譚婭 李亮 雷宇航 黃志洋 趙春萍 張靜 張正群 齊婧 朱礪 史開(kāi)志







摘要:【目的】篩選出高肌內(nèi)脂肪(Intramuscular fat,IMF)沉積的關(guān)鍵基因并進(jìn)行表達(dá)驗(yàn)證,為揭示豬肌內(nèi)脂肪沉積的分子調(diào)控機(jī)制提供理論依據(jù)。【方法】根據(jù)NCBI-GEO數(shù)據(jù)庫(kù)中高、低肌內(nèi)脂肪巴克夏群體的轉(zhuǎn)錄組數(shù)據(jù),利用DESeq2進(jìn)行差異表達(dá)基因篩選(|log2 Fold Change|≥1,F(xiàn)DR<0.05),采用Metascape對(duì)差異表達(dá)基因進(jìn)行功能富集分析,通過(guò)MCODE篩選及鑒定出高肌內(nèi)脂沉積的關(guān)鍵基因,并采用實(shí)時(shí)熒光定量PCR在地方豬(柯樂(lè)豬)和外種豬(杜長(zhǎng)大豬)上進(jìn)行關(guān)鍵基因表達(dá)量驗(yàn)證?!窘Y(jié)果】從高、低肌內(nèi)脂肪巴克夏群體6個(gè)文庫(kù)中共鑒定出7661個(gè)基因,高肌內(nèi)脂肪群體樣本的脂質(zhì)代謝相關(guān)基因總表達(dá)量顯著高于低肌內(nèi)脂肪群體樣本(P<0.05,下同),其中差異表達(dá)基因有133個(gè)[110個(gè)上調(diào)(在高肌內(nèi)脂肪群體高表達(dá)),23個(gè)下調(diào)(在低肌內(nèi)脂肪群體高表達(dá))]。上調(diào)差異表達(dá)基因主要富集于膠原蛋白綁定、細(xì)胞外基質(zhì)組裝、脂肪酰輔酶A 生物合成過(guò)程、固醇代謝過(guò)程和脂質(zhì)代謝調(diào)控過(guò)程等GO功能條目,以及脂肪乙酰輔酶A生物合成、ChREBP激活代謝基因、脂肪酸代謝等信號(hào)通路上;下調(diào)基因主要富集于線粒體組裝、多細(xì)胞生物學(xué)過(guò)程、輔酶綁定和缺氧反應(yīng)等GO功能條目,以及基于NFKB的TNFA信號(hào)、白細(xì)胞介素4和白細(xì)胞介素13信號(hào)和干擾素信號(hào)等信號(hào)通路上。通過(guò)MCODE分析共篩選獲得5個(gè)關(guān)鍵基因,分別是SLC25A5、FN1、FASN、ACACA和PRKDC基因;挑選SCD、FASN和ACACA基因進(jìn)行表達(dá)量驗(yàn)證,結(jié)果發(fā)現(xiàn)這3個(gè)基因的相對(duì)表達(dá)量均表現(xiàn)為柯樂(lè)豬高于杜長(zhǎng)大豬,其差異達(dá)顯著或極顯著(P<0.01)水平,進(jìn)一步佐證SCD、FASN和ACACA基因在高肌內(nèi)脂肪豬群體中高表達(dá)?!窘Y(jié)論】在巴克夏豬高肌內(nèi)脂肪群體中高表達(dá)的SCD、FASN和ACACA基因,在高肌內(nèi)脂肪的柯樂(lè)豬中也呈顯著或極顯著高表達(dá),因此這3個(gè)關(guān)鍵基因有望作為篩選和培育高肌內(nèi)脂肪豬品種的分子標(biāo)記,同時(shí)為研究肌內(nèi)脂肪沉積的分子調(diào)控機(jī)制提供技術(shù)支撐。
關(guān)鍵詞: 豬;肌內(nèi)脂肪;背最長(zhǎng)肌;差異表達(dá)基因;脂肪沉積
中圖分類號(hào): S828.1? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2022)04-0899-09
Expression difference analysis of hub genes between high and low intramuscular fat content in longissimus dorsi of pigs
TAN Ya1,2,3, LI Liang1,2, LEI Yu-hang2, HUANG Zhi-yang2, ZHAO Chun-ping1,3,? ZHANG Jing1,3, ZHANG Zheng-qun1, QI Jing1,3, ZHU Li2, SHI Kai-zhi1,3*
(1Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou? 550005, China; 2College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan? 611130, China;
3Guizhou Engineering Research Center of Local Pig Protection and Breeding, Guiyang, Guizhou? 550005, China)
Abstract:【Objective】To screen the hub genes of high intramuscular fat (IMF) deposition and to verify their expression, so as to provide a theoretical basis for revealing the molecular regulation mechanism of IMF deposition in pigs.【Method】Based on the transcriptome data of Berkshire pigs with high and low IMF in NCBI-GEO database, the differentially expressed genes (DEGs) were screened by DESeq2 (|log2 Fold Change|≥1, FDR< 0.05), the functional enrichment of DEGs were analyzed by Metascape. Meanwhile, MCODE were used to identify the key genes of high IMF deposition, real-time fluorescence quantitative PCR (qRT-PCR) was used to verify the expression of hub genes in indigenous pigs (Kole) and foreign pigs (DLY pigs). 【Result】7661 genes were identified from six libraries of Berkshire pigs with high and low IMF. The total expression of genes related to lipid metabolism in high IMF group was significantly higher than that in low IMF group (P<0.05, the same below). Additionally, the total number of DEGs in two groups was 133 [110 were up-regulated (high expression in high IMF) and 23 were down-regulated (high expression in low IMF)]. The up-regulated DEGs were mainly enriched in GO items such as collagen binding, extracellular matrix assembly, fatty acetyl-coA biosynthesis, sterol metabolism and lipid metabolism regulation, and in signaling pathways such as fatty acetyl-coA biosynthesis, CHREBP activated metabolic genes and fatty acid metabolism. Meanwhile, the down-regulated genes were mainly enriched in GO items such as mitochondrial assembly, multi-multicellular biological processes, coenzyme bin-ding and hypoxia response, and in signaling pathways such as TNFA signaling via NFKB, interleukin-4 and interleukin-13 signaling and signaling by interleukins. Five hub genes, SLC25A5, FN1, FASN, ACACA and PRKDC, were identified by MCODE analysis, and then SCD, FASN and ACACA were selected for expression verification. The results showed that the relative expression of these three genes were significantly higher in Kole pigs than that in DLY pigs (P<0.01), and it was further proved that SCD, FASN and ACACA were highly expressed in high IMF pigs. 【Conclusion】SCD, FASN and ACACA genes that highly expressed in the high IMF group of Berkshire pigs are also significantly or extremely highly expressed in Kole pigs with the high IMF. Therefore, these three hub genes may be used as molecular markers for selecting and breeding pigs with high IMF, and provide technical support for studying the molecular regulation mechanism of IMF deposition.
Key words: pig; intramuscular fat; longissimus dorsi; differentially expressed genes (DEGs); fat deposition
Foundation items: Guizhou Department of Science and Technology Plan Project (QKHZC〔2019〕2278, QKHFQ〔2018〕4007, QKHCG〔2020〕1Y027); Guizhou Academy of Agricultural Sciences and Technology Achievements Transformation Guidance Fund Project (QNKYKJCX〔2022〕01)
0 引言
【研究意義】脂肪是動(dòng)物體內(nèi)存儲(chǔ)能量的重要組織,脂質(zhì)合成及沉積與動(dòng)物體內(nèi)營(yíng)養(yǎng)物質(zhì)的消化、吸收、代謝和能量周轉(zhuǎn)存在密切聯(lián)系(Yun et al.,2018)。脂肪沉積是豬生長(zhǎng)的重要生物學(xué)過(guò)程,其中肌內(nèi)脂肪(Intramuscular fat,IMF)是指位于肌纖維與肌束間的脂肪,其含量差異可促使肌肉呈現(xiàn)出不同程度的大理石花紋,同時(shí)影響肌肉的嫩度、多汁性、風(fēng)味及脂肪酸含量等品質(zhì)性狀(Damian et al.,2016;陳靜等,2021)。因此,肌內(nèi)脂肪是評(píng)價(jià)肉品質(zhì)的重要指標(biāo),解析其遺傳機(jī)制對(duì)科學(xué)開(kāi)展肉質(zhì)調(diào)控具有重要意義。【前人研究進(jìn)展】隨著對(duì)西方豬種(杜洛克、大白豬及長(zhǎng)白豬等)瘦肉率的高強(qiáng)度持續(xù)選育,外種豬的肌內(nèi)脂肪已低于2%,但我國(guó)地方豬的肌內(nèi)脂肪一般都高于3%(熊遠(yuǎn)著,2000;李鵬和斯日吉楞,2010;張雄等,2019)。長(zhǎng)期以來(lái),通過(guò)提高肌內(nèi)脂肪含量以改善豬肉品質(zhì)是生豬產(chǎn)業(yè)面臨的著要問(wèn)題之一,其分子調(diào)控機(jī)制也受到廣泛關(guān)注。肌內(nèi)脂肪沉積同時(shí)受到動(dòng)物遺傳背景、飼料、年齡等因素的影響(Katsumata,2011;Bosch et al.,2012;Pena et al.,2016;Malgwi et al.,2022),如通過(guò)蛋氨酸和賴氨酸限飼可顯著提高育肥豬的肌內(nèi)脂肪含量(Palma-Granados et al.,2019;Wu et al.,2019),在飼糧中添加共軛亞油酸可有效提高肌內(nèi)脂肪含量(Wang et al.,2021),但這些調(diào)節(jié)因子功能的發(fā)揮均是通過(guò)影響脂肪生成及脂肪分解過(guò)程中的關(guān)鍵基因來(lái)實(shí)現(xiàn)。目前,有關(guān)肌內(nèi)脂肪沉積相關(guān)基因的研究報(bào)道較少。Cho等(2019)對(duì)西方豬種和韓國(guó)本地豬種背最長(zhǎng)肌的肌內(nèi)脂肪進(jìn)行比較,鑒定出豬12號(hào)染色體上的MYH3基因是影響肌內(nèi)脂肪沉積的因果基因,可通過(guò)啟動(dòng)子上6-bp缺失的結(jié)構(gòu)變異而抑制肌源性調(diào)節(jié)因子結(jié)合,進(jìn)而促進(jìn)肌內(nèi)脂肪沉積。Huang等(2021)在我國(guó)地方豬、西方豬種及其雜交豬種上進(jìn)行驗(yàn)證,得出的研究結(jié)果均不支持 MYH3基因6-bp缺失與肌內(nèi)脂肪間的因果關(guān)系,提示12號(hào)染色體上QTL的因果突變有待進(jìn)一步探究。由于肌內(nèi)脂肪屬于中等偏低的遺傳力性狀(h2=0.2),因此可通過(guò)合理的品種選育得到明顯改善與提高?!颈狙芯壳腥朦c(diǎn)】分子標(biāo)記輔助選擇(Marker-assisted selection,MAS)的誕生可實(shí)現(xiàn)從分子水平上快速準(zhǔn)確地分析個(gè)體遺傳組成,從而實(shí)現(xiàn)對(duì)基因型的直接選擇,極大提高育種效率,最終加快對(duì)目的性狀的遺傳選擇進(jìn)展。雖然目前關(guān)于豬肌內(nèi)脂肪沉積的機(jī)制研究較多,但對(duì)于外種豬和地方豬的肌內(nèi)脂肪沉積機(jī)制是否具有一致性尚無(wú)定論。【擬解決的關(guān)鍵問(wèn)題】利用現(xiàn)有的NCBI-GEO數(shù)據(jù)庫(kù)資源,挖掘高肌內(nèi)脂肪豬與低肌內(nèi)脂肪豬的轉(zhuǎn)錄組差異,明確高、低肌內(nèi)脂肪沉積的功能基因差異,篩選出高肌內(nèi)脂肪沉積的關(guān)鍵基因并進(jìn)行表達(dá)驗(yàn)證,以期為揭示豬肌內(nèi)脂肪沉積的分子調(diào)控機(jī)制提供理論依據(jù)。
1 材料與方法
1. 1 試驗(yàn)動(dòng)物及樣本采集
供試的地方豬(柯樂(lè)豬)和外種豬(杜長(zhǎng)大)樣本分別來(lái)自貴州優(yōu)農(nóng)谷生態(tài)產(chǎn)業(yè)有限公司柯樂(lè)豬原種場(chǎng)和四川省某規(guī)模化豬場(chǎng),各6頭,所有供試豬均按NY/T 65—2004《豬飼養(yǎng)標(biāo)準(zhǔn)》進(jìn)行飼喂,飼喂至360日齡左右進(jìn)行屠宰,采集背最長(zhǎng)?。ㄗ詈罄吖翘帲?,液氮保存?zhèn)溆谩?/p>
1. 2 轉(zhuǎn)錄組數(shù)據(jù)來(lái)源
轉(zhuǎn)錄組數(shù)據(jù)來(lái)源于GEO數(shù)據(jù)庫(kù)(登錄號(hào)GSE86086),豬品種為巴克夏,共6個(gè)樣本,高肌內(nèi)脂肪群體(n=3)的肌內(nèi)脂肪含量為(3.80±0.03)%,低肌內(nèi)脂肪群體(n=3)的含量為(0.47±0.04)%(Lim et al.,2017)。
1. 3 數(shù)據(jù)分析
采用CPM(Counts per million)法校正基因表達(dá)水平,轉(zhuǎn)錄本表達(dá)量統(tǒng)計(jì)采用edgeR(Robinson et al.,2010),并根據(jù) CPM 值分析樣本間的相關(guān)性。使用DESeq2篩選差異表達(dá)基因(Differentially expressed genes,DEGs)(Love et al.,2014;孫瑞萍等,2020),篩選標(biāo)準(zhǔn)為FDR<0.05 且|log2 Fold Change|>1。然后采用Metascape(https://metascape.org/gp/index.html#/main/step1)對(duì)差異表達(dá)基因進(jìn)行功能注釋分析,并以超幾何分布(P<0.05)在分子特征數(shù)據(jù)庫(kù)(MSigDB)的KEGG、Reactome、GO和Hallmark等4個(gè)數(shù)據(jù)庫(kù)中進(jìn)行信號(hào)通路富集分析。
1. 4 關(guān)鍵基因篩選
通過(guò)STRING構(gòu)建差異表達(dá)基因編碼蛋白的相互作用網(wǎng)絡(luò)(Protein-protein interaction network,PPI),導(dǎo)入Cytoscape 3.9.0進(jìn)行網(wǎng)絡(luò)可視化處理和子模塊篩選,再利用MCODE篩選及鑒定出關(guān)鍵基因(張斌等,2021)。
1. 5 基因表達(dá)驗(yàn)證
采用實(shí)時(shí)熒光定量PCR驗(yàn)證關(guān)鍵基因在地方豬和外種豬背最長(zhǎng)肌中的表達(dá)情況。在NCBI中搜索關(guān)鍵基因的mRNA序列,通過(guò)Primer Premier 6.0設(shè)計(jì)實(shí)時(shí)熒光定量PCR擴(kuò)增引物(表1),并以β-actin為內(nèi)參基因。采用TRIzol法提取樣本總RNA,通過(guò)PrimeScriptTM RT reagent Kit with gDNA Eraser試劑盒(TaKaRa)反轉(zhuǎn)錄合成cDNA后,參照TB Green? PrimeScript? RT-PCR(TaKaRa)說(shuō)明在CFX-96熒光定量 PCR 儀上進(jìn)行實(shí)時(shí)熒光定量PCR檢測(cè),擴(kuò)增程序:95 ℃預(yù)變性 1 min;95 ℃ 5 s,退火30 s,72 ℃ 1 min,進(jìn)行40個(gè)循環(huán)。每個(gè)樣本設(shè)3個(gè)重復(fù),通過(guò)2-△△Ct法換算目的基因相對(duì)表達(dá)量。
1. 6 統(tǒng)計(jì)分析
采用Excel 2017和GraphPad Prism 7進(jìn)行統(tǒng)計(jì)分析,并以雙尾非配對(duì)t檢驗(yàn)進(jìn)行差異顯著性分析。
2 結(jié)果與分析
2. 1 轉(zhuǎn)錄組數(shù)據(jù)特征分析結(jié)果
利用edgeR對(duì)基因的原始表達(dá)量進(jìn)行CPM值計(jì)算,篩選出至少在1個(gè)文庫(kù)中CPM值大于0.5的基因進(jìn)行分析,6個(gè)文庫(kù)共鑒定出7661個(gè)基因。對(duì)6個(gè)樣本[高肌內(nèi)脂肪樣本(H1、H2和H3),低肌內(nèi)脂肪樣本(L1、L2和L3)]的基因表達(dá)量進(jìn)行相關(guān)分析,結(jié)果發(fā)現(xiàn)各生物學(xué)重復(fù)樣本間的相關(guān)性均高于不同組間的樣本(圖1-A)。同時(shí),對(duì)表達(dá)量排名前1000的基因進(jìn)行聚類分析,結(jié)果發(fā)現(xiàn)每個(gè)組內(nèi)的3個(gè)生物學(xué)重復(fù)樣本均聚為一支(圖1-B)。
2. 2 脂質(zhì)代謝相關(guān)基因表達(dá)分析結(jié)果
脂質(zhì)代謝相關(guān)基因集來(lái)自MSigDB(https://www. gsea-msigdb.org/gsea/msigdb/index.jsp)的REACTOME_ metabolism of lipids(739個(gè)脂質(zhì)代謝基因)和KEGG_fatty acid metabolism(39個(gè)脂肪酸酸代謝基因),共發(fā)現(xiàn)有199個(gè)脂質(zhì)代謝相關(guān)基因在6個(gè)樣本中表達(dá)(圖2),其表達(dá)模式表現(xiàn)為高肌內(nèi)脂肪群體樣本的脂質(zhì)代謝相關(guān)基因總表達(dá)量顯著高于低肌內(nèi)脂肪群體樣本(P<0.05,下同)。
2. 3 差異表達(dá)基因分析結(jié)果
利用DESeq2進(jìn)行差異表達(dá)基因篩選(|log2 Fold Change|≥1,F(xiàn)DR<0.05),共篩選得到133個(gè)差異表達(dá)基因,其中110個(gè)上調(diào)、23個(gè)下調(diào)(圖3-A)。排名前5的上調(diào)差異表達(dá)基因分別是硬脂酸乙酰輔酶A去飽和酶(Stearoyl-coA desaturase)編碼基因(SCD)、脂肪酸合酶(Fatty acid synthase)編碼基因(FASN)、圍脂滴蛋白1(Perilipin 1)編碼基因(PLIN1)、CGMP依賴性蛋白激酶1(Protein kinase CGMP-dependent 1)編碼基因(PRKG1)和細(xì)胞死亡誘導(dǎo)DFFA樣效應(yīng)蛋白C(Cell death inducing DFFA like effector C)編碼基因(CIDEC);排名前5的下調(diào)差異表達(dá)基因分別是NCAPD3(Non-SMC condensin II complex subunit D3)基因、ENSSSCG00000014565、C-C基序趨化因子配體2(C-C motif chemokine ligand 2)編碼基因(CCL2)、去乙酰化酶3(Sirtuin 3)編碼基因(SIRT3)和U3小核仁RNA相關(guān)蛋白25(UTP25 small subunit processor component)編碼基因(UTP25)。
2. 4 基因功能富集分析結(jié)果
利用Metascape對(duì)差異表達(dá)基因進(jìn)行功能富集分析,結(jié)果顯示133個(gè)差異基因共富集到406條功能條目上。其中,上調(diào)差異表達(dá)基因(在高肌內(nèi)脂肪群體高表達(dá))主要富集于膠原蛋白綁定(Collagen bin-ding,P=3.98E-10)、細(xì)胞外基質(zhì)組裝(Extracellular matrix organization,P=3.16E-09)、脂肪酰輔酶A生物合成過(guò)程(Fatty-acyl-CoA biosynthetic process,P=1.26E-08)、固醇代謝過(guò)程(Steroid metabolic process,P=1.58E-06)和脂質(zhì)代謝調(diào)控過(guò)程(Regulation of lipid metabolic process,P=1.00E-05)等GO功能條目(圖4-A),以及脂肪乙酰輔酶A生物合成(Fatty acyl-CoA biosynthesis,P=3.16E-08)、ChREBP激活代謝基因(ChREBP activates metabolic gene expression,P=7.94E-07)、脂肪酸代謝(Fatty acid metabolism,P=6.31E-06)等信號(hào)通路(圖4-B)上;下調(diào)差異表達(dá)基因(在低肌內(nèi)脂肪群體高表達(dá))主要富集于線粒體組裝(Mitochondrion organization,P=2.51E-04)、多細(xì)胞生物學(xué)過(guò)程(Multi-multicellular organism process,P=2.51E-04)、輔酶綁定(Coenzyme binding,P=6.31E-04)和缺氧反應(yīng)(Response to hypoxia,P=1.00E-03)等GO功能條目(圖4-A),以及基于NFKB的TNFA信號(hào)(HALLMARK TNFA SIGNALING VIA NFKB,P=3.98E-06)、白細(xì)胞介素4和白細(xì)胞介素13信號(hào)(Interleukin-4 and interleukin-13 signaling,P=3.16E-05)和干擾素信號(hào)(Signaling by interleukins,P=1.99E-03)等信號(hào)通路(圖4-B)上。
利用MCODE進(jìn)行關(guān)鍵基因分析,共篩選獲得5個(gè)關(guān)鍵基因(圖5),分別是溶質(zhì)載體家族25成員5(Solute carrier family 25 member 5,SLC25A5)、纖連蛋白1(Fibronectin 1)編碼基因(FN1)、脂肪酸合成酶(Fatty acid synthase)編碼基因(FASN)、乙酰輔酶A羧化酶α(Acetyl-CoA carboxylase alpha)編碼基因(ACACA)和DNA依賴性蛋白激酶催化亞基(Protein kinase,DNA-activated,catalytic subunit,PRKDC)。除SLC25A5基因呈下調(diào)表達(dá)外,其余4個(gè)關(guān)鍵基因均呈上調(diào)表達(dá)。
2. 5 關(guān)鍵基因表達(dá)驗(yàn)證結(jié)果
綜合Gallardo等(2009)、Yang等(2013)、Crespo-Piazuelo等(2020)的研究結(jié)果,且收錄在豬QTLdb與肌內(nèi)脂肪含量相關(guān)的基因數(shù)據(jù)庫(kù)中,挑選出FASN和ACACA基因進(jìn)行實(shí)時(shí)熒光定量PCR驗(yàn)證。此外,由于SCD基因的上調(diào)表達(dá)倍數(shù)變化最大,且其參與脂質(zhì)代謝調(diào)控已在畜禽的相關(guān)研究中得到證實(shí)(Uemoto et al.,2012;Yokota et al.,2012;Henriquez-Rodriguez et al.,2016),故本研究選取SCD、FASN和ACACA基因進(jìn)行表達(dá)驗(yàn)證。背最長(zhǎng)肌的肌內(nèi)脂肪表型觀察結(jié)果(圖6-A)表明,柯樂(lè)豬的肌內(nèi)脂肪含量顯著高于杜長(zhǎng)大豬(8.46% vs 1.19%);實(shí)時(shí)熒光定量PCR驗(yàn)證結(jié)果(圖6-C)顯示,SCD、FASN和ACACA基因的相對(duì)表達(dá)量均表現(xiàn)為柯樂(lè)豬高于杜長(zhǎng)大豬,其差異達(dá)顯著或極顯著(P<0.01,下同)水平,與RNA-Seq測(cè)序結(jié)果(圖6-B)基本一致,即在背最長(zhǎng)肌肌內(nèi)脂肪表型差異明顯的柯樂(lè)豬與杜長(zhǎng)大豬上SCD、FASN和ACACA基因表達(dá)差異極顯著。
3 討論
肌內(nèi)脂肪是衡量豬肉質(zhì)性狀的重要指標(biāo)之一,其含量直接影響肉色、嫩度、大理石紋及滴水損失等,對(duì)豬肉的食用價(jià)值和營(yíng)養(yǎng)價(jià)值有直接貢獻(xiàn)(Hocquette et al.,2010;Liu et al.,2021)。本研究對(duì)高、低肌內(nèi)脂肪含量巴克夏豬的差異表達(dá)基因分析發(fā)現(xiàn),上調(diào)基因Top5(在高肌內(nèi)脂肪組中高表達(dá)排名前5)分別為SCD、FASN、PLIN1、PRKG1和CIDEC,其中,SCD和FASN基因在脂肪酸組成中的重要作用已被多項(xiàng)研究證實(shí)(Yokota et al.,2012;Maharani et al.,2013)。本研究通過(guò)MCODE其挖掘出5個(gè)關(guān)鍵基因,分別是SLC25A5、FN1、FASN、ACACA和PRKDC基因,綜合前人的相關(guān)研究結(jié)果(Gallardo et al.,2009;Yang et al.,2013;Crespo-Piazuelo et al.,2020),以及差異表達(dá)基因的RNA-Seq測(cè)序結(jié)果,重點(diǎn)討論SCD、FASN和ACACA基因與豬肉品質(zhì)的調(diào)控關(guān)系。
SCD 基因編碼的硬脂酰輔酶A去飽和酶是一種內(nèi)質(zhì)網(wǎng)酶,在將飽和脂肪酸(Saturated fatty acids,SFA)轉(zhuǎn)化為單不飽和脂肪酸(Monounsaturated fatty acids,MUFA)的過(guò)程中發(fā)揮關(guān)鍵作用(Maharani et al.,2013)。MUFA被認(rèn)為是對(duì)人類健康有益的一類脂肪酸,有助于降低低密度脂蛋白膽固醇含量。此外,SCD基因在脂肪組織和骨骼肌中高表達(dá)(Voss et al.,2005),是位于豬14號(hào)染色體上的脂肪沉積候選基因,其多態(tài)性研究已有較多報(bào)道。Uemoto等(2012)在SCD基因啟動(dòng)子區(qū)鑒定出2個(gè)SNPs(g.-353C>T和g.-233T>C),并證實(shí)其單倍型與杜洛克豬群體的脂肪酸組成及脂肪熔點(diǎn)間存在顯著相關(guān)性。Maharani等(2013)為了評(píng)價(jià)SCD基因與950個(gè)韓國(guó)本地豬×長(zhǎng)白豬F2雜交群體脂肪酸組成的關(guān)聯(lián)性,對(duì)SCD基因的6個(gè)SNPs(啟動(dòng)子區(qū)的g.-353T>C和g.-233T>C;外顯子區(qū)的g.817C>T;3'-UTR區(qū)的g.13311C>G、g.14384g>A和g.14424C>T)進(jìn)行基因型分析,結(jié)果發(fā)現(xiàn)F2雜交群體SCD基因與脂肪酸組成存在很強(qiáng)的關(guān)聯(lián)性。Lim等(2015)對(duì)巴克夏豬的研究表明,SCD基因3'-UTR區(qū)的c*2041T>C多態(tài)性會(huì)影響脂肪酸組成、脂肪沉積和大理石紋。Henriquez-Rodriguez等(2016)研究表明,對(duì)SCD基因T基因型(g.2228T>C)和LEPR基因C基因型(g.1987C>T)的聯(lián)合選擇可有效提高杜洛克豬MUFA/SFA比例。
FASN基因編碼脂肪酸合酶,其主要功能是在NADPH存在下催化乙酰輔酶A和丙二酰輔酶A合成棕櫚酸酯(C16:0)和硬脂酸酯(C18:0),進(jìn)而生成長(zhǎng)鏈飽和脂肪酸(Jensen-Urstad and Semenkovich,2012)。Grzes等(2016)研究發(fā)現(xiàn),F(xiàn)ASN基因有4個(gè)SNPs(c.-2908G>A、c.-2335C>T、c.*42_43insCCCCA和c.*264A>G)與背膘厚相關(guān),其中c.-2335C>T多態(tài)性還影響杜洛克胸最長(zhǎng)肌膽固醇水平和皮特蘭皮下脂肪組織多不飽和脂肪酸(PUFA)含量。Renaville等(2015)研究證實(shí),F(xiàn)ASN基因多態(tài)性顯著影響意大利系大豬的肉品質(zhì)。Zappaterra等(2019)研究報(bào)道,F(xiàn)ASN基因的c.265T>C多態(tài)性能顯著改變意大利系大白豬胸最長(zhǎng)肌中硬脂酸、花生四烯酸、γ-亞麻酸和花生四烯酸的含量。PLIN1基因也與脂質(zhì)功能相關(guān),其編碼蛋白覆蓋在脂肪細(xì)胞中的脂滴上,從而保護(hù)脂肪細(xì)胞,直至被激素敏感的脂肪酶分解,因而在抑制脂肪分解過(guò)程中發(fā)揮重要作用(Beller et al.,2008;Li et al.,2020)。本研究結(jié)果表明,脂質(zhì)代謝相關(guān)基因表達(dá)總量表現(xiàn)為高肌內(nèi)脂肪群體樣本顯著高于低肌內(nèi)脂肪群體樣本,且上調(diào)差異表達(dá)基因(在高肌內(nèi)脂肪群體高表達(dá))主要富集在脂質(zhì)代謝相關(guān)的GO功能條目及信號(hào)通路上;利用MCODE進(jìn)行關(guān)鍵基因分析,共篩選獲得5個(gè)關(guān)鍵基因(SLC25A5、FN1、FASN、ACACA和PRKDC),但至今尚無(wú)SLC25A5、FN1和PRKDC基因參與脂質(zhì)代謝的研究報(bào)道,因此有待進(jìn)一步探究其是否在脂質(zhì)代謝過(guò)程發(fā)揮重要作用。
ACACA基因編碼的乙酰輔酶A羧化酶α是一種含有生物素的活性酶,能催化乙酰輔酶A羧化成丙二酰輔酶A,是脂肪酸合成的限速酶。Gallardo等(2009)研究表明,豬ACACA基因編碼區(qū)(CDS)存在2個(gè)SNPs(c.4899G>A和c.5196T>C),且這2個(gè)SNPs與胴體瘦肉含量、肌內(nèi)脂肪含量及血清高密度脂蛋白膽固醇濃度密切相關(guān)。Stachowiak等(2013)對(duì)波蘭豬群體ACACA基因的分析結(jié)果表明,3'-UTR區(qū)2個(gè)SNPs(c.*99T>A 和 c.*195C>A)的突變會(huì)影響背膘厚和瘦肉率。本研究基于巴克夏豬的高、低肌內(nèi)脂肪群體進(jìn)行肌內(nèi)脂肪數(shù)據(jù)分析,篩選出高肌內(nèi)脂肪的關(guān)鍵基因有SCD、FASN和ACACA;在高肌內(nèi)脂肪的柯樂(lè)豬和低肌內(nèi)脂肪的杜長(zhǎng)大豬群體內(nèi)也發(fā)現(xiàn)這3個(gè)基因的表達(dá)趨勢(shì)與在外種豬巴克夏體內(nèi)的一致。因此,SCD、FASN和ACACA基因可作為篩選和培育高肌內(nèi)脂肪豬品種的分子標(biāo)記,同時(shí)為研究肌內(nèi)脂肪沉積的分子調(diào)控機(jī)制提供技術(shù)支撐。
4 結(jié)論
在巴克夏豬高肌內(nèi)脂肪群體中高表達(dá)的SCD、FASN和ACACA基因,在高肌內(nèi)脂肪的柯樂(lè)豬中也呈顯著或極顯著高表達(dá),因此這3個(gè)關(guān)鍵基因可作為篩選和培育高肌內(nèi)脂肪豬品種的分子標(biāo)記,同時(shí)為研究肌內(nèi)脂肪沉積的分子調(diào)控機(jī)制提供技術(shù)支撐。
參考文獻(xiàn):
陳靜,尤瑞國(guó),劉慧敏,楊國(guó)慶. 2021. 檸檬醛對(duì)小鼠生長(zhǎng)性能、肌內(nèi)脂肪含量及脂肪酸代謝酶的影響[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào),55(4):721-726. [Chen J,You R G,Liu H M,Yang G Q. 2021. Effects of citral on growth performance,intramuscular fat content and fatty acid metabolizing enzymes in mice[J]. Journal of Henan Agricultural University,55(4):721-726.] doi:10.16445/j.cnki.1000-2340.2021 0531.001.
李鵬,斯日古楞. 2010. 營(yíng)養(yǎng)調(diào)控影響豬肌內(nèi)脂肪沉積的研究進(jìn)展[J]. 飼料廣角,(22):34-35. [Li P,Siriguleng. 2010. Research advances on influence of nutrition regulation in porcine intramuscular fat deposition[J]. Feed China,(22):34-35.] doi:10.3969/j.issn.1002-8358.2010.22.012.
孫瑞萍,王峰,晁哲,劉海隆,鄭心力,劉圈煒,黃麗麗,邢漫萍,魏立民. 2020. 1月齡五指山豬與長(zhǎng)白豬骨骼肌mi-RNA轉(zhuǎn)錄組比較[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),36(3):620-625. [Sun R P,Wang F,Chao Z,Liu H L,Zheng X L,Liu Q W,Huang L L,Xing M P,Wei L M. 2020. Comparative analysis on miRNA transcriptomes of skeletal muscle between one-month-old Wuzhishan pig and Landrace[J]. Jiangsu Journal of Agricultural Sciences,36(3):620-625.] doi:10.3969/j.issn.1000-4440.2020.03.013.
熊遠(yuǎn)著. 2000. 瘦肉豬育種的發(fā)展及展望[J]. 中國(guó)工程科學(xué),2(9):42-46. [Xiong Y Z. 2000. Development and prospects of lean-type swine breeding[J]. Engineering Science,2(9):42-46.] doi:10.3969/j.issn.1009-1742.2000.09.007
張斌,楊昕霞,袁志輝. 2021. 水稻響應(yīng)熱脅迫核心基因的篩選與鑒定[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),37(4):817-822. [Zhang B,Yang X X,Yuan Z H. 2021. Screening and identification of core genes responding to heat stress in rice[J]. Jiangsu Journal of Agricultural Sciences,37(4):817-822.] doi:10. 3969/j.issn.1000-4440.2021.04.001.
張雄,尚以順,史開(kāi)志,張勇,黃波,韓雪,王婧. 2019. 從江香豬胴體及肉品質(zhì)性狀研究[J]. 家畜生態(tài)學(xué)報(bào),40(1):36-40. [Zhang X,Shang Y S,Shi K Z,Zhang Y,Huang B,Han X,Wang J. 2019. Study on carcass performance and meat quality of Congjiang pigs[J]. Acta Ecologae Animalis Domastici,40(1):36-40.] doi:10.3969/j.issn.1673-1182.2019.01.007.
Beller M,Sztalryd C,Southall N,Bell M,J?ckle H,Auld D S,Oliver B. 2008. COPI complex is a regulator of lipid homeostasis[J]. PLoS Biology,6(11):e292. doi:10.1371/journal.pbio.0060292.
Bosch L,Tor M,Reixach J,Estany J. 2012. Age-related changes in intramuscular and subcutaneous fat content and fatty acid composition in growing pigs using longitudinal data[J]. Meat Science,91(3):358-363. doi:10.1016/j.meatsci.2012.02.019.
Cho I C,Park H B,Ahn J S,Han S H,Lee J B,Lim H T,Yoo C K,Jung E J,Kim D H,Sun W S,Ramayo-Caldas Y,Kim S G,Kang Y J,Kim Y K,Shin H S,Seong P N,Hwang I S,Park B Y,Hwang S,Lee S S,Ryu Y C,Lee J H,Ko M S,Lee K,Andersson G,Pérez-Enciso M,Lee J W. 2019. A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs[J]. PLoS Genetics,15(10):e1008279.? doi:10.1371/journal.pgen.1008279.
Crespo-Piazuelo D,Criado-Mesas L,Revilla M,Castelló A,Noguera J L,F(xiàn)ernández A I,Ballester M,F(xiàn)olch J M. 2020. Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig[J]. Scientific Reports,10(1):13962. doi:10.1038/s41598-020-70894-2.
Damian F,Seon-Tea J,Robyn W. 2016. Consumer acceptability of intramuscular fat[J]. Korean Journal for Food Scien-ce of Animal Resources,36(6):699-708. doi:10.5851/kosfa.2016.36.6.699.
Gallardo D,Quintanilla R,Varona L,Díaz I,Ramírez O,Pena R N,Amills M. 2009. Polymorphism of the pig acetyl-coenzyme A carboxylase alpha gene is associated with fatty acid composition in a Duroc commercial line[J]. Animal Genetics,40(4):410-417. doi:10.1111/j.1365-2052.2009. 01854.x.
Grzes M,Sadkowski S,Rzewuska K,Szydlowski M,Switonski M. 2016. Pig fatness in relation to FASN and INSIG2 genes polymorphism and their transcript level[J]. Mole-cular Biology Reports,43(5):381-389. doi:10.1007/s11033- 016-3969-z.
Henriquez-Rodriguez E,Bosch L,Tor M,Pena R N,Estany J. 2016. The effect of SCD and LEPR genetic polymorphisms on fat content and composition is maintained throughout fattening in Duroc pigs[J]. Meat Science,121:33-39. doi: 10.1016/j.meatsci.2016.05.012.
Hocquette J F,Gondret F,Baéza E,Médale F,Jurie C,Pe-thick D W. 2010. Intramuscular fat content in meat-produ-cing animals:Development,genetic and nutritional control,and identification of putative markers[J]. Animal:An International Journal of Animal Bioscience,4(2):303-319. doi:10.1017/S1751731109991091.
Huang C,Zhong L P,Zou X X,Huang Y Z,Cai L P,Ma J W. 2021. Evidence against the causal relationship between a putative cis-regulatory variant of MYH3 and intramuscular fat content in pigs[J]. Frontiers in Veterinary Science,8:672852. doi:10.3389/fvets.2021.672852.
Jensen-Urstad A P L,Semenkovich C F. 2012. Fatty acid synthase and liver triglyceride metabolism:Housekeeper or messenger[J]. Biochimica et Biophysica Acta,1821(5):747-753. doi:10.1016/j.bbalip.2011.09.017.
Katsumata M. 2011. Promotion of intramuscular fat accumulation in porcine muscle by nutritional regulation[J]. Animal Science Journal,82(1):17-25. doi:10.1111/j.1740-0929.2010.00844.x.
Li S J,Raza S H A,Zhao C P,Cheng G,Zan L S. 2020. Overexpression of PLIN1 promotes lipid metabolism in bovine adipocytes[J]. Animals:An Open Access Journal from MDPI,10(11):E1944. doi:10.3390/ani10111944.
Lim K S,Kim J M,Lee E A,Choe J H,Hong K C. 2015. A candidate single nucleotide polymorphism in the 3' untranslated region of stearoyl-CoA desaturase gene for fatness quality and the gene expression in Berkshire pigs[J]. Asian-Australasian Journal of Animal Sciences,28(2):151-157. doi:10.5713/ajas.14.0529.
Lim K S,Lee K T,Park J E,Chung W H,Jang G W,Choi B H,Hong K C,Kim T H. 2017. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequen-cing[J]. Animal Genetics,48(2):166-174. doi:10.1111/age.12518.
Liu J Q,Li J,Chen W T,Xie X T,Chu X G,Valencak T G,Wang Y Z,Shan T Z. 2021. Comprehensive evaluation of the metabolic effects of porcine CRTC3 overexpression on subcutaneous adipocytes with metabolomic and transcriptomic analyses[J]. Journal of Animal Science and Biotechnology,12(1):19. doi:10.1186/s40104-021-00546-6.
Love M I,Huber W,Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2[J]. Genome Biology,15(12):550. doi:10.1186/s13059-014-0550-8.
Maharani D,Park H B,Lee J B,Yoo C K,Lim H T,Han S H,Lee S S,Ko M S,Cho I C,Lee J H. 2013. Association of the gene encoding stearoyl-CoA desaturase (SCD) with fatty acid composition in an intercross population between Landrace and Korean native pigs[J]. Molecular Biology Reports,40(1):73-80. doi:10.1007/s11033-012-2014-0.
Malgwi I H,Halas V,Grünvald P,Schiavon S,Jócsák I. 2022. Genes related to fat metabolism in pigs and intramuscular fat content of Pork:A focus on nutrigenetics and nutrigenomics[J]. Animals:An Open Access Journal from MDPI,12(2):150. doi:10.3390/ani12020150.
Palma-Granados P,Seiquer I,Benítez R,óvilo C,Nieto R. 2019. Effects of lysine deficiency on carcass composition and activity and gene expression of lipogenic enzymes in muscles and backfat adipose tissue of fatty and lean piglets[J]. Animal:An International Journal of Animal Bioscience,13(10):2406-2418. doi:10.1017/S17517311190 00673.
Pena R N,Ros-Freixedes R,Tor M,Estany J. 2016. Genetic marker discovery in complex traits:A field example on fat content and composition in pigs[J]. International Journal of Molecular Sciences,17(12):E2100. doi:10.3390/ijms17122100.
Renaville B,Bacciu N,Lanzoni M,Corazzin M,Piasentier E. 2015. Polymorphism of fat metabolism genes as candidate markers for meat quality and production traits in heavy pigs[J]. Meat Science,110:220-223. doi:10.1016/j.meatsci.2015.07.014.
Robinson M D,McCarthy D J,Smyth G K. 2010. edgeR:A Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics (Oxford,England),26(1):139-140. doi:10.1093/bioinforma-tics/btp616.
Stachowiak M,Nowacka-Woszuk J,Szydlowski M,Switonski M. 2013. The ACACA and SREBF1 genes are promising markers for pig carcass and performance traits, but not for fatty acid content in the longissimus dorsi muscle and adipose tissue[J]. Meat Science,95(1):64-71. doi:10.1016/ j.meatsci.2013.04.021.
Uemoto Y,Nakano H,Kikuchi T,Sato S,Ishida M,Shibata T,Kadowaki H,Kobayashi E,Suzuki K. 2012. Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population[J]. Animal Genetics,43(2):225-228. doi:10.1111/j.1365-2052.2011.02236.x.
Voss M D,Beha A,Tennagels N,Tschank G,Herling A W,Quint M,Gerl M,Metz-Weidmann C,Haun G,Korn M. 2005. Gene expression profiling in skeletal muscle of Zucker diabetic fatty rats:Implications for a role of stea-royl-CoA desaturase 1 in insulin resistance[J]. Diabetologia,48(12):2622-2630. doi:10.1007/s00125-005-0025-2.
Wang L Y,Huang Y Q,Wang Y Z,Shan T Z. 2021. Effects of polyunsaturated fatty acids supplementation on the meat quality of pigs:A meta-analysis[J]. Frontiers in Nutrition,8:746765. doi:10.3389/fnut.2021.746765.
Wu L,Zhang H W,Na L,Zhou X H,Li X,Zhao Y R,Wen Z,He Q H. 2019. Methionine restriction at the post-weanling period promotes muscle fiber transition in piglets and improves intramuscular fat content in growing-fini-shing pigs[J]. Amino Acids,51(10-12):1657-1666. doi:10.1007/s00726-019-02802-6.
Yang B,Zhang W C,Zhang Z Y,F(xiàn)an Y,Xie X H,Ai H S,Ma J W,Xiao S J,Huang L S,Ren J. 2013. Genome-wide association analyses for fatty acid composition in porcine muscle and abdominal fat tissues[J]. PLoS One,8(6):e65554. doi:10.1371/journal.pone.0065554.
Yokota S,Sugita H,Ardiyanti A,Shoji N,Nakajima H,Hosono M,Otomo Y,Suda Y,Katoh K,Suzuki K. 2012. Contributions of FASN and SCD gene polymorphisms on fatty acid composition in muscle from Japanese black cattle[J]. Animal Genetics,43(6):790-792. doi:10.1111/j.1365- 2052.2012.02331.x.
Yun J Y,Jin H G,Cao Y,Zhang L C,Zhao Y M,Jin X,Yu Y S. 2018. RNA-Seq analysis reveals a positive role of HTR2A in adipogenesis in Yan yellow cattle[J]. International Journal of Molecular Sciences,19(6):1760. doi:10.3390/ijms19061760.
Zappaterra M,Luise D,Zambonelli P,Mele M,Serra A,Costa L N,Davoli R. 2019. Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs[J]. Meat Science 156:75-84. doi:10.1016/j.meatsci.2019.05.013.
收稿日期:2022-02-19
基金項(xiàng)目:貴州省科技計(jì)劃項(xiàng)目(黔科合支撐〔2019〕2278號(hào),黔科合服企〔2018〕4007號(hào),黔科合成果〔2020〕1Y027號(hào));貴州省農(nóng)業(yè)科學(xué)院科技成果轉(zhuǎn)化引導(dǎo)資金項(xiàng)目(黔農(nóng)科院科技創(chuàng)新〔2022〕01號(hào))
通訊作者:史開(kāi)志(1981-),http://orcid.org/0000-0001-7255-7180,研究員,主要從事地方豬培育及產(chǎn)業(yè)化發(fā)展研究工作,E-mail:shkzjjp@163.com
第一作者:譚婭(1989-),http://orcid.org/0000-0003-2128-2396,主要從事豬遺傳與分子育種研究工作,E-mail:Tanya_Lee@126.com