999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

DK SPACES AND CARLESON MEASURES*

2022-06-25 02:12:58DongxingLI李東行

Dongxing LI (李東行)

School of Financial Mathematics and Statistics,Guangdong University of Finance,Guangzhou 510521,China

E-mail:47-075@gduf.edu.cn

Hasi WULAN (烏蘭哈斯)

Department of Mathematics,Shantou University,Shantou 515063,China

E-mail:wulan@stu.edu.cn

Ruhan ZHAO (趙如漢)?

Department of Mathematics,SUNY Brockport,Brockport,NY 14420,USA

E-mail:rzhao@brockport.edu

Abstract We give some characterizations of Carleson measures for Dirichlet type spaces by using Hadamard products.We also give a one-box condition for such Carleson measures.

Key words DK space;Hadamard product;mean growth;Carleson measure

1 Introduction

Let D={z∈C:|z|<1}be the unit disk,let?D={z∈C:|z|=1}be the unit circle,and let Hol (D) be the space of all analytic functions on D.Fora,z∈D,letbe the Mbius transformation on D that interchangeszanda.It is known that the Green function of D with logarithmic singularity ata∈D is given byg(z,a)

For 0<p≤∞,the mean growth of functionfon D is defined as

The Hardy spaceHpconsists of those functionsfthat are analytic on D for which

For 0<p<∞andα>-1,the weighted Bergman spaceconsists of thosef∈Hol (D) such that

The weighted Dirichlet space(0<p<∞,α>-1) consists of thosef∈Hol (D) such thatf′∈.Hence,iffis analytic in D,then

The classical Carleson measure was introduced by Carleson[8]in his solution to the corona problem.We say that a positive Borel measureμon D is a Carleson measure if the embedding operator from the Hardy spaceHpintoLp(dμ) is bounded;that is,there is a positive constantCsuch that

for allf∈Hp.There is a simple geometric characterization of these measures.

For an arcI??D,let|I|denote the normalized arc length ofIso that|?D|=1.We call

a Carleson box.It is well-known that a positive measureμon D is a Carleson measure if and only if there exists a constantC>0 such thatμ(S(I))≤C|I|for allI??D.Ifa=(1-|I|)eiθis the midpoint of the inner side of the Carleson box;we will also denoteIbyIaandS(Ia) byS(a).

We may extend the notion of the Carleson measure by replacing the right-hand side of (1.1) by the norm or the semi-norm of some other function space such as the Bergman space,the Bloch space,or the BMOA,etc..In general,if we letXbe a space of analytic functions on D,for 0<p<∞,a positive Borel measureμon D is said to be ap-Carleson measure for the spaceXif the embedding mapI:XLp(dμ) is a bounded operator,i.e.,there is a constantC>0 such that

for all functionsf∈X.When the parameterp=2,we always simply leave out thepin front of the Carleson measure.The following result is due to Wu:

Proposition 1.1([16]) Suppose that 0<p≤2,and letμbe a positive Borel measure on D.Thenμis ap-Carleson measure forif and only ifμis a classical Carleson measure.

Ifs>0 andμis a positive Borel measure on D,we can generalize the classical Carleson measure by saying thatμis ans-Carleson measure on D if there exists a positive constantCsuch thatμ(S(I))≤C|I|sfor any intervalI??D.Note that the following two notations are different:

(i)μis ap-Carleson measure on D;

(ii)μis ap-Carleson measure for a spaceX.The following results are known:

Proposition 1.2([13]) Assume that 0<p<∞,thats>1,and letμbe a positive Borel measure on D.Thenμis ans-Carleson measure on D if and only ifμis ap-Carleson measure for

Proposition 1.3([15]) Suppose that 0<s<∞.Ifμis a Carleson measure forDs,thenμis ans-Carleson measure.In particular,fors≥1,μis a Carleson measure forDsif and only ifμis ans-Carleson measure.Fors=0,ifμis a Carleson measure forD,then

For a right continuous and nondecreasing functionK:[0,∞)[0,∞),we define the weighted Dirichlet spaceDKof analytic functionsfon D such that

ForK(t)=ts,0<s<∞,we have thatDK=Ds.

By Theorem 2.1 in[10],we may assume thatKis defined on[0,1];we may extend its domain to[0,∞) by settingK(t)=K(1) fort>1.Furthermore,we need the two following conditions onK:

Note that (1.3) implies the ensuing doubling condition;that is,there exist positive constantsCandMsuch that

Also,by Theorem 5 in[17](see also Theorem 3.8 in[18]),we know that ifKsatisfies condition (1.3),then

Suppose thatKsatisfies (1.3).Then,we see thatKalso satisfies (1.4) and (1.5).By a proof similar to the one for Theorem 2.18 in[18],we know that in this case,an analytic functionfon D is inDKif and only if

2 Carleson Measure With Hadamard Products

By Parseval’s formula,(1.6),and Theorem 6 in[17],we get

Proposition 2.1Suppose thatKsatisfies (1.2) and (1.3).Thenf∈DKif and only iff*g∈H2,where

Aulaskari,Girela and Wulan gave the following characterization of a Carleson measure by using Hadamard products:

Proposition 2.2([4]) For 0<s<∞,a positive Borel measureμdefined on D is a classical Carleson measure if and only if there exists a positive constantCsuch that

One of our goals is to extend these results to thes-Carleson measure and toDKspaces.We need the following result:

Lemma 2.3([9]) Let 0<s<∞.A positive Borel measureμon D is ans-Carleson measure if and only if

Theorem 2.4Suppose thatKsatisfies conditions (1.2) and (1.3).A positive Borel measureμon D is ans-Carleson measure fors≥1 if and only if there exists a constantC>0 such that

Proof“?”.Then,by Proposition 2.1,we know that

Using this equation and (1.3) of[4],we get that

is equivalent to

This gives that

By Theorem 1.2 in[15]we know thatμis ans-Carleson measure withs≥1 if and only ifμis a Carleson measure forDs.Hence,we have that

“?”Conversely,suppose that (2.1) holds for allf∈DK.For eacha∈D with|a|>,we take the testing function

By Proposition 2.1,we have that

Since,forp>0,we have that

by Stirling’s formula

we get that

On the other hand,

From (2.1) and the inequality,it follows that

By Lemma 2.3,we know thatμis as-Carleson measure. □

Theorem 2.5Suppose thatKsatisfies condition (1.3).A positive Borel measureμon D is ans-Carleson measure fors>1 if and only if there exists a positive constantCsuch that

Proof“?”Suppose thatμis ans-Carleson measure.Let

“?”Conversely,suppose that (2.3) holds for allf∈DK.For eacha∈D with|a|>we take the testing function

Therefore,

Combining the above inequalities and (2.3),we obtain that

By Lemma 2.3,this means thatμis as-Carleson measure. □

3 One-Box Conditions for Carleson Measures

The classical Carleson one-box conditionμ(S(I))=O(|I|) can be generalized asμ(S(I))=O(φ(|I|)) by providing a nondecreasing functionφ:(0,1]→(0,∞).It is proved in[12]that a finite positive Borel measureμon D is a Carleson measure forDif it satisfies the Carleson one-box condition

whereφ:(0,1](0,∞) is an increasing function such that

A Hilbert spaceHhas a reproducing kernelkw(z)=k(z,w) in the sense that

The following result is known:

Proposition 3.1(Lemma 24 of[2]) Assume that a Hilbert spaceHhas a reproducing kernelk(z,w).Letμbe a finite positive Borel measure on D.Then

From this result we immediately obtain the following characterization of a Carleson measure forH:

Corollary 3.2A finite positive Borelμon D is a Carleson measure for Hilbert spaceHwith a reproducing kernelk(z,w) if and only if

By the Cauchy-Schwartz inequality and the fact that|k(z,w)|=|k(w,z)|,we have that

Therefore we get

Corollary 3.3A finite positive Borel measureμon D is a Carleson measure for Hilbert spaceHwith a reproducing kernelk(z,w) provided that

As an extension of a result of[12],we have the following theorem:

Theorem 3.4Lets>0,and letμbe a finite positive Borel measure on D satisfyingμ(S(I))=O(φ(|I|)),whereφ:(0,1](0,∞) is an increasing function such that

Thenμis a Carleson measure forDs.

ProofWe mainly follow the proof of Theorem 1.1 of[12].It suffices to show that (3.1) holds.In establishing (3.1),we can restrict our attention to thosewwith<|w|<1,since the supremum over the remainingwis clearly finite.

LetkDs(z,w) be the reproducing kernel forDs.The following estimate is well-known:

see,for example,page 28 in[3].

Fixwwith<|w|<1.By (3.3),using Fubini’s theorem to integrate by parts,we have that

is not void whent>1-|w|and Ωt=D whent≥1+|w|.Letw=reiθ.By a geometric consideration,we can prove that Ωt?S(It),whereItis the arc on?D centered ateiθwith normalized arc length

It can be easily shown that for 1-|w|≤t<1,

Therefore,by our condition in the theorem,we get that

By Corollary 3.3 we know thatμis a Carleson measure forDs. □

We give two examples here to illustrate this result.The first example gives an application of Theorem 3.4.

Example 3.5Let 0<s<1 and letβ>1.Let.It is proved by Pau and Pel′aez in Lemma 2.1 in[14]that ifμis a finite positive Borel measure on D satisfyingμ(S(I))=O(φ(|I|)),thenμis a Carleson measure forDs.It can be easily checked thatsatisfies condition (3.2).Hence,the above result of Pau and Pel′aez is an easy consequence of Theorem 3.4.

The next result shows that the result in Theorem 3.4 is in some sense sharp.

Example 3.6For any 0<s<1,there exists an increasing functionφon (0,1] such thatis strictly decreasing and

and there exists a finite positive Borel measureμon D satisfyingμ(S(I))=O(φ(|I|)) such thatμis not a Carleson measure forDs.

To prove this result,we need the concept ofQsspaces,which was introduced in[5].There are several equivalent definitions ofQsspaces;here we adopt a definition using Carleson measures.

Letting 0<s<∞,we say that an analytic functionfon D is in the spaceQsif dμf(z):=|f′(z)|2(1-|z|2)sdA(z) is ans-Carleson measure on D (see Theorem 1.1 in[6]).Relating to this paper,the concept ofQsspaces has been generalized toQKspaces using the weight functionKdiscussed above.Please see[7,19]and[20]for some more information aboutQKspaces and some other generalizations ofQsspaces.

In Corollary 2.1 in[1],Aleman,Carlsson and Persson proved that for everys∈(0,1),there exist functionsf∈Qs,g∈Dssuch that

Note that the last condition is equivalent to the fact that the measure dμf(z):=|f′(z)|2(1-|z|2)sdA(z) is not a Carleson measure forDs.

Back to Example 3.6.For any 0<s<1,letφ(t)=ts.Then,obviously,φsatisfies all the conditions in Example 3.6.Letfbe the function in Aleman,Carlsson and Persson’s example above,and let

Sincef∈Qs,we know that dμfis ans-Carleson measure,or thatμf(S(I))=O(φ(|I|)) forφ(t)=ts.However,dμfis not a Carleson measure forDs,hence we know that Example 3.6 is true.

Finally,as a corollary to Theorem 3.4,we get the following one-box condition for Carleson measures onDKspaces:

Corollary 3.7Suppose thatKsatisfies condition (1.3).Letμbe a finite positive Borel measure on D satisfyingμ(S(I))=O(φ(|I|)),whereφ:(0,1](0,∞) is an increasing function such that

Thenμis a Carleson measure forDK.

ProofIt is proved in[11,Lemma 2.2]that if (1.3) holds,then there is a weight functionK*,comparable toK,such thatK*(t)/tis decreasing for 0<t<∞.Thus,DK=DK*,and since

for 0<t≤1,we know thatDK?D1.By Theorem 3.4,we know thatμis a Carleson measure forD1,and hence also a Carleson measure forDK.The proof is complete. □

主站蜘蛛池模板: 亚洲第一视频免费在线| 国产综合精品一区二区| 五月婷婷综合色| 99久久亚洲综合精品TS| 国产精品极品美女自在线看免费一区二区| 欧美视频在线播放观看免费福利资源| 婷婷色在线视频| 亚洲第一成年网| 欧美激情第一欧美在线| 国产成人免费| 特级毛片免费视频| 国产特级毛片| 亚洲伊人天堂| 亚洲第一色视频| 99热亚洲精品6码| 欧美一级专区免费大片| 自拍亚洲欧美精品| 啊嗯不日本网站| 国产精品开放后亚洲| 国产综合无码一区二区色蜜蜜| 亚洲三级a| 久久精品人人做人人爽97| 国产白浆一区二区三区视频在线| 久久亚洲中文字幕精品一区| 99久久国产精品无码| 欧美一区二区丝袜高跟鞋| 亚洲丝袜中文字幕| 粗大猛烈进出高潮视频无码| 亚洲侵犯无码网址在线观看| 久久大香香蕉国产免费网站| 国产va免费精品观看| 91福利免费| 高清无码不卡视频| 国产日韩精品欧美一区喷| 成人自拍视频在线观看| 操美女免费网站| 青青热久免费精品视频6| 国产天天射| 日韩一区精品视频一区二区| 国产精品国产主播在线观看| 97成人在线视频| 精品无码日韩国产不卡av| 国产成人1024精品| 国产无码精品在线播放| 日韩av无码DVD| 国外欧美一区另类中文字幕| 国产视频a| 2022精品国偷自产免费观看| 91精品国产自产在线老师啪l| 成人国产小视频| 国产精品无码翘臀在线看纯欲| 国语少妇高潮| 91精品国产自产91精品资源| 国产精品片在线观看手机版| 激情乱人伦| 国产激情影院| 亚洲女同一区二区| 亚洲综合在线网| 国产小视频免费观看| 色综合天天娱乐综合网| 天天爽免费视频| 好久久免费视频高清| 午夜国产理论| 在线人成精品免费视频| 久久综合亚洲鲁鲁九月天| 国产欧美精品一区二区 | 久热精品免费| 亚洲色图在线观看| 在线观看网站国产| 黄色免费在线网址| 免费无码AV片在线观看中文| 欧美日韩国产精品综合| 色妞永久免费视频| 中文国产成人精品久久一| 国产综合精品日本亚洲777| 亚洲熟女中文字幕男人总站| 日韩毛片在线视频| 成人一区专区在线观看| 亚洲中文字幕av无码区| 秋霞国产在线| 亚洲午夜综合网| 国产成人无码综合亚洲日韩不卡|