999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A Blockchain-Based Architecture for Enabling Cybersecurity in the Internet-of-Critical Infrastructures

2022-08-24 12:56:38MahmoudRagabandAliAltalbe
Computers Materials&Continua 2022年7期

Mahmoud Ragaband Ali Altalbe

1Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University,Jeddah, 21589, Saudi Arabia

2Center of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia

3Mathematics Department, Faculty of Science, Al-Azhar University, Naser City, 11884, Cairo, Egypt

Abstract: Due to the drastic increase in the number of critical infrastructures like nuclear plants, industrial control systems (ICS), transportation, it becomes highly vulnerable to several attacks.They become the major targets of cyberattacks due to the increase in number of interconnections with other networks.Several research works have focused on the design of intrusion detection systems(IDS) using machine learning (ML) and deep learning (DL)models.At the same time, Blockchain (BC) technology can be applied to improve the security level.In order to resolve the security issues that exist in the critical infrastructures and ICS, this study designs a novel BC with deep learning empowered cyber-attack detection (BDLE-CAD) in critical infrastructures and ICS.The proposed BDLE-CAD technique aims to identify the existence of intrusions in the network.In addition, the presented enhanced chimp optimization based feature selection (ECOA-FS) technique is applied for the selection of optimal subset of features.Moreover, the optimal deep neural network (DNN) with search and rescue (SAR) optimizer is applied for the detection and classification of intrusions.Furthermore, a BC enabled integrity checking scheme (BEICS) has been presented to defend against the misrouting attacks.The experimental result analysis of the BDLE-CAD technique takes place and the results are inspected under varying aspects.The simulation analysis pointed out the supremacy of the BDLE-CAD technique over the recent state of art techniques with the accuyof 92.63%.

Keywords: BC; internet of critical infrastructure; ids; deep learning; security;deep neural network; machine learning

1 Introduction

Critical infrastructure system has been utilized for underpinningthe functions of an economy and society.Also, it ranges from conventionally-defined physical assets to a broader description of current assets in the fields of agriculture, gas, transportation, water supply, electricity, telecommunication,public health, security services, and so on [1].Such transformation is mainly because of the extensive utilization of Internet of Things (IoT) and their considerable aid for critical infrastructure systems in industry 4.0 [2].The IoT system has become essential part of critical infrastructure in industry 4.0,which creates smart services like smart grids and offers numerous benefits for efficiencies and cost savings.The international data corporation (IDC) have predicted that there would be an estimation of 41.6 billion interconnected IoT device, which generate 79.4 zettabytes (ZB) by 2025 [3].

The industrial control system (ICS) is the core of critical infrastructure system [4].It is largely accountable for supervisory control and data collection (SCADA), which monitors the control flows and processes of data in industry.The possible application areas of critical infrastructure with IoT are shown in Fig.1 [5].The wider adaption of Internet connected IoT devices have offered different challenges to critical infrastructure.Initially, ICS was mainly developed for a closed infrastructure and proprietary without taking care of security problems into account, since conventional critical infrastructure is kind of isolated and is invulnerable to cyber-attacks.With this infrastructure being interconnected to the Internet via IoT system, a wide-ranging of cyberattacks, including malware,Man-in-the-middle attack, distributed denial-of service (DDoS), Brute force, breach, and phishing attacks are threatening the process of ICS [6,7].The compromised ICS by cyber attackers might generate possible risk for the loss of information [8].Next, scalability is another challenge where ICS wasn’t initially developed to resolve.Assuming the dramatic growth in the volume of data and the number of IoT devices they are analyzing and collecting, the centralized method for data analysis and collection has become a bottleneck of ICS.A decentralized method is crucially needed to satisfy the evolving needs of ICS.

Figure 1: Application areas of critical infrastructures with IoT

Blockchain (BC) and Artificial intelligence (AI) have their own benefits, but, all of them have relative drawbacks.BC has problems relating to scalability, security, energy consumption, efficiency,and privacy, whereas AI systems face problems like effectiveness and interpretability.As two distinct directions of research, they could be associated with one another and have the benefits of natural integration.Both techniques have shared requirements for data trust, analysis, and security, and they could empower one another [9].For example, AI technique based on three most important components: computing power, data, and algorithms, and the BC could break the island of data and realize the flow of data resources, algorithms, and computing power, according to its specific features, involving immutability, anonymization, and decentralization.Additionally, BC could ensure the audit traceability and credibility of AI and the credibility of the original data.Furthermore, BC could record the decision-making of AI that assists in analyzing and understanding the behaviour of AI and eventually promote the decision-making of AI, which makes it more explainable, trustworthy,and transparent.The AI technique could improve the BC construction for making it more efficient,secure, and energy-saving [10].

Gumaei et al.[11] presented an architecture which integrates a BC with a deep recurrent neural network (DRNN) and edge computing for 5G-enabled assisted mode detection and drone identification.In the presented approach, raw RF signals of dissimilar drones under various flight modes are collected and sensed remotely on a cloud framework for training a DRNN method and allocate the training models on edge devices to detect their flight modes and drones.BC is utilized in this architecture for securing data transmission and integrity.Alkadi et al.[12] presented a DBF to provide security-based privacy-based BC and distributed IDS with smart contracts in IoT networks.The IDS is applied by a BiLSTM-DL method for handling sequential network data and is measured by the data sets.The smart contract and privacy-based BC methodologies are designed by utilizing the Ethereum library to offer security to the distributed IDS engine.

Singh et al.[13] introduced a DL-based IoT-based framework for a secured smart city in which BC provides a distributed platform at the transmission stage of software defined networks (SDN) and cyber-physical systems (CPS) established the protocol for forwarding information.A DL based cloud is employed at the application layer for resolving transmission scalability, centralization, and latency.Zhang et al.[14] presented an edge intelligence and BC enabled industrial IoT architecture that attains secure and flexible edge service management.Next, developed a credit-differentiated edge transaction approval method and present a cross-domain sharing inspired edge resource scheduling system.

This study designs a novel BC with deep learning empowered cyber-attack detection (BDLECAD) in critical infrastructures and ICS.The proposed BDLE-CAD technique aims to identify the existence of intrusions in the network.In addition, the presented enhanced chimp optimization based feature selection (ECOA-FS) technique is applied for the selection of optimal subset of features.Moreover, the optimal deep neural network (DNN) with search and rescue (SAR) optimizer is applied for the detection and classification of intrusions.Furthermore, a BC enabled integrity checking scheme (BEICS) has been presented to defend the misrouting attacks.The experimental result analysis of the BDLE-CAD technique takes place and the results are inspected under varying aspects.

2 The Proposed Model

In this study, a new BDLE-CAD technique has been developed to identify the existence of intrusions in critical infrastructures.The proposed BDLE-CAD technique encompasses ECOA-FS technique for the selection of optimal subset of features.Moreover, the DNN with SAR optimizer is can be used as a classifier and the BEICS has been presented to defend over the misrouting attacks.The experimental result analysis of the BDLE-CAD technique takes place and the results are inspected under varying aspects.

2.1 ECOA Based Feature Selection

Primarily, the ECOA-FS technique is executed to choose the optimal subset of features.The chimp optimization algorithm (COA) is a mathematical method that is dependent upon intelligent diversity[15].Drive, chase, block, and attack are capable of 4 distinct kinds of chimps that are realized by attacker, obstacle, chaser, and driver.The 4 hunting stages are finalized in 2 phases.In primary stage is the exploration step, and the second step is the exploitation phase.The exploration phase contains driving, blocking, and chasing the prey.Since the exploitation step, it has attacked the prey.Where the drive and chase are demonstrated as in Eqs.(1) and (2).

whereXpreyimplies the vector of prey place,xchimprefers the vector of chimp place,tstands for the amount of present iterations,a,c,mrepresents the coefficient vector and it is attained with Eqs.(3)-(5).

wherefimplies the non-linearly declined in 2.5 to 0,r1andr2refers the arbitrary number amongstzeroand one, andmrefers the chaotic vector.The dynamic coefficientfhas chosen to distinct curve as well as slope, so the chimps are utilizing distinct capabilities for searching the prey.The chimps are upgrading their places dependent upon another chimp, and this mathematical method is signified by Eqs.(6) and (8).

In ECOA, the extremely disruptive polynomial mutation is increased version of polynomial mutation technique [16].It could resolve the limitation that polynomial mutation technique is fall as to local optimal once the variable is nearby boundary.In Eqs.(9)-(12) illustrate the procedure of HDPM modifies thexi

whereubandlbdefine the upper and lower boundaries of the search spaces.rsignifies the arbitrary number amongst zero and one.ηmrefers the distribution exponential that is a non-negative number.Since it is clear that the previous formula, HDPM is exploring the total search space.

In contrast to the classical ECOA, in which the update of solutions takes place in the search area in the direction of continuous value location.However, in the BECOA, the searching area can be defined byndimension Boolean lattice.In addition, the solutions get updated using the corner of a hypercube.Moreover, for selecting the features, 1 represents the selection of features, otherwise 0.In addition, the BECOA derived a fitness function in determining the solutions for maintaining a tradeoff between a pair of objectives, as given in Eq.(13):

ΔR(D) denotes the error of the classifier, |Y| represents the subset size, and |T| indicates the total number of features that exist in the dataset.Besides,α signifies a variable∈[0, 1] related to the weight of the classification error level, and β= 1 -α symbolizes the significance of reduction feature.

2.2 Optimal DNN Based Intrusion Detection and Classification

At this stage, the chosen features are passed into the DNN model for intrusion classification.The DNN is an ANN that consists of input, hidden, and output layers.The hidden layer applies a group of non-linear functions and it can be demonstrated as follows [17]:

wherexrefers the input of all nodes,Wand bias signifies the weight as well as bias vectors correspondingly andsigimplies the sigmoid activation functions, for instance,.During the presented optimizing DNN, 2 hidden layers are assumed and for minimizing the MAE of DNN,optimum selective of weight matrices are required in order, at this point SAR has been employed.The searching and rescuing function has important 2 stages, for instance, social as well as individual phases.In the searching procedure, the set members collect the clues.The clues left under the search by group members were saved from the memory matrix (O) but the human place is saved from the place matrix (W).The clue matrixBwith sizeN*Dthat has of left clues and the human places are expressed as:

The 2 steps of human search are demonstrated as follows.i) Social step: The search way has provided bySDi= (Wi-Bk) whereki.A novel solution has been created utilizing the formula.

Atthis pointf(Bi) &f(Wi)denotes the FF values toBi&Wi,r1andr2indicates the arbitrary numbers from the range [-1, 1] and [0,1], the SE is technique parameter range amongst zero and one.

ii) Individual step: According to the present place humans identify its novel place and novel place ofithhuman is provided as [18]:

Every solution is placed from the solution spaces, once the novel place is outer the solution space then it can be enhanced utilizing the formula

whereMEnisnrhhas saved clue place from thememorymatrix andnrrefers the arbitrary integer number ranging amongst [1,N].During the clue search procedure, once optimum clues are not initiated nearby the present place a specific amount of searches, human goes to novel place.For modeling, this, primary,the USN is fixed 0 to all humans.

Once the USN value is superior to the maximal unsuccessful searching number, the human becomes an arbitrary place from the searching space utilized in Eq.(21), and the value ofUSNiis fixed 0 to that human.

wherer4ranges from the intervalzeroand one.

2.3 Process Involved in BEICS

The BC [19] is a major component of the integrity verification system.The primary concept is to offer a solution in which that every flow produced from the controller is saved in a verifiable and immutable dataset.The BC includes a series of blocks interconnected to one another via hash values.At the BC network, the users contain a pair of keys namely private key for signing the BC transaction and public key for representing the irreplaceable address.The client signed a transaction by the use of private key and transmit it to the other ones in the network for verification.Once the broadcasting block gets verified, it is added to the BC.If it is saved, the data in the provided blocks could not be modified with no changes of all succeeding blocks.Besides, the data is present in many hosts concurrently, therefore, the modifications can be discarded by the peer hosts.Here, a private BC has been presented in contrast to a public BC.The private BC decides who can get participated in the network and represented actions as well as permissions allotted identifiable applicants.Therefore, it limits the need for consensus mechanisms like Proof of Work.Fig.2 shows the structure of BC.

Figure 2: Structure of BC

3 Experimental Validation

In this section, the performance validation of the BDLE-CDE technique takes place using benchmark dataset [20], which comprises 1000’s different classes of events.The dataset contains binary (Natural and Attack) and multiclass (No event, Natural, and Attack) labels.Tab.1 provides a detailed result analysis of the BDLE-CDE technique on the binary class dataset.

Table 1: Results analysis of proposed BDLE-CAD model on binary class dataset

Fig.3 offers a briefprecnandrecalanalysis of the BDLE-CDE technique under distinct subdata on binary class dataset.The figure revealed that the BDLE-CDE technique has attained increased valuesofprecnandrecal.For instance,with subdata-1,the BDLE-CDE technique has offeredprecnandrecalof 96.89% and 97.47% respectively.Meanwhile, with subdata-10, the BDLE-CDE technique has providedprecnandrecalof 97.80% and 97.97% respectively.Eventually, with subdata-15, the BDLECDE technique has demonstratedprecnandrecalof 97.76% and 97.04% respectively.

Figure 3: Prenand Reclanalysis of BDLE-CDE technique on binary dataset

Fig.4 exhibits a detailedspecyandFscoreanalysis of the BDLE-CDE technique under distinct subdata on binary class dataset.The figure shows that the BDLE-CDE technique has accomplished superior values ofspecyandFscore.For instance, with subdata-1, the BDLE-CDE technique has demonstratedspecyandFscoreof 99.02% and 97.10% respectively.Moreover, with subdata-10, the BDLE-CDE technique has gainedspecyandFscoreof 99.37% and 97.23% respectively.Furthermore,with subdata-15, the BDLE-CDE technique has reachedspecyandFscoreof 99.28% and 96.90%respectively.

Figure 4: Specyand Fscoreanalysis of BDLE-CDE technique on binary dataset

Fig.5 portrays theaccuyanalysis of the BDLE-CDE technique on the test binary dataset.The results show that the BDLE-CDE technique has gained a loweraccuyof 98.30% on subdata-7 and higheraccuyof 98.91% on subdata-14.Therefore, it is ensured that the BDLE-CDE technique has effectually classified binary classes.

Figure 5: Accuyanalysis of BDLE-CDE technique on binary dataset

Tab.2 offers a comprehensive comparison study of the BDLE-CDE technique on the multi class dataset.

Table 2: Results analysis of proposed BDLE-CAD model on multiclass dataset

Fig.6 showcases a briefprecnandrecalanalysis of the BDLE-CDE technique under distinct subdata on multi class datasets.The figure discovered that the BDLE-CDE technique has attained increased values ofprecnandrecal.For instance, with subdata-1, the BDLE-CDE technique has presentedprecnandrecalof 79% and 92.09% respectively.Meanwhile, with subdata-10, the BDLECDE technique has deliveredprecnandrecalof 83.37% and 92.39% respectively.Finally, with subdata-15, the BDLE-CDE technique has demonstratedprecnandrecalof 78.62% and 89.25% respectively.

Figure 6: Prenand Reclanalysis of BDLE-CDE technique on multiclass dataset

Fig.7 reveals a detailedspecyandFscoreanalysis of the BDLE-CDE technique under distinct subdata on multi class datasets.The figure displayed that the BDLE-CDE technique has resulted in maximum values ofspecyandFscore.For instance, with subdata-1, the BDLE-CDE technique has demonstratedspecyandFscoreof 93.46% and 80.55% respectively.Moreover, with subdata-10, the BDLE-CDE technique has gainedspecyandFscoreof 93.87% and 80.67% respectively.Furthermore,with subdata-15, the BDLE-CDE technique has reachedspecyandFscoreof 93.75% and 82.46%respectively.

Figure 7: Specyand Fscoreanalysis of BDLE-CDE technique on multiclass dataset

Fig.8 shows theaccuyanalysis of the BDLE-CDE technique on the test binary dataset.The figure reported that the BDLE-CDE technique has gained a loweraccuyof 91.01% on subdata-14 and higheraccuyof 93.98% on subdata-4.Therefore, it is ensured that the BDLE-CDE technique has effectually classified multiple classes.

Figure 8: AccuyBDLE-CDE technique on binary dataset

Tab.3 offers a detailed comparative study of the BDLE-CDE technique with recent methods [21].A comparative classification result analysis of the BDLE-CDE technique on the binary class dataset is depicted in Fig.9.The results exposed that the Nearest Neighbor (NN), random forest (RF), and SVM models have obtained loweraccuyof 71.56%, 80.61%, and 78.84% respectively.At the same time,the KNN,Adaboost+JRip,and JRip models have obtained moderateaccuyvaluesof95.49%,95.56%,and 90.10%.However, the BDLE-CDE technique has resulted in increasedaccuyof 98.63%.

Table 3: Comparative accuracy analysis of BDLE-CAD model on binary and multiclass dataset

Figure 9: Comparative Accuyanalysis of BDLE-CDE technique on binary dataset

Detailed multiclass performance analysis of the BDLE-CDE technique on the multi class dataset is offered in Fig.10.The experimental values illustrated that the Nearest Neighbor (NN), random forest (RF), and SVM models have gained reducedaccuyof 77.33%, 80.51%, and 78.56% respectively.Moreover, the KNN, Adaboost+JRip, and JRip models have obtained moderateaccuyvalues of 87.66%, 91.44%, and 90.09%.However, the BDLE-CDE technique has accomplished superioraccuyof 92.63%.From these results and discussion, it can be ensured that the BDLE-CDE technique has the ability to attain maximum performance over the other compared methods.

Figure 10: Comparative Accuyanalysis of BDLE-CDE technique on multiclass dataset

4 Conclusion

In this study, a new BDLE-CAD technique has been developed to identify the existence of intrusions in critical infrastructures.The proposed BDLE-CAD technique encompasses ECOA-FS technique for the selection of optimal subset of features.Moreover, the DNN with SAR optimizer is can be used as a classifier and the BEICS has been presented to defend over the misrouting attacks.The experimental result analysis of the BDLE-CAD technique takes place and the results are inspected under varying aspects.The simulation analysis pointed out the supremacy of the BDLECAD technique over the recent state of art techniques with the accomplished superioraccuyof92.63%.Therefore, the BDLE-CAD technique can be utilized as a proficient tool to detect intrusions in the network.In future, clustering and outlier detection approaches can be designed to boost the detection performance.

Acknowledgement:The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the Project Number (IFPIP-145-351-1442) and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Funding Statement:This project was supported financially by Institution Fund projects under Grant No.(IFPIP-145-351-1442).

Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

主站蜘蛛池模板: 午夜不卡视频| 99re精彩视频| 欧美另类精品一区二区三区| 91福利在线看| 亚洲A∨无码精品午夜在线观看| 亚洲无码91视频| 青青久久91| 香蕉国产精品视频| 在线观看国产网址你懂的| 免费国产在线精品一区| 欧美69视频在线| 最新国产午夜精品视频成人| 国产精品永久久久久| 国产精品亚洲一区二区三区在线观看| 色综合成人| 国产精品午夜电影| 色窝窝免费一区二区三区| 国产成人精品视频一区视频二区| 免费无码又爽又刺激高| 欧美黄色网站在线看| 亚洲女同一区二区| 亚洲美女视频一区| 一区二区偷拍美女撒尿视频| 国内精品久久久久鸭| 在线看片国产| 久久人午夜亚洲精品无码区| 国产91九色在线播放| 国产午夜无码专区喷水| 妇女自拍偷自拍亚洲精品| 亚洲中文在线视频| 亚洲综合欧美在线一区在线播放| 国产在线观看精品| 色天天综合久久久久综合片| 国产一区免费在线观看| 亚洲欧洲日产国产无码AV| 波多野结衣一二三| 国产尤物在线播放| 亚洲日韩精品综合在线一区二区| 欧美三级视频网站| 日韩国产综合精选| 色有码无码视频| 香蕉视频国产精品人| 波多野结衣国产精品| 国产精品白浆无码流出在线看| 欧美成人aⅴ| 亚洲精品无码高潮喷水A| 婷婷综合亚洲| 精品1区2区3区| 精品无码日韩国产不卡av| 99久久99这里只有免费的精品| 日韩性网站| 欧美三级日韩三级| 欧美激情第一欧美在线| 狠狠综合久久久久综| 18禁影院亚洲专区| 波多野结衣在线一区二区| 好吊妞欧美视频免费| 亚洲国产欧美目韩成人综合| 国产亚洲欧美在线人成aaaa| 日本免费福利视频| 91网红精品在线观看| 国产国语一级毛片在线视频| 午夜色综合| 亚洲人成网址| 伊人久久大香线蕉aⅴ色| 青青青伊人色综合久久| 精品视频第一页| 在线观看亚洲人成网站| 99这里只有精品在线| 国产激爽爽爽大片在线观看| 日韩精品毛片人妻AV不卡| 色哟哟国产成人精品| 久久99国产综合精品1| 人妻熟妇日韩AV在线播放| 成人精品视频一区二区在线| 久久夜色精品| 久久美女精品| 女人18毛片水真多国产| 91精品国产91久无码网站| 五月婷婷激情四射| 国产真实乱了在线播放| 91青青视频|