肖舒琳, 戴中華, 李定妍, 張凡博, 楊利紅, 任曉兵
氧化鑭摻雜鈮酸鉀鈉陶瓷的電、光性能研究
肖舒琳1, 戴中華1, 李定妍1, 張凡博1, 楊利紅1, 任曉兵2
(1. 西安工業大學 光電工程學院, 陜西省薄膜技術與光學檢測重點實驗室, 西安 710021; 2. 西安交通大學 前沿技術研究院, 西安 710049)
鈮酸鉀鈉(K0.5Na0.5NbO3, KNN)基陶瓷具有充放電速度快、透明度高、應用溫度范圍寬、使用壽命長等優點, 在脈沖功率器件等領域具有廣闊的應用前景。通過改性技術提高鈮酸鉀鈉基陶瓷的電、光性能是該方向的研究熱點。本研究采用固相法制備0.825(K0.5Na0.5)NbO3-0.175Sr1–3x/2La(Sc0.5Nb0.5)O3(=0, 0.1, 0.2, 0.3)陶瓷(簡稱0.825KNN- 0.175SLSN), 研究La2O3摻雜對其相結構、微觀形貌、光學、介電、鐵電及儲能性能的影響。研究結果表明: 0.825KNN- 0.175SLSN陶瓷具有高對稱性的偽立方相結構; 隨著La2O3摻雜量增大, 陶瓷的平均晶粒尺寸減小, 相變溫度(m)及飽和極化強度(max)增大, 達到峰值后下降。在=0.3時, 該體系陶瓷表現出優異的透明性, 在可見光波長(780 nm)及近紅外波長(1200 nm)范圍內透過率分別達65.2%及71.5%, 同時實現了310 kV/cm的擊穿場強和1.85 J/cm3的可釋放能量密度。
鈮酸鉀鈉; 無鉛透明陶瓷; 透過率; 儲能性能
隨著脈沖功率技術的快速發展和元件透明化需求的增加, 具有優異儲能特性的無鉛透明鐵電陶瓷作為脈沖功率系統的關鍵元件, 被廣泛應用于航天航空、定向武器和新能源汽車等領域[1-4]。目前常見的儲能材料體系有NaNbO3(NN)體系、K0.5Na0.5NbO3(KNN)體系、BaTiO3(BT)體系與Bi0.5Na0.5TiO3(BNT)體系等。上述材料中, KNN基陶瓷材料具有較高的居里溫度、穩定的高壓電系數、易固溶、缺陷容忍度高等優點, 是易于實現光學、電學以及機械性能耦合的多功能材料[5-7]。純KNN陶瓷的剩余極化強度r較大, 飽和極化強度與剩余極化強度差(max–r)小于5 μC/cm2, 且擊穿場強b<40 kV/cm, 導致其不能作為優良的儲能介質材料[8]。此外, KNN陶瓷在室溫下為高對稱性的正交相結構, 粒徑為4~5 μm[9], 難以采用普通的燒結方法制成透明陶瓷[10-11]。
為了改善KNN材料的電學及光學性能, 研究者嘗試通過稀土元素摻雜改性基體材料。Lu等[12]通過在Bi0.5Na0.5TiO3-BaTiO3材料中摻雜適量的La和Zr元素, 最終得到了可利用儲能密度rec= 1.21 J/cm3。Wang等[13]對BNT基陶瓷改性, 設計了[(Bi0.5Na0.5)0.94Ba0.06]La(1–x)ZrTiO3儲能陶瓷, 其具有高飽和極化強度(max=37.5 μC/cm2), 并表現出雙電滯回線形狀, 可利用儲能密度rec提高至1.58 J/cm3。為實現多晶陶瓷材料的透明性, Ren等[14]通過在K0.5Na0.5NbO3中引入SrZrO3作為第二組元, 將晶粒尺寸降至0.19 μm, 從而使(1–)K0.5Na0.5NbO3-SrZrO3陶瓷獲得較高的光學透明性(~68%)。Zhang等[15]通過在KNN基陶瓷中固溶第二組元(K0.7Bi0.3)NbO3, 使其在晶界處聚集來抑制晶粒生長, 利用固相反應法制備的0.85KNN-0.15KBN透明陶瓷在近紅外光波長范圍內透光率達到83.3%。Heartling等[16]通過熱壓燒結技術, 在鋯鈦酸鉛(PZT)陶瓷基體中摻入La元素, 制備出鋯鈦酸鉛鑭(PLZT)透明陶瓷, 大大提高了鉛基陶瓷的透明度。Song等[17]在PMN-PT馳豫鐵電陶瓷中加入La元素后制備了高透明度的陶瓷, 當摻雜量為4%, 厚度為0.5 mm時, 陶瓷透光率在可見光范圍內接近70%。
本研究通過稀土元素異價離子取代方法, 在0.825(K0.5Na0.5)NbO3-0.175Sr(Sc0.5Nb0.5)O3陶瓷中摻入La2O3。采用傳統固相反應法制備0.825(K0.5Na0.5)NbO3-0.175Sr1–3x/2La(Sc0.5Nb0.5)O3(= 0, 0.1, 0.2, 0.3)陶瓷, 簡稱0.825KNN-0.175SLSN陶瓷, 研究摻雜La2O3含量對0.825KNN-0.175SLSN陶瓷相結構、微觀形貌、光學、介電、鐵電及儲能性能的影響規律。
以分析純K2CO3(99.5%)、Na2CO3(99.8%)、Nb2O5(99.5%)、Sr2CO3(99%)、Sc2O3(99.9%)和La2O3(99%)為原料, 采用傳統固態反應法制備0.825KNN-0.175SLSN陶瓷(=0, 0.1, 0.2, 0.3)。根據化學計量比進行稱料, 將混合粉料進行一次球磨, 以2~5 mm的鋯球為介質, 在酒精中球磨18 h。將料漿置于培養皿中, 在80 ℃烘干后進行篩料。將得到的粉料置于密閉的氧化鋁坩堝中在950 ℃保溫5 h進行預燒, 再進行10 h二次球磨。干燥后, 將粉料與質量百分比5%的聚乙烯醇水溶液均勻混合。為了使粘結劑充分擴散, 將混合后的粉料壓制成坯體后放置12 h。混合粉料在250 MPa下壓制成12 mm×1 mm的圓柱生坯。壓制的生坯樣品在600 ℃下保溫5 h排膠后, 再在1200~1300 ℃燒結5 h。為了獲得高的擊穿場強, 本研究對燒結后的樣品進行打磨拋光處理, 使其表面平行光滑, 厚度約為0.15 mm。采用絲網印刷方法在樣品表面涂覆銀漿, 800 ℃燒制20 min后得到銀電極。
采用Archimedes排水法測試樣品密度; 采用X射線衍射儀(XRD, D8 Advance, Bruker, Germany)和掃描電子顯微鏡(SEM, Quanta 250F, FEI, USA)測試燒結后樣品的相結構及微觀形貌; 采用LCR電橋(E4980A, Aglient, USA)在–150~150 ℃溫度范圍以及1~1000 kHz的頻率下測試樣品的介電常數; 采用分光光度計(UV-2550, Tokyo, Japan)測試樣品的透過率, 測試波長范圍為400~1200 nm。采用鐵電測試儀(Premier II, Radiant, USA)測試樣品室溫下電滯回線, 測試頻率為5 Hz。
材料的致密度越高, 材料內部的氣孔雜質越少, 可以降低材料氣孔對于光線的吸收, 從而提高光線透過率[18-20]; 還可有利于提高的擊穿場強, 從而獲得較大的儲能密度。圖1為0.825KNN-0.175SLSN陶瓷樣品在室溫下測得的密度–摻雜量關系曲線。由圖可知隨著La2O3含量增大, 0.825KNN-0.175SLSN陶瓷的密度先降低后逐漸提高, 在=0.3處陶瓷密度最大。
圖2為0.825KNN-0.175SLSN陶瓷的XRD圖譜, 可以發現XRD衍射譜無雜峰, 均呈單一的鈣鈦礦結構。由此可見, 摻入La2O3均形成了單一結構固溶體。所有樣品在2=45°附近只顯示(200)峰, 不存在三方或四方的晶格畸變, 表明樣品均為偽立方相結構[21-22]。由于偽立方結構的高對稱性, 大大降低了光在傳播過程中由于衍射和雙折射所產生的光損耗, 進而提高光學透過率。
圖3為0.825KNN-0.175SLSN陶瓷樣品的表面掃描電鏡照片。從圖中可以觀察到各個組分0.825KNN-0.175SLSN陶瓷的晶粒結晶性好, 晶粒堆疊生長, 晶界清晰。當=0.2時, 晶粒間具有較明顯的氣孔, 會對樣品的致密度產生一定影響, 從而導致擊穿場強降低以及入射光發生散射, 最終影響樣品的儲能及透光性能。圖3的插圖為0.825KNN- 0.175SLSN陶瓷的粒徑分布圖, 可以發現摻雜La2O3在一定程度上抑制了0.825KNN-0.175SLSN陶瓷的晶粒生長。當=0.3時, 平均晶粒尺寸為0.24 μm。一般來說, 透明儲能陶瓷的晶粒分布均勻, 可降低入射光的損失并提高樣品的擊穿場強, 從而提高光學透過率及儲能密度。

圖1 0.825KNN-0.175SLSN陶瓷密度與La含量的關系圖

圖2 0.825KNN-0.175SLSN陶瓷在室溫下2θ的XRD譜圖

圖3 0.825KNN-0.175SLSN陶瓷室溫下自然表面的掃描電鏡照片
(a)=0; (b)=0.1; (c)=0.2; (d)=0.3
在0.825KNN-0.175SLSN體系樣品中,=0.3的陶瓷的透明度最高。圖4(a)為400~1200 nm波長范圍內0.825KNN-0.175SLSN陶瓷(=0, 0.3)的直線透過率光譜圖。圖4(a)的插圖為0.825KNN-0.175SLSN陶瓷(=0, 0.3)樣品的照片。0.825KNN-0.175SLSN陶瓷經打磨至0.3 mm并拋光后,=0.3陶瓷的光學透過率在可見光波長780 nm處為65.2%(較=0時的60.2%提升了8.3%), 在近紅外波長1200 nm處的透過率達71.5%。與KNN基儲能陶瓷的研究報道[23-25]比較, 0.825KNN-0.175SLSN (=0.3)陶瓷具有更優異的透明性, 有望取代鉛基透明儲能材料。
當入射光進入陶瓷材料內部時, 會激發具有一定能量的電子從價帶躍遷到導帶, 造成光能量損失。增大材料的禁帶寬度會抑制電子發生躍遷, 從而有利于提高材料的透明度。禁帶寬度g可通過Tauc方程得出, 如下式[26]:

其中, 吸收率和光子頻率可以根據以下公式獲得:


其中,為普朗克常量(4.1357×10–15eV),為常數,為樣品厚度,為光速(3×108m/s),為透過率,為波長。
通過對圖4(a)中0.825KNN-0.175SLSN陶瓷樣品的光學透過率曲線進行擬合計算, 可得圖4(b), 由圖可知, 當=0.3時0.825KNN-0.175SLSN陶瓷的禁帶寬度g=2.95 eV。
圖5(a~d)為0.825KNN-0.175SLSN陶瓷的介電性能–溫度關系圖。隨著值增大, 介電常數峰逐漸從一個轉變為兩個。當=0.2和0.3時, 出現的兩個介電常數峰在–75 ℃和100 ℃附近, 分別對應正交相向四方相的相變以及四方相向立方相的相變, 這也印證了XRD的測試結果, 室溫下0.825KNN- 0.175SLSN陶瓷均為偽立方的相結構[27]。0.825KNN- 0.175SLSN陶瓷在室溫下的介電損耗低于0.03, 有利于獲得優異的儲能性能。圖5(e)為0.825KNN- 0.175SLSN陶瓷在1 kHz下測試的最大介電常數對應的溫度(m)與介電常數值(m)的關系曲線, 隨著增大,m呈現升高的趨勢,m在950~1100之間。
圖6為室溫下0.825KNN-0.175SLSN陶瓷樣品在150 kV/cm, 5 Hz下測得的不同組分樣品的單極曲線, 由圖可知, 所有組分的樣品都為細電滯回線, 顯現出弛豫鐵電體的特征。為了直觀觀察和分析0.825KNN-0.175SLSN陶瓷樣品極化強度的變化情況, 根據圖6中的單極電滯回線進行統計。
圖7為0.825KNN-0.175SLSN陶瓷的max和r與摻雜含量的關系曲線。由圖可知, 陶瓷樣品的r均小于2 μC/cm2,r越小, 越有利于提高儲能效率。隨著La含量增大,max呈增大趨勢。當從0增至0.2時, 0.825KNN-0.175SLSN陶瓷max值逐漸從10.06 μC/cm2增大至13.12 μC/cm2, 可見摻雜適量的La元素可以使0.825KNN-0.175SLSN陶瓷max提高,有利于提高材料的儲能密度。

圖5 0.825KNN-0.175SLSN陶瓷樣品的介電性能–溫度關系圖(a~d)和0.825KNN-0.175SLSN陶瓷的Tm, εm與La摻雜含量關系圖(e)

圖6 0.825KNN-0.175SLSN陶瓷在150 kV/cm電場下的單極P-E曲線
Colorful figures are available on website

圖7 不同La摻雜含量陶瓷的Pmax和Pr
影響儲能密度的另一個重要因素是陶瓷樣品的擊穿電場強度b[9,28]。0.825KNN-0.175SLSN陶瓷在擊穿場強下的單極電滯回線如圖8(a~d)所示。鐵電材料的儲能密度和儲能效率可通過以下公式獲得[29-31]:



其中,rec、、max、r、、分別表示陶瓷樣品可利用儲能密度、儲能密度、飽和極化強度、剩余極化強度、外加電場和儲能效率。通過對圖8(a~d)所得的單極電滯回線進行積分計算, 得到圖8(e)所示的、rec隨值的變化曲線, 圖8(f)為b、隨值的變化曲線。隨著La含量增大, 不同組分陶瓷的rec和值呈現逐漸減小之后再增大的趨勢。由于氣孔和擊穿場強的限制, 在=0.2時儲能密度最低,=1.14 J/cm3及rec=0.95 J/cm3。0.825KNN- 0.175SLSN(=0.3)陶瓷具有最優的儲能密度= 2.25 J/cm3及rec=1.85 J/cm3。
本研究采用稀土元素La摻雜改性0.825(K0.5Na0.5)NbO3-0.175Sr(Sc0.5Nb0.5)O3陶瓷。摻雜后0.825(K0.5Na0.5)NbO3-0.175Sr1–3x/2La(Sc0.5Nb0.5)O3(=0, 0.1, 0.2, 0.3)陶瓷均具有單一的純鈣鈦礦結構, 摻雜La元素并未改變基體材料的相結構, 均為高對稱性的偽立方相, 并在一定程度上抑制晶粒生長, 減小晶粒尺寸。隨著La摻雜量增大, 0.825KNN-0.175SLSN陶瓷飽和極化強度max呈現增大的趨勢。在=0.3時, 0.825KNN-0.175SLSN陶瓷具有優異的透明性, 在可見光波長780 nm及近紅外波長1200 nm處透過率分別達65.2%及71.5%, 同時實現了最佳的儲能特性:=2.25 J/cm3、rec= 1.85 J/cm3、=81.9%。0.825KNN-0.175SLSN陶瓷是有望取代鉛基材料作為透明儲能介質材料。

圖8 0.825KNN-0.175SLSN陶瓷在擊穿場強下的單極P-E曲線(a~d), 0.825KNN-0.175SLSN陶瓷的W、Wrec與x的關系曲線(e), 0.825KNN-0.175SLSN陶瓷的η和Eb與x的關系曲線(f)
[1] YAO Z H, SONG Z, HAO H,. Homogeneous/inhomogeneous- structured dielectrics and their energy-storage performances., 2017, 29(20): 1601727.
[2] YANG L, KONG X, LI F,. Perovskite lead-free dielectrics for energy storage applications., 2019, 102: 72–108.
[3] WANG H, LIU Y, YANG T,. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions., 2019, 29(7): 1807321.
[4] ZHAO P, WANG H, WU L,. High-performance relaxor ferroelectric materials for energy storage applications., 2019, 9(17): 1803048.
[5] LI J T, BAI Y, QIN S Q. Direct and indirect characterization of electrocaloric effect in (Na, K)NbO3based lead-free ceramics., 2016, 109(16): 162902–162904.
[6] WANG X J, WU J G, BRAHIM D. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics., 2017, 110(6): 063904.
[7] YANG Z T, GAO F, DU H L,. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties., 2019, 58: 768–777.
[8] DU H L, YANG Z T, GAO F,. Lead-free nonlinear dielectric ceramics for energy storage applications: current status and challenges., 2018, 33(10): 1046–1058.
[9] YANG Z T, DU H L, QU S B,. Significantly enhanced recoverable energy storage density in potassium-sodium niobatebased lead free ceramics., 2016, 4(36): 13778–13785.
[10] SNOW C S. Fabrication of transparent electrooptic PLZT ceramics by atomosphere sintering., 1973, 56(2): 91–96.
[11] LI G R, RUAN W, ZENG J T,. The effect of domain structures on the transparency of PMN-PT transparent ceramics., 2013, 35(4): 722–726.
[12] LU X P, XU J W, LING Y,. Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3lead-free ceramics modified by La and Zr co-doping., 2016, 2(1): 87–93.
[13] WANG Y F, LV Z L, HUI X,. High energy-storage properties of [(Bi1/2Na1/2)0.94Ba0.06]La(1–x)ZrTiO3lead-free anti-ferroelectric ceramics., 2014, 40(3): 4323–4326.
[14] REN X, JIN L, PENG Z,. Regulation of energy density and efficiency in transparent ceramics by grain refinement., 2020, 390: 124566.
[15] ZHANG M, YANG H, LI D,. Excellent energy density and powerdensity achieved in K0.5Na0.5NbO3-based ceramics with high opticaltransparency., 2020, 829: 154565.
[16] HEARTLING G S. Improved hot-pressed electrooptic ceramics in the (Pb,La)(Zr,Ti)O3system., 1973, 56(2): 91–96.
[17] SONG Z Z, ZHANG Y C, LU C J,. Fabrication and ferroelectric/dielectric properties of La-doped PMN-PT ceramics with high optical transmittance., 2017, 43(4): 3720– 3725.
[18] ANDREAS K, THOMAS H, JEN K. Transmission physics and consequenees for materials seleetion, manufacturing, and applications., 2009, 29(2): 207–221.
[19] PEELEN J, METSELAAR R. Light scattering by pores in poly- crystalline materials., 1974, 45(1): 216–220.
[20] KRELL A, BLANK P, MA H,. Transparent sintered corundum with high hardness and strength., 2010, 86(1): 12–18.
[21] FU J, ZUO R Z, XU Y D,. Investigations of domain switching and lattice strains in (Na,K)NbO3-based lead-free ceramics across orthorhombic-tetragonal phase boundary., 2017, 37(3): 975–983.
[22] CHENG X J, GOU Q, WU J G,. Dielectric, ferroelectric, and piezoelectric properties in potassium sodium niobate ceramics with rhombohedral-orthorhombic and orthorhombic-tetragonal phase boundaries., 2014, 40(4): 5771–5779.
[23] LIN C, WU X, LIN M,. Optical, luminescent and optical temperature sensing properties of (K0.5Na0.5)NbO3-ErBiO3transparent ceramics., 2017, 706: 156–163.
[24] GENG Z M, LI K, SHI D L,. Effect of Sr and Ba-doping in optical and electrical properties of KNN based transparent ceramics., 2015, 26(9): 6769–6775.
[25] LIU Z Y, FAN H Q, PENG B L. Enhancement of optical transparency in Bi2O3-modified (K0.5Na0.5)0.9Sr0.1Nb0.9Ti0.1O3ceramics for electro-optic applications., 2015, 50(24): 7958–7966.
[26] WOOTEN F. Optical properties of solids., 1973, 41(7): 939–940.
[27] CHAI Q Z, YANG D, ZHAO X M,. Lead-free (K,Na)NbO3- based ceramics with high optical transparency and large energy storage ability., 2018, 101(6): 2321–2329.
[28] QU B Y, DU H L, YANG Z T. Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability., 2016, 4(9): 1795–1803.
[29] DAI Z H, XIE J L, CHEN Z B,. Improved energy storage density and efficiency of (1–)Ba0.85Ca0.15Zr0.1Ti0.9O3-BiMg2/3Nb1/3O3lead-free ceramics., 2021, 410: 128341.
[30] DAI Z H, XIE J L, LIU W G,. An effective strategy to achieve excellent energy storage properties in lead-free BaTiO3based bulk ceramics., 2020, 12(27): 30289–30296.
[31] DAI Z H, XIE J L, FAN X,. Enhanced energy storage properties and stability in Sr(Sc0.5Nb0.5)O3modified 0.65BaTiO3- 0.35Bi0.5Na0.5TiO3ceramics., 2020, 397: 125520.
Electrical and Optical Property of Lanthanum Oxide Doped Potassium Sodium Niobate Ceramics
XIAO Shulin1, DAI Zhonghua1, LI Dingyan1, ZHANG Fanbo1, YANG Lihong1, REN Xiaobing2
(1. Shaanxi Province Key Laboratory of Thin Films Technology & Optical Test, School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China; 2. Frontier Institute of Science and Technology, Xi'an Jiaotong University, X'ian 710049, China)
Potassium sodium niobate (K0.5Na0.5NbO3, KNN) based ceramics can be widely used for pulsed power systems due to their fast charge-discharge rate, high transparency, wide range of working temperature, and long cycle life.Improving the electrical and optical property of KNN-based ceramics through modification is a research hotspot in this field. 0.825(K0.5Na0.5)NbO3-0.175Sr1–3x/2La(Sc0.5Nb0.5)O3(=0, 0.1, 0.2, 0.3) (0.825KNN- 0.175SLSN) ceramics were synthesized by solid state method. The effect of La2O3doping on the phase structure, microstructure, optical property, dielectric property, ferroelectric property and energy storage property of the ceramic was studied. The results indicated that the structure of 0.825KNN-0.175SLSN ceramics was pseudo-cubic phase with high symmetry. With increment of La2O3content, the average grain size of 0.825KNN-0.175SLSN ceramics decreased, and the phase transition temperature (m) and saturation polarization intensity (max) increased and then decreased. 0.825KNN-0.175SLSN ceramics exhibit excellent transparency at=0.3, the transmittance in the visible wavelength (780 nm) and near-infrared wavelength (1200 nm) ranges reaches 65.2% and 71.5%, respectively. The dielectric breakdown strength of 310 kV/cm and a recoverable energy density of 1.85 J/cm3are achieved at=0.3.
potassium sodium niobate; lead-free transparent ceramics; transmittance; energy storage property
1000-324X(2022)05-0520-07
10.15541/jim20210297
TQ174
A
2021-05-11;
2021-07-09;
2021-08-20
國家自然科學基金(51831006, 51431007); 陜西省科技計劃(2020GY-311); 西安市智能兵器重點實驗室基金(2019220514SYS020CG042)
National Natural Science Foundation of China (51831006, 51431007); Science and Technology Project of Shaanxi Province (2020GY-311); Xi’an Key Laboratory of Intelligence (2019220514SYS020CG042)
肖舒琳(1998–), 女, 碩士研究生. E-mail: 1319643700@qq.com
XIAO Shulin (1998–), female, Master candidate. E-mail: 1319643700@qq.com
戴中華, 教授. E-mail: zhdai@mail.xjtu.edu.cn
DAI Zhonghua, professor. E-mail: zhdai@mail.xjtu.edu.cn