999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Blow up Solutions of the Elastic String Equation with Nonlinear Damping and Source Terms

2022-11-05 01:44:06ZhangZaiyunOuyangQianchengZouPengchengWangQiongLingWenjing
數(shù)學理論與應用 2022年3期

Zhang Zaiyun Ouyang Qiancheng Zou Pengcheng Wang Qiong Ling Wenjing

(School of Mathematics,Hunan Institute of Science and Technology,Yueyang 414006,Hunan,China)

Abstract In this paper,we consider the elastic string equation with nonlinear damping and source terms. Following the ideas of Zhang and Miao [43] the blow up of the solutions with positive initial energy is investigated by the perturbed energy method.

Key words Elastic string equation Blow up Positive initial energy Perturbed energy method

1 Introduction

We consider the blow up problem for the following elastic string equation

Eq. (1.2)arises in classical mechanics,fluid dynamics and quantum field theory(see[26],[27]),and has been extensively studied. It is well known that in the casef(u) = 0,it causes finite time blow up of solution with negative initial energy(see[1]). Haraux and Zuazua obtained the global existence of Eq.(1.2)with damping termg(ut)and arbitrary initial conditions(see[2]). In[3,4],Levine studied the blow up result for solutions of Eq. (1.2)with damping termg(ut)and source termf(u)in the linear damping case (r= 0). He first introduced the concavity method and showed that solutions with negative initial energy blow up in finite time. Later, this method was improved by Kalantarov and Ladyzhenskaya [5]to more general cases. Moreover, Georgier and Todorova [6] extended Levine’s result to the nonlinear damping case(r> 0). In their work, they determined suitable relations between the nonlinearity in the damping termg(ut)and the source termf(u).More precisely,they showed that the solutions with negative energy exist globally in time ifr ≥pand blow up in finite time ifr

In[33],Kirchhoff firstly proposed the so called Kirchhoff string model in the nonlinear vibration of an elastic string

whereu=u(x,t) is the lateral displacement at the space coordinatexand the timet, Eis the Young modules,his the cross-section area,ρis the mass density,Lis the length,p0is the initial axial tension,δis the resistance modules andfis the external force.

In fact, Eq. (1.1) is a model for the physical problem of vertical displacements of stretched elastic strings.

and by using the concavity method,showed that its solutions with negative energy blow up in finite time forp>max{2q,r}.But,these solutions exist globally in time ifp ≤r.In[41],Mamadou Sango studied the blow up result for the solutions of a system of quasi-linear hyperbolic equations involving thep-Laplacian and obtained a differential inequality for a function involving some norms of the solutions which yields the finite time blow up.

In the present work,we consider the elastic string equation with damping effectg(ut)and source termf(u)and establish the blow up result for this equation with positive initial energy in finite time.

2 The main result

3 Preliminary results

In this section,we use the standard Sobolev spaceLp(Ω)with the usual scalar product and norm.

Lemma 3.1 Letube a solution of(1.1). Assume thatE(0)β1.Then there exists a constantβ2>β1,such that

Remark 3.1 In this paper,CandCiwill denote various positive constants which may be different at different places.

4 Proof of Theorem 2.1

In this section, we prove Theorem 2.1 by the perturbed energy function method benefited from the ideas of Zhang and Miao[43].

which completes the proof of our result.

The parametersρandσwere chosen in a convenient way and sufficiently large. Consequently,the authors considered a datau0with sufficiently large‖?u0‖(large data‖u0‖∞provided thatψ ∈L∞(Rn))and obtained the blow up result.

Remark 4.2 Setx=‖?u0‖2,y=λ.It is plausible to conjecture the existence of curve(see Fig.1 as follows)Lin the plane(x,y)such that

i)for any point(x,y)on the right of curveL,there are datau0,v0,such that‖?u0‖2=xandE(u0,v0)=λ,and the corresponding solutions of(1.1)blow up in finite time(region I);

ii)for any point(x,y)on the left of curveL,such a choice of data cannot be made(see region II).That is to say that in region II,solutions of(1.1)exist globally.

Figure 1 The relationship between the parameters x=‖?u0‖2 and y =E(u0,v0)

5 Further Remarks

Let-△be the operator defined by the triple{V,H,a(u,v)},where

主站蜘蛛池模板: 97国产精品视频自在拍| 免费无码AV片在线观看国产| 亚洲成人77777| 最新午夜男女福利片视频| 97久久免费视频| 99一级毛片| a级毛片免费看| 91热爆在线| 欧美色图久久| 久久综合婷婷| 亚洲v日韩v欧美在线观看| 欧美日韩国产在线观看一区二区三区| 手机永久AV在线播放| 国产粉嫩粉嫩的18在线播放91| 2021精品国产自在现线看| 国产丝袜91| 国产一级视频久久| 一区二区三区四区精品视频| 国产综合精品一区二区| 欧美亚洲另类在线观看| 99久久精品久久久久久婷婷| 欧美日韩导航| 99热精品久久| 亚洲乱码视频| P尤物久久99国产综合精品| 免费一级全黄少妇性色生活片| 草草影院国产第一页| 色综合成人| 91福利在线观看视频| AV无码无在线观看免费| 亚洲综合婷婷激情| 久久性视频| 久久女人网| 99久久性生片| 人妻丰满熟妇AV无码区| 国产在线日本| 亚洲中文字幕精品| 中日韩一区二区三区中文免费视频 | 亚洲人成人无码www| 久久精品视频一| 就去吻亚洲精品国产欧美| 国产成人午夜福利免费无码r| 一级全免费视频播放| 99人体免费视频| 国产午夜人做人免费视频中文| 亚洲国产综合自在线另类| 久久国语对白| 国产精品夜夜嗨视频免费视频 | 亚洲va精品中文字幕| 精品视频一区二区三区在线播| 蜜桃视频一区二区| 呦女亚洲一区精品| 欧美精品H在线播放| 久久成人18免费| 成人综合在线观看| 九色在线视频导航91| 亚洲男人的天堂在线观看| 午夜啪啪福利| 国产99精品久久| 国产麻豆aⅴ精品无码| 久久久久国色AV免费观看性色| 成人午夜视频网站| 欧美日韩一区二区在线播放| 少妇精品网站| 极品国产一区二区三区| 国产欧美在线视频免费| 精品视频在线观看你懂的一区| 亚洲全网成人资源在线观看| 国产成人av一区二区三区| 日韩美女福利视频| 麻豆精品在线| 日韩欧美在线观看| 很黄的网站在线观看| 国内精品视频区在线2021| 9丨情侣偷在线精品国产| 久久无码高潮喷水| 2020极品精品国产| 五月婷婷导航| 亚洲一区二区三区香蕉| 久久网综合| 欧美日韩导航| 久久综合色播五月男人的天堂|