色成人www在线观看| 999国产精品永久免费视频精品久久| 亚洲成人播放| 国产屁屁影院| 露脸一二三区国语对白| 毛片网站在线播放| 欧美亚洲国产精品久久蜜芽| 亚洲欧美日韩中文字幕一区二区三区| 国产原创演绎剧情有字幕的| 日韩精品成人在线| 2021国产在线视频| 九九九精品视频| 伊人久久影视| 天堂在线视频精品| 手机成人午夜在线视频| 日韩精品一区二区三区swag| 国产精品3p视频| 自拍偷拍欧美日韩| 精品人妻AV区| 四虎成人免费毛片| 亚洲国产精品一区二区第一页免 | 婷婷五月在线|