瞿光凡,巴良杰,王瑞,馬超,吉寧,曹森
褪黑素在果蔬采后保鮮的應用研究進展
瞿光凡1,2,巴良杰1,2,王瑞1,2,馬超1,2,吉寧1,2,曹森1,2
(1.貴陽學院 食品與制藥工程學院,貴陽 550005;2.貴州省果品加工工程技術研究中心,貴陽 550005)
通過介紹褪黑素對采后果蔬生理、營養品質、能量代謝、風味變化、冷害調控和抗病性的影響,為褪黑素在果蔬采后保鮮的應用提供理論借鑒。綜述國內外褪黑素在不同品種果蔬采后上的保鮮效果。褪黑素可以調控果蔬的成熟與衰老,提高果蔬的抗冷性和抗病性,維持果蔬較高的營養物質,保持果蔬更好的生理品質。褪黑素可顯著延長采后果蔬的貯藏期,在未來采后果蔬保鮮領域具有廣闊的發展空間。
褪黑素;果蔬;保鮮效果;研究進展
褪黑素(Melatonin, MT)是一種內源性、具有多種調節功能的生物活性分子,可以參與果蔬的生長、分化、成熟、衰老和防御等多種生理活動[1]。褪黑素也是一種天然、高效、安全性高、無污染的新型生物保鮮劑[2],其已廣泛應用于果蔬的采后保鮮,可有效提高果實的抗冷性[3],延緩果蔬的成熟衰老進程[4-5],保持鮮切果實較高的營養品質[6],提高果蔬的抗病性[7-8]。
近年來研究者發現,褪黑素對果蔬采后的保鮮作用主要通過降低果蔬的呼吸速率、降低乙烯生成量[9-10]、延緩果實成熟來達到;也有研究者報道,褪黑素作為一種信號分子,具有較強的抗氧化能力,不僅可以誘導內源褪黑素積累,從而調控果蔬的生理、生化和分子機制,還能通過中和自由基、增強酶或非酶抗氧化活性、防止細胞內抗氧化酶失活、抑制活性氧自由基的產生等模式來調控果實的成熟衰老[11-12]。文中主要綜述國內外研究者報道的關于褪黑素對果蔬采后成熟衰老、品質劣變、病害防控的調控作用等方面,以期為褪黑素在果蔬采后貯藏保鮮上的進一步研究提供理論指導。
果蔬在呼吸過程中伴隨著內源乙烯的增加,內源乙烯的積累加快了果蔬的成熟軟化進程[13]。近年來,MT在改善采后果蔬品質、延緩果蔬成熟衰老中發揮著重要作用。Hu等[14]研究發現,外源褪黑素處理能顯著抑制香蕉果實中乙烯合成相關基因ACS、ACO表達和淀粉的降解,推遲了香蕉果實呼吸高峰的出現,有效延遲了香蕉果實成熟的進程。Tan等[5]研究發現,采用褪黑素噴灑處理的大白菜,其對照組的呼吸速率和乙烯釋放量顯著高于處理組,并且處理組的葉綠素含量顯著大于對照組,從而有效延緩了大白菜的衰老黃化進程。研究者還發現,采用褪黑素處理可以顯著提升梨果實內一氧化氮合酶的活性與TDC、T5H基因的表達量,從而導致梨果的乙烯生物合成量和呼吸速率下降[15]。MT還可通過調節蘋果貯藏期間的呼吸速率和乙烯的生成,降低果實細胞中丙二醛的積累和果實水分的流失,顯著延長蘋果的貯藏期[16]。此外,外源褪黑素處理還可降低桃果[3]、芒果[17]、白菜[5]的呼吸強度及內源乙烯的生成量,使采后果蔬的呼吸處于一種低而正常的狀態,有利于延長果蔬貯藏期。
采后貯藏的果蔬仍然可以正常進行呼吸和生理機能代謝活動,而果蔬的生理機能代謝活動需ATP提供能量[18],低能量狀態會增強果蔬的呼吸速率,消耗大量的有機物,加劇活性氧的積累,并加速膜脂過氧化,導致果蔬生理機能下降[19],而高能量狀態可維持果蔬正常的生理機能代謝活動,延遲采后果蔬的后熟衰老進程。胡苗[19]研究發現,外源褪黑素均能抑制冷藏期間水蜜桃SDH、CCO、H+-ATP酶和Ca2+-ATP酶的活力,提高桃果的能荷水平。Wang等[20]研究結果顯示,0.4 mmol/L褪黑素處理可抑制荔枝果皮SDH、CCO、H+-ATP酶和Ca2+-ATP酶的活性,維持荔枝果中較高的脂肪酸、ATP和ADP等含量,使果皮組織細胞處于高能量狀態,從而延緩荔枝果實的品質劣變進程。此外,褪黑素處理還能激活三磷酸腺苷酶和煙酰胺腺嘌呤二核苷酸激酶活性,維持大白菜葉片較高的能量狀態,延緩大白菜葉片黃化進程[5]。由此可見,能量狀態與果蔬的生理活動密切相關,調控采后果蔬的能量狀態對延長果蔬的貯藏期尤其重要。
果蔬在采摘后會快速衰老,表現為脫水、表皮皺縮、果肉軟化及腐爛等[13],導致果蔬的品質下降。Liu等[21]研究發現,采用0.1 mol/L外源褪黑素浸泡處理草莓果實,有效降低了草莓的腐爛率和質量損失率,有效減緩了果實中水分的流失,提高了草莓果實的亮度。據Gao等[3]報道可知,外源褪黑素浸泡處理可誘導提高桃果實在貯藏期間的抗氧化酶活性,從而維持ROS代謝平衡,促進了桃果實酚類物質的積累。Rastegar等[22]研究了褪黑素浸泡處理采后芒果,發現處理后可顯著抑制芒果中抗壞血酸、總酚、總黃酮和可滴定酸等含量的下降,穩定果實膜脂結構、 增強膜脂功能,提高了芒果貯藏期的營養品質。Xia等[23]的研究結果表明,褪黑素噴灑處理可上調葡萄漿果MYBA1和MYBA2基因表達,促進果實中花青素的積累,增加可溶性糖的含量,并提高礦物質營養素N、K、Cu、Fe、Zn的含量。研究還發現,經褪黑素浸泡過的黃瓜,其處理組的可滴定酸、抗壞血酸、可溶性蛋白和葉綠素等含量顯著高于對照組,有效減少了黃瓜貯藏期間營養物質的流失[24]。此外,褪黑素處理還可誘導雙孢菇帽酚類物質和抗壞血酸含量的增加,改善雙孢蘑菇帽的營養品質[25]。
果蔬中的有機酸、糖類、酯類化合物、揮發性物質等是形成果蔬風味的重要物質[26]。果蔬的風味與果蔬的品質密切相關,當果蔬的品質發生劣變,果蔬的風味會受到一定的影響,并散發出令人不愉快的氣味。杜天浩等[27]研究發現,MT浸泡處理提高了在鹽脅迫的逆境環境下番茄果實的有機酸、糖酸比和揮發性芳香物質等含量,增加了番茄果實的香氣成分。王紀忠等[28]發現,MT有效提高了梨果實貨架期的可溶固形物含量,增加了果實中酯類、醛類和酮類物質,保持了梨果特有的風味。朱賽賽等[26]探究不同濃度MT對采后蜂糖李果實保鮮效果的影響,結果表明,適宜的MT含量會將果實中抗壞血酸、可滴定酸和可溶性糖等含量維持在較高的水平,有利于果實揮發性成分的積累,有效保持了蜂糖李的鮮味。另外,劉建龍[29]研究結果表明,褪黑素處理可上調蔗糖磷酸合酶和蔗糖合酶基因表達,降低酸性轉化酶的基因表達,從而誘導增強蔗糖磷酸合酶和蔗糖合酶的活性,維持較低酸性轉化酶活性,有助于減緩梨果實中糖的降解進程。Xia等[23]報道,褪黑激素會誘導增強蔗糖磷酸合酶的活性,增加葡萄果實的可溶性糖含量,從而促進果實內源MT的積累和激活花青素合成的通路。此外,Tan等[5]研究發現,外源MT處理可調節大白菜中葡萄糖-6-磷酸脫氫酶和6-磷酸葡萄糖酸脫氫酶活性的上升,使白菜葉片的總糖含量保持在較高的水平。由此可知,外源褪黑素處理通過誘導提高果蔬中有機酸、糖酸比、醛類和酮類等物質的含量,從而維持果蔬的風味。
低溫能降低果蔬貯藏環境中氧氣與二氧化碳的比例,抑制果蔬中有機物的降解和病原菌的生長,限制采后果蔬中酶的活力,從而延長果蔬采后的貯藏期[9]。由于低溫貯藏容易導致果蔬發生冷害,果蔬低溫冷害的發生通常表現為冰點以上溫度對果蔬的細胞、組織和器官造成傷害,使果蔬的細胞、組織和器官的機能下降,引起果蔬代謝紊亂,對致病菌的抵抗能力下 降[30]。發生冷害的果蔬表面較黏滑,躍變型果實不能正常后熟,果蔬表皮出現皺縮凹陷、斑紋,果肉出現點蝕,且花萼變黑、組織水分流失,導致果實的硬度上升,從而出現僵果、木質化加重、局部果肉部分浸水、果蔬組織褐變、果蔬風味喪失、產生異味、腐爛等現象[30-31]。此外,有些果蔬在貨架時才表現出冷害癥狀,導致果蔬快速腐爛變質,失去食用價值。
2.3.1 調節ROS代謝平衡
果蔬細胞中ROS自由基積累會引起果蔬膜完整性和功能的喪失,膜脂抗氧化能力下降,以及電解質外滲,從而導致果蔬冷害的發生[32]。Shang等[33]研究結果顯示,采用0.05 mmol/L褪黑素處理會顯著提高藍莓中抗壞血酸過氧化物酶和谷胱甘肽S-轉移酶的活性,維持較高ROS自由基清除能力,有效提高藍莓果實的抗冷能力。Gao等[34]還發現,褪黑素處理促進了草菇檸檬酸循環、谷胱甘肽代謝和脯氨酸代謝,激活了脂氧合酶、谷胱甘肽還原酶和SOD活性,以此減輕了鎘對草菇的損傷,有利于草菇對冷脅迫的抵御。另外,褪黑素還可誘導提高蘋果中抗壞血酸過氧化物酶、脂氧合酶和谷胱甘肽硫轉移酶等的活性,增強蘋果的抗冷性[35]。此外,MT會觸發番茄果實中ROS自由基清除系統,以及抑制細胞凋亡的蛋白質積累,從而增強番茄果實的抗冷應激能力[36]。
2.3.2 調節膜脂及酚類代謝
采后果蔬的冷害和衰老與細胞膜系統的完整性和功能緊密相關,膜結構和功能的損傷導致果實細胞中膜脂降解,以及酚類物質被酶氧化轉化為醌類物質,從而引起果蔬褐變,且食用時感覺淡而無味[37-38]。研究發現,采用褪黑素處理荔枝果實,其磷脂酶D、脂肪酶和脂氧合酶的活性顯著上升,同時減緩了磷脂酰膽堿(PC)水解成磷脂酸(PA),使荔枝果實中油酸、亞油酸和亞麻酸的含量維持在較高水平,減輕了荔枝冷害及褐變的發生[20]。Gao等[3]報道了采用褪黑素浸泡桃果,維持了桃果較高的不飽和脂肪酸含量和較低的飽和脂肪酸含量,誘導G6PDH、SKDH和PAL活性增加,且促進了總酚物質和內源性水楊酸的積累,減輕了桃果冷害的發生。Aghdam等[39]研究結果顯示,褪黑素處理能夠提高石榴果實在冷藏過程中APX、GR、G6PDH活性,促進酚類、花青素、AA和谷胱甘肽的積累,增強石榴果實的抗冷能力。此外,褪黑素處理還可增加青椒脯氨酸、亞油酸與亞麻酸的比例[40],激活番茄果實GABA分流通路活性[41],從而減輕了果蔬的冷害癥狀。
2.3.3 激活精氨酸代謝通路
果蔬中聚胺、脯氨酸、γ-氨基丁酸和一氧化氮等物質能夠在果蔬受冷激脅迫下作出響應,而精氨酸不僅通過NOS反應生成一氧化氮,還可通過精氨酸脫羧酶和精氨酸酶合成聚胺和鳥氨酸,鳥氨酸進一步生成腐胺[42-43]。此外,精氨酸又可用于鳥氨酸脫羧酶或脯氨酸氨基轉移酶合成聚氨酸[42]。可見,精氨酸的代謝受到多種酶的調控,當果蔬受到冷激脅迫或外界環境刺激時,酶活性的變化會調控精氨酸的代謝途徑和方向。Bajwa等[44]研究發現,褪黑激素通過上調ZAT10和ZAT12基因的表達,并激活CBFs基因表達,促進擬南芥內源性聚胺的積累,提高擬南芥的抗冷性。研究還發現,褪黑激處理上調了ZAT12基因的表達,提升了內源性聚胺的積累和ROS清除系統的活性,增強了黃瓜幼苗的耐寒性[45]。此外,據Aghdam等[42]報道可知,褪黑素誘導了番茄果實ADC、ODC、P5CS、OAT和NOS基因表達上調,激活了CBF1信號觸發精氨酸的代謝通路,從而促進了內源性聚氨酸、脯氨酸和一氧化氮的積累,增強了番茄果實的耐寒性。
2.3.4 誘導采后果蔬基因表達
近年來,關于MT在果蔬采后保鮮的研究主要集于果蔬的生理層面,也有許多研究者從分子的角度解釋了MT在一些果蔬上的作用機制。果蔬的生理機能不僅受到外部環境的干擾,還受到內部基因和轉錄因子的調控。據報道,MT通過抑制BrABF1、BrABF4和BrABI5表達,阻止了脫落酸的生成和葉綠素的降解,提高了大白菜葉片對逆境脅迫的抗性[46]。Shang等[33]研究表明,MT誘導了抗氧化基因VcAPX、VcGST和VcPAL的表達量上調,使藍莓的膜脂過氧化降低,延緩了藍莓果實冷害的發生。MT還能誘導上調基因MeCAT1、MeGPX、MePX3和MeGST的表達量,從而延緩木薯根的衰老[47]。另外,MT調節基因SND2、KNAT7、MYB20和MYB85表達量的下調,減輕了竹筍的木質化[48],觸發了TDC、T5S、SNAT和ASMT基因的表達,從而提高了內源MT的積累,并調控了苯丙烷通路,增加了酚類、花青素及谷胱甘肽等含量,增強了石榴果實的抗冷能力[39]。此外,褪黑素處理誘導了miR528表達,降低了MaPPO1、MaPPO2和MaPPO3潛在靶基因表達,促進了香蕉果實中磷脂和不飽和脂肪酸的積累,減輕了果皮褐變,提高了果實的抗冷脅迫能力[49]。Kong等[40]研究發現,采用100 μmol/L褪黑素處理上調節了CaSOD、CaPOD、CaCAT和CAAPX基因的轉錄水平,觸發了青椒中的抗氧化保護系統,從而抵抗了氧化損傷,增強了青椒對冷脅迫的抵抗。
果蔬采后在貯運和貯藏過程中容易遭受損傷,引起果蔬代謝紊亂,導致果蔬的免疫力下降,從而促進病原菌的生長繁殖。由病原菌引起果蔬采后品質劣變是近年來仍需解決的一個難題。生吉萍等[50]采用100 mmol/L褪黑素采前噴施處理誘導番茄果實中幾丁質酶、β-1,3-葡聚糖酶等抗病相關酶活力的上升,有效增強了貯藏期間番茄果實的抗病能力。孫子荀等[51]發現,外源褪黑素能有效抑制黑斑病致病菌鏈格孢菌的菌絲生長,增強采后草莓對黑斑病入侵的抵御。外源褪黑素也能誘導果實內防御酶活性的上升,抑制蘋果灰霉病病斑的擴大[52],并且還可激活苯丙烷代謝的通路,促進果實IAA的積累,增強荔枝對霜霉病的抵抗能力[53]。此外,褪黑素誘導提高PbOPR3基因表達來調控茉莉酸的通路[54],激活SA信號通路,并誘導SA受體蛋白NPR1的核定位[55],調控果蔬細胞H2O2的積累,調節細胞內活性氧自由基平衡[56],上調NO合成基因表達,促進果實細胞內NO的積累[42,56],并且激活MaHSP90s信號分子,增加吲哚乙酸的積累[57],從而提高采后果蔬的抗病能力。目前關于MT調控增強采后果蔬的抑菌機制的研究報道仍較少,還需進一步探究MT誘導果蔬抗病的機制。
褪黑素不僅可作為一種信號分子,參與調節果蔬采后生理代謝,保持果蔬較好的營養品質,提高采后果蔬總糖含量和能量水平,改善果蔬風味,提高果蔬的抗病性,還可作為一種抗氧化物質誘導增加果蔬的采后抗氧化能力,調節ROS代謝平衡,增強果蔬對外界生物或非生物脅迫,提高果蔬對冷激脅迫的應答,延遲果蔬采后成熟衰老。目前,褪黑素對采后果蔬的冷害機制以及冷害影響果蔬的生理生化的研究已比較深入,但褪黑素對采后果蔬的風味變化和抗病性的研究報道還較少,且多數集中于果蔬的生理層面,未來可探究褪黑素對采后果蔬風味及抗病性的影響,為褪黑素在果蔬保鮮方面的應用提供更多理論支撐。
[1] REITER R J, TAN Dun-xian, ZHOU Zhou, et al. Phytomelatonin: Assisting Plants to Survive and Thrive[J]. Molecules, 2015, 20(4): 7396-7437.
[2] 童瑤, 魏樹偉, 王紀忠. 褪黑素在果蔬保鮮中的應用[J]. 果樹資源學報, 2020, 1(2): 56-59.
TONG Yao, WEI Shu-wei, WANG Ji-zhong. Application of Melatonin in Preservation of Fruits and Vegetables[J]. Journal of Fruit Resources, 2020, 1(2): 56-59.
[3] GAO Hui, LU Ze-mian, YANG Yue, et al. Melatonin Treatment Reduces Chilling Injury in Peach Fruit through Its Regulation of Membrane Fatty Acid Contents and Phenolic Metabolism[J]. Food Chemistry, 2018, 245: 659-666.
[4] WANG Feng, ZHANG Xiao-ping, YANG Qing-zhen, et al. Exogenous Melatonin Delays Postharvest Fruit Senescence and Maintains the Quality of Sweet Cherries[J]. Food Chemistry, 2019, 301: 125311.
[5] TAN Xiao-li, FAN Zhong-qi, ZENG Ze-xiang, et al. Exogenous Melatonin Maintains Leaf Quality of Postharvest Chinese Flowering Cabbage by Modulating Respiratory Metabolism and Energy Status[J]. Postharvest Biology and Technology, 2021, 177: 111524.
[6] ZHENG Huan-huan, LIU Wei, LIU Shuai, et al. Effects of Melatonin Treatment on the Enzymatic Browning and Nutritional Quality of Fresh-Cut Pear Fruit[J]. Food Chemistry, 2019, 299: 125116.
[7] LIU Na, LI Jin-wu, LV Jian, et al. Melatonin Alleviates Imidacloprid Phytotoxicity to Cucumber (Cucumis Sativus L) through Modulating Redox Homeostasis in Plants and Promoting Its Metabolism by Enhancing Glutathione Dependent Detoxification[J]. Ecotoxicology and Environmental Safety, 2021, 217: 112248.
[8] 臧華偉. 外源褪黑素和硒對番茄果實采后灰霉病的控制作用及機理[D]. 合肥: 安徽農業大學, 2020: 19-47.
ZANG Hua-wei. Exogenous Melatonin and Selenium Induce Disease Resistance to Postharvest Gray Mold in Tomato Fruit[D]. Hefei: Anhui Agricultural University, 2020: 19-47.
[9] 孫若蘭, 肖靚, 易有金, 等. 雙孢蘑菇采后貯藏保鮮研究進展[J]. 食品科學, 2021, 42(1): 333-340.
SUN Ruo-lan, XIAO Liang, YI You-jin, et al. Progress in Techniques for Postharvest Quality Preservation of Agaricus Bisporus[J]. Food Science, 2021, 42(1): 333-340.
[10] ZHAI Rui, LIU Jian-long, LIU Feng-xia, et al. Melatonin Limited Ethylene Production, Softening and Reduced Physiology Disorder in Pear (Pyrus Communis L) Fruit during Senescence[J]. Postharvest Biology and Technology, 2018, 139: 38-46.
[11] ARNAO M B, HERNáNDEZ-RUIZ J. Melatonin and Its Relationship to Plant Hormones[J]. Annals of Botany, 2017, 121(2): 195-207.
[12] GALANO A, TAN Dun xian, REITER R J. Melatonin as a Natural Ally Against Oxidative Stress: A Physicochemical Examination[J]. Journal of Pineal Research, 2011, 51(1): 1-16.
[13] 胡青霞, 張麗婷, 李洪濤, 等. 石榴果實貯期生理變化與采后保鮮技術研究進展[J]. 河南農業科學, 2014, 43(3): 5-11.
HU Qing-xia, ZHANG Li-ting, LI Hong-tao, et al. Research Progress on Physiological Changes during Storage and Postharvest Preservation Technology of Pomegranate Fruits[J]. Journal of Henan Agricultural Sciences, 2014, 43(3): 5-11.
[14] HU Wei, YANG Hai, TIE Wei-wei, et al. Natural Variation in Banana Varieties Highlights the Role of Melatonin in Postharvest Ripening and Quality[J]. Journal of Agricultural and Food Chemistry, 2017, 65(46): 9987-9994.
[15] LIU Jian-long, YANG Jie, ZHANG Hai-qi, et al. Melatonin Inhibits Ethylene Synthesis via Nitric Oxide Regulation to Delay Postharvest Senescence in Pears[J]. Journal of Agricultural and Food Chemistry, 2019, 67(8): 2279-2288.
[16] ONIK J C, WAI S C, LI Ang, et al. Melatonin Treatment Reduces Ethylene Production and Maintains Fruit Quality in Apple during Postharvest Storage[J]. Food Chemistry, 2021, 337: 127753.
[17] LIU Shuai-min, HUANG Hua, HUBER D J, et al. Delay of Ripening and Softening in 'Guifei' Mango Fruit by Postharvest Application of Melatonin[J]. Postharvest Biology and Technology, 2020, 163: 111136.
[18] 李美玲, 林育釗, 王慧, 等. 能量狀態在果蔬采后衰老中的作用及其調控研究進展[J]. 食品科學, 2019, 40(9): 290-295.
LI Mei-ling, LIN Yu-zhao, WANG Hui, et al. Recent Advances in the Role and Regulation of Energy Status in Senescence of Harvested Fruits and Vegetables[J]. Food Science, 2019, 40(9): 290-295.
[19] 胡苗. 采后褪黑素處理對‘華優’獼猴桃果實冷害和成熟衰老的影響[D]. 咸陽: 西北農林科技大學, 2018: 18-34.
HU Miao. Effect of Melatonin Treatment on Postharvest Fruit Chilling Injury and Senescence in 'Hua You' Kiwifruit[D]. Xianyang: Northwest A & F University, 2018: 18-34.
[20] WANG Tian, HU Mei-jiao, YUAN De-bao, et al. Melatonin Alleviates Pericarp Browning in Litchi Fruit by Regulating Membrane Lipid and Energy Metabolisms[J]. Postharvest Biology and Technology, 2020, 160: 111066.
[21] LIU Chang-hong, ZHENG Huan-huan, SHENG Kang-liang, et al. Effects of Melatonin Treatment on the Postharvest Quality of Strawberry Fruit[J]. Postharvest Biology and Technology, 2018, 139: 47-55.
[22] RASTEGAR S, HASSANZADEH K H, RAHIMZADEH M. Effects of Melatonin Treatment on the Biochemical Changes and Antioxidant Enzyme Activity of Mango Fruit during Storage[J]. Scientia Horticulturae, 2020, 259: 108835.
[23] XIA Hui, SHEN Yan-qiu, DENG Hong-hong, et al. Melatonin Application Improves Berry Coloration, Sucrose Synthesis, and Nutrient Absorption in 'Summer Black' Grape[J]. Food Chemistry, 2021, 356: 129713.
[24] 辛丹丹, 司金金, 寇莉萍. 黃瓜采后外源褪黑素處理提高品質和延緩衰老的研究[J]. 園藝學報, 2017, 44(5): 891-901.
XIN Dan-dan, SI Jin-jin, KOU Li-ping. Postharvest Exogenous Melatonin Enhances Quality and Delays the Senescence of Cucumber[J]. Acta Horticulturae Sinica, 2017, 44(5): 891-901.
[25] SHEKARI A, HASSANI R N, AGHDAM M S, et al. The Effects of Melatonin Treatment on Cap Browning and Biochemical Attributes of Agaricus Bisporus during Low Temperature Storage[J]. Food Chemistry, 2021, 348: 129074.
[26] 朱賽賽, 張敏. 溫度激化處理對采后果蔬貯藏品質影響的研究進展[J]. 食品科學, 2016, 37(5): 230-238.
ZHU Sai-sai, ZHANG Min. Advances in the Study of the Effect of Temperature Shock Treatments on Storage Quality of Postharvest Fruits and Vegetables[J]. Food Science, 2016, 37(5): 230-238.
[27] 杜天浩, 周小婷, 朱蘭英, 等. 褪黑素處理對鹽脅迫下番茄果實品質及揮發性物質的影響[J]. 食品科學, 2016, 37(15): 69-76.
DU Tian-hao, ZHOU Xiao-ting, ZHU Lan-ying, et al. Effect of Melatonin Treatment on Tomato Fruit Quality and Volatile Compounds under Salt Stress[J]. Food Science, 2016, 37(15): 69-76.
[28] 王紀忠, 童瑤, 史云勇, 等. 外源褪黑素處理對常溫貨架期梨果實貯藏品質的影響[J]. 果樹學報, 2021, 38(4): 569-579.
WANG Ji-zhong, TONG Yao, SHI Yun-yong, et al. Effects of Exogenous Melatonin Treatment on Storage Quality of Pear Fruits during Shelf Life at Room Temperature[J]. Journal of Fruit Science, 2021, 38(4): 569-579.
[29] 劉建龍. 外源褪黑素對梨果實發育、采后品質和抗輪紋病的影響及其調控機制研究[D]. 咸陽: 西北農林科技大學, 2019: 92-105.
LIU Jian-long. Regulatory Function of Exogenous Melatonin on Fruit Development, Postharvest Fruit Quality and Ring Rot Disease Resistance in Pears[D]. Xianyang: Northwest A & F University, 2019: 92-105.
[30] 張丹丹, 屈紅霞, 段學武, 等. 熱帶果蔬采后冷害研究進展[J]. 熱帶作物學報, 2020, 41(10): 2062-2079.
ZHANG Dan-dan, QU Hong-xia, DUAN Xue-wu, et al. Advances in Postharvest Chilling Injury of Tropical Fruit and Vegetable[J]. Chinese Journal of Tropical Crops, 2020, 41(10): 2062-2079.
[31] ENDO H, MIYAZAKI K, OSE K, et al. Hot Water Treatment to Alleviate Chilling Injury and Enhance Ascorbate-Glutathione Cycle in Sweet Pepper Fruit during Postharvest Cold Storage[J]. Scientia Horticulturae, 2019, 257: 108715.
[32] YANG Zhen-feng, CAO Shi-feng, SU Xin-guo, et al. Respiratory Activity and Mitochondrial Membrane Associated with Fruit Senescence in Postharvest Peaches in Response to UV-C Treatment[J]. Food Chemistry, 2014, 161: 16-21.
[33] SHANG Fan-zhen, LIU Rui-ling, WU Wei-jie, et al. Effects of Melatonin on the Components, Quality and Antioxidant Activities of Blueberry Fruits[J]. LWT, 2021, 147: 111582.
[34] GAO Ying-yu, WANG Ying, QIAN Jiang, et al. Melatonin Enhances the Cadmium Tolerance of Mushrooms through Antioxidant-Related Metabolites and Enzymes[J]. Food Chemistry, 2020, 330: 127263.
[35] WANG Ping, YIN Li-hua, LIANG Dong, et al. Delayed Senescence of Apple Leaves by Exogenous Melatonin Treatment: Toward Regulating the Ascorbate-Glutathione Cycle[J]. Journal of Pineal Research, 2012, 53(1): 11-20.
[36] SUN Qian-qian, ZHANG Na, WANG Jin-fang, et al. A Label-Free Differential Proteomics Analysis Reveals the Effect of Melatonin on Promoting Fruit Ripening and Anthocyanin Accumulation Upon Postharvest in Tomato[J]. Journal of Pineal Research, 2016, 61(2): 138-153.
[37] WANG Hui, CHEN Yi-hui, SUN Jun-zheng, et al. The Changes in Metabolisms of Membrane Lipids and Phenolics Induced by Phomopsis Longanae Chi Infection in Association with Pericarp Browning and Disease Occurrence of Postharvest Longan Fruit[J]. Journal of Agricultural and Food Chemistry, 2018, 66(48): 12794-12804.
[38] ZHANG Zheng-ke, HUBER D J, QU Hong-xia, et al. Enzymatic Browning and Antioxidant Activities in Harvested Litchi Fruit as Influenced by Apple Polyphenols[J]. Food Chemistry, 2015, 171: 191-199.
[39] AGHDAM M S, LUO Zi-sheng, LI Li, et al. Melatonin Treatment Maintains Nutraceutical Properties of Pomegranate Fruits during Cold Storage[J]. Food Chemistry, 2020, 303: 125385.
[40] KONG Xi-man, GE Wan-ying, WEI Bao-dong, et al. Melatonin Ameliorates Chilling Injury in Green Bell Peppers during Storage by Regulating Membrane Lipid Metabolism and Antioxidant Capacity[J]. Postharvest Biology and Technology, 2020, 170: 111315.
[41] SHARAFI Y, AGHDAM M S, LUO Zi-sheng, et al. Melatonin Treatment Promotes Endogenous Melatonin Accumulation and Triggers GABA Shunt Pathway Activity in Tomato Fruits during Cold Storage[J]. Scientia Horticulturae, 2019, 254: 222-227.
[42] AGHDAM M S, LUO Zi-sheng, JANNATIZADEH A, et al. Employing Exogenous Melatonin Applying Confers Chilling Tolerance in Tomato Fruits by Upregulating ZAT2/6/12 Giving Rise to Promoting Endogenous Polyamines, Proline, and Nitric Oxide Accumulation by Triggering Arginine Pathway Activity[J]. Food Chemistry, 2019, 275: 549-556.
[43] AGHDAM M S, JANNATIZADEH A, LUO Zi-sheng, et al. Ensuring Sufficient Intracellular ATP Supplying and Friendly Extracellular ATP Signaling Attenuates Stresses, Delays Senescence and Maintains Quality in Horticultural Crops during Postharvest Life[J]. Trends in Food Science & Technology, 2018, 76: 67-81.
[44] BAJWA V S, SHUKLA M R, SHERIF S M, et al. Role of Melatonin in Alleviating Cold Stress in Arabidopsis Thaliana[J]. Journal of Pineal Research, 2014, 56(3): 238-245.
[45] ZHAO H, ZHANG K, ZHOU X, et al. Melatonin Alleviates Chilling Stress in Cucumber Seedlings by Up-Regulation of CsZat12 and Modulation of Polyamine and Abscisic Acid Metabolism[J]. Scientific Reports, 2017, 7: 4998.
[46] TAN Xiao-li, FAN Zhong-qi, KUANG Jian-fei, et al. Melatonin Delays Leaf Senescence of Chinese Flowering Cabbage by Suppressing ABFs-Mediated Abscisic Acid Biosynthesis and Chlorophyll Degradation[J]. Journal of Pineal Research, 2019, 67(1): e12570.
[47] MA Qiu-xiang, ZHANG Ting, ZHANG Peng, et al. Melatonin Attenuates Postharvest Physiological Deterioration of Cassava Storage Roots[J]. Journal of Pineal Research, 2016, 60(4): 424-434.
[48] LI Chang-tao, SUO Jin-wei, XUAN Ling-ling, et al. Bamboo Shoot-Lignification Delay by Melatonin during Low Temperature Storage[J]. Postharvest Biology and Technology, 2019, 156: 110933.
[49] WANG Zhi-qiang, PU Hui-li, SHAN Shuang-shuang, et al. Melatonin Enhanced Chilling Tolerance and Alleviated Peel Browning of Banana Fruit under Low Temperature Storage[J]. Postharvest Biology and Technology, 2021, 179: 111571.
[50] 生吉萍, 趙瑞瑞, 陳玲玲, 等. 褪黑素采前噴施對采后番茄果實抗病性和貯藏品質的影響[J]. 食品科學, 2020, 41(9): 188-193.
SHENG Ji-ping, ZHAO Rui-rui, CHEN Ling-ling, et al. Effect of Pre-Harvest Melatonin Spraying on the Post-Harvest Disease Resistance and Storage Quality of Tomato Fruit[J]. Food Science, 2020, 41(9): 188-193.
[51] 孫子荀, 倪照君, 高志紅, 等. 外源褪黑素提高草莓黑斑病抗性的效果和作用機制初探[J]. 西北植物學報, 2020, 40(10): 1679-1687.
SUN Zi-xun, NI Zhao-jun, GAO Zhi-hong, et al. Effect and Mechanism of Exogenous Melatonin on Improvement of Black Rot Disease Resistance in Strawberry[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1679-1687.
[52] 曹晶晶, 于子超, 張穎, 等. 外源褪黑素對蘋果采后灰霉病的防效及防御酶活性的影響[J]. 植物生理學報, 2017, 53(9): 1753-1760.
CAO Jing-jing, YU Zi-chao, ZHANG Ying, et al. Control Efficiency of Exogenous Melatonin Against Postharvest Apple Grey Mold and Its Influence on the Activity of Defensive Enzymes[J]. Plant Physiology Journal, 2017, 53(9): 1753-1760.
[53] ZHANG Zheng-ke, WANG Tian, LIU Gang-shuai, et al. Inhibition of Downy Blight and Enhancement of Resistance in Litchi Fruit by Postharvest Application of Melatonin[J]. Food Chemistry, 2021, 347: 129009.
[54] 郭博鋮, 柯希望, 高尚雨, 等. 褪黑素誘導小豆抗銹病機理的初步研究[J]. 植物保護, 2020, 46(1): 145-150.
GUO Bo-cheng, KE Xi-wang, GAO Shang-yu, et al. A Preliminary Study on the Mechanisms of Melatonin-Induced Rust Resistance of Adzuki Bean[J]. Plant Protection, 2020, 46(1): 145-150.
[55] YIN Li-hua, WANG Ping, LI Ming-jun, et al. Exogenous Melatonin Improves Malus Resistance to Marssonina Apple Blotch[J]. Journal of Pineal Research, 2013, 54(4): 426-434.
[56] CAMEJO D, GUZMáN-CEDE?O A, VERA-MACIAS L, et al. Oxidative Post-Translational Modifications Controlling Plant-Pathogen Interaction[J]. Plant Physiology and Biochemistry, 2019, 144: 110-117.
[57] WEI Yun-xie, HU Wei, WANG Qian-nan, et al. Identification, Transcriptional and Functional Analysis of Heat-Shock Protein 90s in Banana (L) Highlight Their Novel Role in Melatonin-Mediated Plant Response to Fusarium Wilt[J]. Journal of Pineal Research, 2017, 62(1): e12367
Application of Melatonin in Postharvest Preservation of Fruits and Vegetables
QU Guang-fan1,2, BA Liang-jie1,2, WANG Rui1,2, MA Chao1,2, JI Ning1,2, CAO Sen1,2
(1.School of Food and Pharmaceutical Engineering, Guiyang University, Guiyang 550005, China; 2.Guizhou Engineering Research Center for Fruit Processing, Guiyang 550005, China)
The work aims to introduce the effects of melatonin on physiological and nutritional quality, energy metabolism, flavor change, chilling injury regulation and disease resistance of postharvest fruits and vegetables, so as to provide theoretical reference for the application of melatonin in postharvest preservation of fruits and vegetables. The effects of melatonin on postharvest preservation of different fruits and vegetables at home and abroad were reviewed. Melatonin could regulate the ripening and senescence of fruits and vegetables, improve the cold resistance and disease resistance, and maintain higher nutrients and better physiological quality. Melatonin can significantly prolong the postharvest storage period of fruits and vegetables, and has broad development space in the field of postharvest preservation of fruits and vegetables in the future.
melatonin; fruits and vegetables; preservation effect; research progress
TS255.3
A
1001-3563(2022)07-0045-07
10.19554/j.cnki.1001-3563.2022.07.006
2021-07-25
貴州省科技計劃(黔科合支撐[2020]1Y137號);貴州省科技計劃(黔科合基礎-ZK[2021]一般173);貴陽市科技計劃(筑科合同[2020]37-2號)
瞿光凡(1997—),男,貴陽學院碩士生,主攻農產品貯藏與保鮮。
曹森(1988—),男,碩士,貴陽學院教授,主要研究方向為農產品貯藏與保鮮。
責任編輯:彭颋