婁云天,何盛宇,陳旭東,錢鴻昌,張達威
海洋鉆采設施的腐蝕及防護
海洋環境中油氣管道的微生物腐蝕研究進展
婁云天1,2,何盛宇1,2,陳旭東1,2,錢鴻昌1,張達威1,2
(1.北京科技大學 新材料技術研究院,北京 100083;2.北京科技大學順德研究生院,廣東 佛山 528399)
海上油氣集輸管道的腐蝕能夠導致嚴重的環境風險和經濟損失,其中微生物腐蝕一直以來被認為是造成該問題的主要因素之一。針對海洋環境油氣管網中腐蝕性微生物的來源進行了分類,包括油藏內源性微生物、外注海水以及微生物采油(MEOR)引入的外源性微生物。分析了海底油藏儲層中流體化學物質特性,確認其富含甲烷、硫化物、揮發性脂肪酸等,并依據內源微生物代謝及產物特征進行了分類,包括硫酸鹽還原菌(SRB)、產甲烷菌、發酵菌以及鐵還原菌(IRB)。同時,通過舉例分析某油田采出水中微生物群落豐度特征,闡明了外源微生物長期受到油田開采環境脅迫后微生物群落的變化規律。在此基礎上,進一步針對海上油氣集輸管網內涉及的微生物代謝產物理論、電活性微生物腐蝕理論以及腐蝕性微生物之間的協同與拮抗作用進行了全面的歸納總結。最后,對目前以純培養或模式菌株混合培養為主要方式的微生物腐蝕研究中存在的問題進行了討論,并對基于生物技術的新型防腐手段進行了展望。
油氣集輸管道;微生物腐蝕;油藏微生物;腐蝕機理
隨著我國海洋能源產業不斷發展,加速海洋油氣資源的合理開發利用以及油氣開采裝置的升級勢在必行[1]。海上油氣占全世界油氣資源總量的30%以上,并且開采量逐年增加[2]。海底管道作為海上油氣集輸系統中重要的組成部分,被譽為海洋油氣生產系統的“動脈”[3]。據統計,由腐蝕造成的海底管道事故占比高達37%[4]。在長時間服役過程中海底管線不可避免地遭受腐蝕甚至失效的危害,一旦出現損傷或破裂將造成嚴重的安全事故和經濟損失[5-7]。轟動一時的美國阿拉斯加Prudhoe Bay油管泄漏事件造成原油日減產40萬桶,導致國際油價一度上升,當地8 000 m2的土壤和水源受到嚴重污染。同時,由于管道泄露,油氣運輸被迫中斷,27 km的管線被更換。事故調查報告顯示,管道內部檢測到大量微生物、硫化物/氯化物沉積和腐蝕性氣體(CO2、H2S)[8-9]。
海上油氣開采過程中通常使用采出水回注的方式進行生產,該過程極易向原油中混入微生物和沙石等腐蝕因素,加之大量來自海水中的有機物質、無機鹽以及油藏內可溶性碳氫化合物,為微生物的生長繁殖提供了必要的能量來源,管道腐蝕失效的風險被進一步增加。油氣儲集層中的微生物群落結構以及代謝方式復雜且多樣,其中不乏典型的腐蝕性微生物,油氣集輸系統中多相流集輸管線、回注水管線以及污水處理裝置等組成部分極易受到微生物腐蝕(Microbio-lo-gically Influenced Corrosion,MIC)的危害。相關事故分析顯示,超過20%油氣管線故障和原油泄漏直接或間接地與MIC有關,其中超過70%由硫酸鹽還原菌引起[10-12]。
目前,有關MIC的研究大部分還依靠實驗室條件下選取模式菌株或者實地環境采樣的方式進行純培養或混菌測試[13-16]。然而,依靠純培養的方式幾乎無法還原油氣管線在服役過程中復雜環境微生物代謝所引起的腐蝕行為,以及與之相匹配的高腐蝕速率。長期以來,由于受限于檢測手段,MIC領域一直缺乏有關基于生物膜復雜性、材料與腐蝕產物之間關系的研究。近些年,環境微生物組學的快速興起似乎能夠用于解決以上問題,宏基因組學、轉錄組學以及代謝組學能夠實現對實驗室條件下無法復制的嚴苛環境中微生物種類、分布和代謝特征,以及腐蝕性/非腐蝕性代謝產物等因素進行多維度的監檢測,結合新型MIC緩解和治理方法,必然會為海上油氣管線MIC相關研究的進展提供有價值的信息。
早在1926年,Bastin等[17]從Illinois盆地的油田中成功分離出硫酸鹽還原菌,提出了油氣儲集層中可能存在微生物的假設。在海洋環境中,沉積物1 m以下的生態系統被稱為“深部生物圈”,極限深度可達4 000 m以上,其中就包含了大量的海底油氣資源[18]。海底沉積層覆蓋了地球表面近70%的面積,還棲息著超過90%的海洋微生物,為海底油氣儲集層中微生物的多樣性提供了可能[19-20]。Spark等[21]在歐洲北海油田中位于井下深度約4.5 km的巖心中發現了微生物群落。通過16s RNA序列比對,巖心和鉆井泥漿中的微生物種類完全不同,證明了油藏極端環境下內源微生物的存在。
海底油藏環境嚴苛,根據儲層中流體化學物質特性(如甲烷、硫化物、揮發性脂肪酸等)以及微生物群落分析,表明油氣儲集層主要為無氧或低氧環境,油藏微生物群落為了適應惡劣的生存環境衍生出了復雜的代謝方式。值得注意的是,許多儲集層中的微生物能夠進行鐵還原以及硫酸鹽還原呼吸。在高溫儲集層中,產甲烷菌通常占據生態位成為優勢群落,協同乙酸氧化過程在油藏內物質循環中發揮著重要的作用。當環境中硫酸鹽含量較低時,微生物群落以發酵反應為主要驅動力,H2、CO2和乙酸等發酵菌代謝產物作為底物,為產甲烷菌提供能量來源,通過共代謝和互養作用維持生長,微生物群落之間保持一定程度的代謝多樣性是一種重要的生存機制[22-23]。依據細菌代謝方式及產物的不同可以分為以下幾類。
1.1.1 硫酸鹽還原菌
硫酸鹽還原菌(Sulfate-Reducing Bacteria,SRB)在自然界的分布十分廣泛,并且在石油生態系統中扮演著重要的角色[24]。SRB是一類能夠通過將硫酸鹽、亞硫酸鹽和硫代硫酸鹽作為最終電子受體還原成H2S從而獲得能量的原核微生物[25]。SRB能夠利用糖類、氨基酸、脂肪酸等百余種化合物作為電子供體,通過還原多種價態的含硫化合物最終完成新陳代謝過程。油藏中分離得到的SRB屬于嗜溫菌或嗜熱菌,甚至在一些油井中分離得到了超嗜熱SRB,其最適生長溫度超過80 ℃[26]。同時,部分SRB還能夠耐受較高濃度的NaCl,其濃度最高可達23%[27]。目前,在油藏中分離得到的SRB超過40個屬,主要分為四大類[28-29]:(1)變形菌門(),代表菌包括脫硫弧菌屬()和脫硫桿菌屬();(2)嗜熱脫硫桿菌屬();(3)嗜熱脫硫弧菌屬();(4)硫酸鹽還原古菌,代表菌有古生球菌屬()和暖枝菌屬()。
1.1.2 產甲烷菌
產甲烷菌是一類專性厭氧菌,能夠通過代謝氫、CO2、乙酸鹽、甲胺等低分子量物質獲取能量,其最終產物為甲烷[30]。產甲烷菌的生長活動受到溫度、鹽含量、pH和氧含量等因素的影響,甚至10?6量級的氧濃度都會對其生長產生顯著的抑制作用[31]。目前,在油氣藏生態系統中分離得到的產甲烷菌主要分布于古菌域廣古菌門的5個目,包括甲烷微菌目()、甲烷桿菌目()、甲烷球菌目()、甲烷炙熱古菌目()和甲烷八疊球菌目()。產甲烷菌代謝底物包括3種類型:氫營養型、乙酸營養型和甲基營養型[30]。已發現的產甲烷菌并不完全嚴格依照以上敘述的底物進行代謝,據統計超過70%的產甲烷菌能夠利用H2作為電子供體還原CO2產生CH4,如、、等,同時還能夠利用CO、丙酮酸鹽或乙二醇等代替H2,但是其效率顯著下降,僅為H2作為電子供體時的1%~4%[32-33]。甲基營養型產甲烷菌如不僅代謝甲醇、甲胺等簡單甲基化合物,而且一些較為復雜的甲基胺類化合物(如膽堿、甜菜堿等)同樣可以維持其代謝需要。
1.1.3 發酵菌
發酵菌是一類能夠通過代謝糖類、多肽等底物,產生有機酸、CO2和H2等發酵產物的微生物。發酵菌在產能反應過程中無需外源電子受體,通過將發酵底物的氧化過程與菌體內次級代謝產物的還原過程相互耦合獲取能量。作為油藏微生物群落中重要的組成部分,發酵菌可以分為嗜熱菌和嗜鹽菌2個大類。已分離出的嗜熱發酵菌大多數屬于熱袍菌屬()、石衣菌屬()、棲熱腔菌屬(),其最適生長溫度為50~70 ℃。通過比對分析從全世界范圍內不同油藏分離得到的嗜熱發酵菌的生存環境和代謝特點,其底物種類和生長溫度都與油氣儲集層的原生環境高度相關,這一現象表明該類微生物為油藏原生細菌[34]。嗜熱發酵菌不但能夠在高溫條件下正常生存,在營養物質缺乏的情況下依然能夠保持較好的活力。Takahata等通過檢測發現日本Kubiki油田的石油產出水中的細菌濃度高達4.6×104cells/mL,即使在饑餓狀態下也能夠保持細胞活性長達200 d以上,這一特性對其能夠在油藏環境中長期生存至關重要。在有些含鹽量較高的油藏環境中,嗜鹽發酵菌能夠通過積累可溶性有機質維持細胞與環境之間的滲透壓平衡,而并非僅僅使用Na+、K+等離子[35-36]。
1.1.4 鐵還原菌
鐵還原菌(Iron-reducing bacteria,IRB)是一類能夠將H2、有機物等作為電子供體,Fe3+作為終端電子受體的一類嚴格厭氧或兼性厭氧的細菌或古菌[37-38]。研究人員在不同的油藏中分離得到了如脫鐵桿菌屬()、地芽孢桿菌屬()等典型嗜熱鐵還原菌,其能夠使用乳酸、氨基酸、醋酸鹽等作為電子供體[39]。在近中性的厭氧環境中,化學和生物過程中的三價鐵氧化物作為電子收集單元極易被還原,研究證明三價鐵氧化物在非硫化物沉積過程中主要受鐵還原菌的代謝過程控制[40]。在一些含硫化物的環境中,如油藏、海底沉積物等,較早的研究結果顯示Fe3+的還原過程是由于微生物成因的H2S導致的。最新的研究已經證實了鐵還原菌能夠利用三價鐵還原酶直接進行反應,并且占總還原量的90%[41]。
在海上石油開采過程中,為了保持油氣儲集層的壓力,需要以不斷注入海水或回注水的方式驅動原油的開采。同時,為了確保長距離油氣管道的完整性以及安全運行,需要進行水壓測試或周期性的管道停輸檢修。在以上操作過程中,海水中種類豐富且組成復雜的微生物不可避免地被引入到集輸管道中,必然會在復雜的管網系統中形成生物膜且造成嚴重的微生物腐蝕[42-43]。相較于陸地,海洋環境中微生物對于高鹽、高壓、高溫等較為嚴苛的環境因素的耐受能力普遍更強,這意味著海上油氣管道內的微生物及其生物膜的適應性更強且難以殺滅。Zhou等[44]利用環境基因組測序分析手段對中國渤海某油田采出水中的微生物群落多樣性進行了分析。該油田由于長期注入海水或采出水回注,導致儲集層中被引入大量外源微生物。以該研究中樣本1基于RNA的結果分析為例,豐度及活性排在前十的菌屬包括博斯氏菌屬(,68.8%)、不動桿菌屬(,7.0%)、鞘氨醇單胞菌屬(,3.2%)、嗜氫菌屬(,4.7%)、無色桿菌屬(,3.0%)、短波單胞菌屬(,2.0%)、甲基桿菌屬(,1.9%)、埃希氏桿菌屬(,1.7%)、假單胞菌屬(,1.4%)、伯克氏菌科(,0.4%)。不難發現,以上菌屬中包含多種如博斯氏菌屬()、甲基桿菌屬()和熱硫還原桿菌屬()等硫氧化細菌(Sulfur- oxidizing bacteria,SOB),具有將不同價態的含硫化合物氧化為硫酸鹽的能力[45-46]。同時,該油井由于長期受到SRB及其產生的H2S的污染,用于緩解該問題的硝酸鹽類抑制劑的注入促進了硝酸鹽還原菌(Nitrate-Reducing Bacteria,NRB)的生長,通過競爭攝取電子供體的方式與SRB形成競爭性抑制,其中代表性的菌屬有假單胞菌屬()、嗜氫菌屬()、不動桿菌屬()和無色桿菌屬()等[47-48]。
另外一種涉及油藏內引入外源微生物的方式是微生物采油(Microbial Enhanced Oil Recovery,MEOR)。作為一種主要基于微生物學、分子生物學技術的三次采油方法,通過向油藏內注入特定的菌種或營養物質,利用其自身生長代謝特性或產生功能性產物(產酸、產氣或產生物溶劑)來改變油氣儲集層內環境和微生物種群結構,進而降低原油黏度或溶解巖層以增加儲層滲透率,從而達到提高采油率的目的[49-51]。MEOR相關微生物,包括醋酸桿菌屬()、芽孢桿菌屬()以及部分產甲烷菌()等,能夠在代謝過程中產生有機酸或生物表面活性劑。Kato等[52]分離得到了一株產乙酸菌GT1,其不僅可以利用有機物發酵產生乙酸,還能直接從鐵單質中攝取電子,以上代謝特征極易引起微生物腐蝕。
生物膜的形成是微生物抵御外界環境變化維持群落內穩態的基本生存機制,如圖1所示,處于懸浮狀態的微生物通過附著、聚集等步驟逐漸成為復雜且穩定的混合微生物群落。相比于懸浮狀態,微生物嵌入由胞外聚合物(EPS)構成的基質后不僅能夠提高代謝過程的穩定性,還能加強互養微生物種群之間的協同作用,這一特性使得腐蝕性微生物的危害進一步增加[53-54]。海上油氣集輸系統由復雜的管道網絡構成,多相流的傳輸形式以及部分管網中較低的流速加快了腐蝕性生物膜以及沉積物在彎頭、焊縫和閥門等腐蝕敏感區域的形成和堆積,進一步減緩了管道內物料的流速,最終導致油氣運輸停滯。

圖1 生物膜形成的一般過程示意圖[53]
在實際工況下,腐蝕性生物膜由微生物胞外聚合物(蛋白、多糖、核酸等)和腐蝕產物(FeS、FePO4和FeCO3等)共同構成。由于EPS所構成的三維網狀結構(宏觀上多呈現出黏液狀),強化了細菌之間以及細菌與腐蝕產物之間的黏附性。同時,細菌生物膜中往往含有如氨基酸、糖醛酸等含有大量負電荷基團的有機物,能夠通過螯合、吸附等方式沉淀金屬陽離子,進一步刺激腐蝕性微生物與金屬離子之間的相互作用以及電子傳遞過程[55]。由于環境微生物種類復雜,所構成的微生物群落以及代謝產物多樣,在生物膜中往往包含不同化學濃度梯度以及氧化還原電位的微環境。從微生物代謝多樣性的層面分析,這種結構使生物膜內的不同代謝類型的微生物之間建立了更有利的共生條件,促進了共代謝和互養作用。但是從微生物腐蝕的角度分析,濃差電池的產生極易造成金屬表面局部陰陽極的形成,是引起油氣管線局部腐蝕主要的原因之一。腐蝕性微生物對于油氣管網的影響可以總結為以下3點:(1)微生物及其分泌的EPS作為有機沉積物率先附著并沉積,使管道內環境的理化性質發生改變;(2)腐蝕性微生物的代謝活動及其產物會加速管道內腐蝕產物的堆積;(3)腐蝕性生物膜的沉積會改變原有沉積物的性質,從而進一步加速腐蝕。
SRB、發酵菌等微生物能夠產生具有腐蝕性的代謝產物,如硫化物或有機酸等,該過程被稱為化學微生物腐蝕(Chemical Microbiologically Influenced Corrosion,CMIC)。這些腐蝕性代謝產物與金屬材料發生反應后極易在管網內形成沉積物,在促進內腐蝕進一步發展的同時還會造成管網堵塞。以SRB為例,其產生的H2S微溶于水后產生HS?使局部環境呈酸性,造成管網內部的局部腐蝕穿孔,解離出的氫也會富集在材料的缺陷處,造成氫滲透或開裂。同時,H2S擴散到金屬表面發生反應生成具有導電性的無定形FeS產物層,隨后經過反復溶解Fe(HS)+/HS?再沉積,腐蝕產物層中積累了更多的HS?,進一步加速陽極溶解速率[56-58]。有機酸的產生同樣對油氣管網具有很強的腐蝕性,發酵菌及其代謝產物在腐蝕性生物膜中的作用近些年得到了廣泛關注。研究發現,醋酸菌能夠在厭氧條件下借助Wood–Ljungdahl通路中的金屬蛋白/金屬酶以H2和CO2為底物生成乙酸,即使生物膜中有機酸的濃度很低,也能增加金屬腐蝕的風險[59]。
具有電活性代謝能力的微生物通過胞外電子傳遞(Extracellular Electron Transfer,EET)的方式從金屬氧化過程中提取電子,或者將細胞內有機物徹底氧化后釋放的電子傳遞到細胞外的電子受體(如硫酸鹽、硝酸鹽或金屬難溶物等),以上過程能夠誘發或加速腐蝕[60-62],被稱為電化學微生物腐蝕(Electro-chemical Microbially Influenced Corrosion,EMIC)。目前,胞外電子傳遞主要有3種機制:直接電子傳遞(Direct Electron Transfer,DET)、間接電子傳遞(Me-dia-ted Electron Transfer,MET)和電運動機制(Elec-trokinesis)[63-65]。直接電子傳遞是指細菌通過外膜的細胞色素C直接與電子受體接觸,其電子傳遞效率較高,但生物膜與電子受體之間的接觸面積直接決定了電子傳遞效率的上限,且無法進行較遠距離的電子傳輸[66]。間接電子傳遞是指細菌通過內源或外源的電子穿梭體,在細菌與電子受體之間通過往復的氧化還原反應實現較長距離的電子轉移。電運動機制是指細菌通過將電子傳遞到細胞膜表面,然后依靠布朗運動或鞭毛驅使細胞撞擊電子受體表面,撞擊瞬間完成電子傳遞過程[67]。
CMIC與EMIC在油氣管道內腐蝕性生物膜中存在著平衡與轉化。CMIC很大程度上依靠碳氫化合物等有機碳源的降解與硫酸鹽或硝酸鹽的還原反應耦合驅動腐蝕的發生,而EMIC則是微生物主動驅使腐蝕過程,兩者之間的轉化取決于可用的有機碳源是否充足。以典型腐蝕性微生物為例,當作為有機碳源的乳酸充足時,的CMIC過程導致FeS為主的腐蝕產物堆積,而當環境中可用的乳酸含量逐漸減少時,的代謝模式發生了轉變,利用從Fe0直接獲取電子的方式對CMIC過程中的能量缺口進行代償。從局部腐蝕形貌變化情況來看,可用有機碳源減少至10%時,其腐蝕程度最嚴重。而將有機碳源全部去除后,腐蝕程度顯著減弱,表明EMIC過程并不能維持全部的代謝需求,僅可以作為腐蝕性微生物解決環境突變的一種應對策略[68]。
由于實際腐蝕環境中多變的物理化學因素,腐蝕性微生物膜中涉及到十分復雜的代謝過程。如圖2所示,環境微生物的多樣性結構使得不同種類微生物之間在應對外界環境變化時存在協同和拮抗的相互作用,最終通過群落演變、生物膜成熟直至形成具有腐蝕性的復雜微生物群落。

圖2 涉及海底油氣管道微生物腐蝕機理匯總[73]
在油氣集輸系統中,腐蝕性生物膜中微生物之間相互協同互補的代謝模式扮演著重要的角色。實際服役環境中,在同一區域的腐蝕產物沉積層中往往能夠同時分離得到發酵產酸菌以及具有氫代謝特征的菌種,此類微生物多出現在含有采出水的油氣生產設施中,通過發酵反應代謝揮發性脂肪酸、醇或碳氫化合物來生長,發酵過程中產生的氫被生物膜的氫營養型微生物消耗,如產甲烷菌[69-70]。有機酸類代謝產物不僅能夠直接對金屬造成腐蝕,發酵產生的H2還能夠還原單質硫,從而產生大量的硫化氫[71]。以上過程表明,發酵產酸菌能夠通過產生甲酸、乙酸等途徑來刺激電活性微生物的生長,從而加速金屬腐蝕進程[72]。此外,當鐵還原菌和鐵氧化菌(Iron-oxidizing bacteria,IOB)同時存在于生物膜中時,IOB能夠通過促進金屬氧化析出腐蝕產物(鐵氧化物和鐵硫化物),形成保護性腐蝕產物層,限制金屬表面與腐蝕環境直接接觸。然而,IRB利用金屬氧化沉積物作為電子受體,導致金屬表面再次暴露于腐蝕產物和腐蝕性微生物。
油氣管道中清理內部MIC廣泛使用物理刮擦與非氧化性殺菌劑相結合的方法。傳統的殺菌劑有戊二醛、三氯異氰脲酸(TCCA)和四羥甲基硫酸磷(THPS)等。然而,由于使用機械破壞的方式導致腐蝕性微生物從破損的生物膜中擴散出來,重新彌散到管網中導致腐蝕性微生物充分地擴散,反而進一步加劇了腐蝕[74]。同時,部分管道內長期形成的保護性鐵氧化物沉積層也會被清除,導致基體重新暴露在外面。長期使用殺菌劑對油氣集輸管網進行清理,不僅會導致管內微生物群落的改變,且新的微生物群落的種群結構不可預測,不一定具有更低的腐蝕性。此外,殺菌劑的使用對于部分頑固微生物會產生耐藥性,還有污染環境的風險[75]。
為了解決海上石油設施以及油氣集輸管網中由微生物導致的H2S酸化問題,向系統內注入硝酸鹽被認為是一種低成本、高效率的解決方案。外注硝酸鹽可以刺激NRB的生長,NRB和SRB都可以利用乙酸、乳酸或長鏈脂肪酸作為能源,能夠與SRB競爭電子供體。對于相同的電子供體,硝酸鹽還原過程能夠獲得更多的能量。以乙酸為例,被NRB和SRB氧化的自由能變化見式(1)—(2)[76]。

Δo= ?495 kJ/mol (1)
Δo= ?47 kJ/mol (2)

掠食性微生物(and Like Organisms,BALOs)和噬菌體作為一種新型的基于微生物手段的防腐方法得到了廣泛關注[80]。當MIC系統引入BALOs或噬菌體時,腐蝕性微生物及其生物膜會被作為獵物而被捕獲并遭到破壞。它們有著相似的生存方式,首先通過入侵或感染進入宿主體內,然后分泌各種裂解酶分解并吸收宿主體內的營養物質完成自身的繁殖和復制,直到宿主死亡破裂后進行下一次“捕獵”[81]。Qiu等發現SRB的活性在與BALOs共存的條件下受到顯著抑制,浸泡60 d后,X70鋼的腐蝕速率由19.17 mg/(dm2?d)下降到3.75 mg/(dm2?d)。相比于傳統殺菌劑的方法,BALOs和噬菌體首先克服了微生物耐藥性的問題,BALOs可以侵入由混合細菌組成的微生物群落,破壞頑固的生物膜,從而削弱生物膜對外環境的抵抗。此外,BALOs和噬菌體還可以避免重復接種,并通過增殖在腐蝕體系中長期保持有效濃度直至目標微生物被殺滅,顯著降低了由于殺菌劑過量使用造成的環境污染[82-84]。
海上石油天然氣生產設備及管網的MIC不僅防治成本高,而且可能造成嚴重的生態環境危害。長期的研究積累使得研究者們對其中涉及的油藏內微生物演化規律以及油氣集輸系統中的MIC機理有了更全面的理解。但是,目前MIC研究中面臨的主要問題是單純依靠實驗室條件下的純培養手段,無法準確地檢測和評估具有腐蝕性微生物及其生物膜中的化學、電化學和微生物代謝過程。
針對海上油氣管道MIC的防治,工業殺菌劑依然是最經濟且高效的防腐手段,如季銨鹽類、有機溴類、雜環類或復配類殺菌劑等。然而,工業殺菌劑的使用面臨著如微生物耐藥性增加、難降解、降低油品等諸多問題。未來的MIC相關研究應該利用先進的生物學檢測技術,如環境基因組學、微流控以及高通量檢測技術,對油氣集輸系統中微生物群落的結構和多樣性進行檢測和分析,從組學的角度了解環境微生物在腐蝕過程中的潛在功能、代謝特征以及對于原位環境實時變化的響應機制,更好地了解石油生產中的微生物過程。根據實際腐蝕環境制定特異性的殺菌防腐方案,有針對性地選擇殺菌劑的種類和用量,將有助于精準地預防和緩解MIC,為新型防腐技術的實施提供有價值的信息和數據支撐。
[1] 謝玉洪. 中國海油“十三五”油氣勘探重大成果與“十四五”前景展望[J]. 中國石油勘探, 2021, 26(1): 43-54.
XIE Yu-hong. Major Achievements in Oil and Gas Exploration of CNOOC in the 13thFive-Year Plan Period and Prospects in the 14thFive-Year Plan Period[J]. China Petroleum Exploration, 2021, 26(1): 43-54.
[2] XIE Xiao-rong, ZHONG Jian-liang, SUN Ying-yun, et al. Online Optimal Power Control of an Offshore Oil-Platform Power System[J]. Technology and Economics of Smart Grids and Sustainable Energy, 2018, 3(1): 1-13.
[3] 李秋揚, 趙明華, 任學軍, 等. 中國油氣管道建設現狀及發展趨勢[J]. 油氣田地面工程, 2019, 38(S1): 14-17.
LI Qiu-yang, ZHAO Ming-hua, REN Xue-jun, et al. Con-s-truction Status and Development Trend of Chinese Oil & Gas Pipeline[J]. Oil-Gas Field Surface Engineering, 2019, 38(S1): 14-17.
[4] 王紅紅, 劉國恒. 中國海油海底管道事故統計及分析[J]. 中國海上油氣, 2017, 29(5): 157-160.
WANG Hong-hong, LIU Guo-heng. Statistics and Analysis of Subsea Pipeline Accidents of CNOOC[J]. China Offshore Oil and Gas, 2017, 29(5): 157-160.
[5] LI Xiao-gang, ZHANG Da-wei, LIU Zhi-yong, et al. Materials Science: Share Corrosion Data[J]. Nature, 2015, 527(7579): 441-442.
[6] HOU Bao-rong, LI Xiao-gang, MA Xiu-min, et al. The Cost of Corrosion in China[J]. NPJ Materials Degradation, 2017, 1: 4.
[7] 李鑫, 尚東芝, 于浩波, 等. 油氣管道SRB腐蝕研究新進展[J]. 表面技術, 2021, 50(2): 211-220.
LI Xin, SHANG Dong-zhi, YU Hao-bo, et al. Research Progress on Oil & Gas Pipeline Corrosion Induced by SRB[J]. Surface Technology, 2021, 50(2): 211-220.
[8] 50 ABDULLAH A, YAHAYA N, MD NOOR N, et al. Microbial Corrosion of API 5L X-70 Carbon Steel by ATCC 7757 and Consortium of Sulfate-Reducing Bacteria [J]. Journal of Chemistry, 2014, 2014: 130345.
[9] JACOBSON G. Corrosion at Prudhoe Bay-a Lesson on the Line[J]. Materials Performance, 2007, 46(8): 26-34.
[10] TALEB-BERROUANE M, KHAN F, HAWBOLDT K, et al. Model for Microbiologically Influenced Corrosion Potential Assessment for the Oil and Gas Industry[J]. Corrosion Engineering, Science and Technology, 2018, 53(5): 378-392.
[11] USHER K M, KAKSONEN A H, COLE I, et al. Critical Review: Microbially Influenced Corrosion of Buried Carbon Steel Pipes[J]. International Biodeterioration & Biodegra-dation, 2014, 93: 84-106.
[12] 朱立國, 王秀平, 孟科全, 等. 海上油田微生物堵調體系對管網腐蝕的研究[J]. 化學與生物工程, 2016, 33(3): 53-55.
ZHU Li-guo, WANG Xiu-ping, MENG Ke-quan, et al. Pipeline Corrosion Produced by Microbial Plugging and Profile Control System in an Offshore Oilfield[J]. Che-mis-try & Bioengineering, 2016, 33(3): 53-55.
[13] LEKBACH Y, DONG Yu-qiao, LI Zhong, et al. Catechin Hydrate as an Eco-Friendly Biocorrosion Inhibitor for 304L Stainless Steel with Dual-Action Antibacterial Pro-per-ties AgainstBiofilm[J]. Corro-sion Science, 2019, 157: 98-108.
[14] DOU Wen-wen, JIA Ru, JIN Peng, et al. Investigation of the Mechanism and Characteristics of Copper Corrosion by Sulfate Reducing Bacteria[J]. Corrosion Science, 2018, 144: 237-248.
[15] CHEN Shi-qiang, WANG Peng, ZHANG Dun. Corrosion Behavior of Copper under Biofilm of Sulfate-Reducing Bacteria[J]. Corrosion Science, 2014, 87: 407-415.
[16] LIU Hong-wei, GU Ting-yue, ZHANG Guo-an, et al. Corrosion of X80 Pipeline Steel under Sulfate-Reducing Bacterium Biofilms in Simulated CO2-Saturated Oilfield Produced Water with Carbon Source Starvation[J]. Corro-sion Science, 2018, 136: 47-59.
[17] BASTIN E S, GREER F E, MERRITT C A, et al. The Presence of Sulphate Reducing Bacteria in Oil Field Waters[J]. Science, 1926, 63(1618): 21-24.
[18] EHRENBERG S N, NADEAU P H. Sandstone vs. Carbonate Petroleum Reservoirs: A Global Perspective on Porosity-Depth and Porosity-Permeability Relationships[J]. AAPG Bulletin, 2005, 89(4): 435-445.
[19] BAR-ON Y M, PHILLIPS R, MILO R. The Biomass Distribution on Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6506-6511.
[20] KALLMEYER J, POCKALNY R, ADHIKARI R R, et al. Global Distribution of Microbial Abundance and Biomass in Subseafloor Sediment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(40): 16213-16216.
[21] SPARK I, PATEY I, DUNCAN B, et al. The Effects of Indigenous and Introduced Microbes on Deeply Buried Hydrocarbon Reservoirs, North Sea[J]. Clay Minerals, 2000, 35(1): 5-12.
[22] GITTEL A, S?RENSEN K B, SKOVHUS T L, et al. Prokaryotic Community Structure and Sulfate Reducer Activity in Water from High-Temperature Oil Reservoirs with and without Nitrate Treatment[J]. Applied and Envi-ron-mental Microbiology, 2009, 75(22): 7086-7096.
[23] LI Guo-qiang, GAO Pei-ke, WU Yun-qiang, et al. Microbial Abundance and Community Composition Influence Pro-duc-tion Performance in a Low-Temperature Petroleum Reservoir[J]. Environmental Science & Technology, 2014, 48(9): 5336-5344.
[24] MA Ting-ting, LIU Lai-yan, RUI Jun-peng, et al. Coe-xistence and Competition of Sulfate-Reducing and Me-thanogenic Populations in an Anaerobic Hexadecane- Degrading Culture[J]. Biotechnology for Biofuels, 2017, 10: 207.
[25] HU Ping, TOM L, SINGH A, et al. Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and other Microbial Community Members in Biogeoche-mical Transformations in Oil Reservoirs[J]. mBio, 2016, 7(1): 1669.
[26] BROCK T D. Micro-Organisms Adapted to High Temper-a-tures[J]. Nature, 1967, 214(5091): 882-885.
[27] BELIAKOVA E V, ROZANOVA E P, BORZENKOV I A, et al. The New Facultatively Chemolithoautotrophic, Moderately Halophilic, Sulfate-Reducing BacteriumGen. Nov., Sp. Nov., Isolated from an Oil Field[J]. Mikrobiologiia, 2006, 75(2): 201-211.
[28] WIDDEL F. The Dissimilatory Sulfate-and Sulfur-Reducing Bacteria[J]. The Prokaryotes a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, App-li-cations, 1992, 54: 583-624.
[29] MORI K, KIM H, KAKEGAWA T, et al. A Novel Lineage of Sulfate-Reducing Microorganisms:Fam. Nov.,, Gen. Nov., Sp. Nov., a New Thermophilic Isolate from a Hot Spring[J]. Extremophiles: Life Under Extreme Conditions, 2003, 7(4): 283-290.
[30] OKORO C C, AMUND O O. Microbial Community Structure of a Low Sulfate Oil Producing Facility Indicate Dominance of Oil Degrading/Nitrate Reducing Bacteria and Methanogens[J]. Petroleum Science and Technology, 2018, 36(4): 293-301.
[31] YANG Guang-chao, ZHOU Lei, MBADINGA S M, et al. Activation of CO2-Reducing Methanogens in Oil Reservoir after Addition of Nutrient[J]. Journal of Bioscience and Bioengineering, 2016, 122(6): 740-747.
[32] YANG Yu-ling, LADAPO J, WHITMAN W B. Pyruvate Oxidation by Methanococcus Spp[J]. Archives of Micro-bio-logy, 1992, 158(4): 271-275.
[33] DANIELS L, FUCHS G, THAUER R K, et al. Carbon Monoxide Oxidation by Methanogenic Bacteria[J]. Journal of Bacteriology, 1977, 132(1): 118-126.
[34] BIRKELAND N K. Chapter 14 the Microbial Diversity of Deep Subsurface Oil Reservoirs[J]. Studies in Surface Science and Catalysis, 2004, 151: 385-403.
[35] BHUPATHIRAJU V K, MCINERNEY M J, WOESE C R, et al.Sp. Nov., an Obliga-tely Halophilic, Anaerobic Bacterium from an Oil Brine [J]. International Journal of Systematic Bacteriology, 1999, 49 Pt 3: 953-960.
[36] RENGPIPAT S, LANGWORTHY T A, ZEIKUS J G.Sp. Nov., a New Obliga-tely Anaerobic Halophile Isolated from Deep Subsurface Hypersaline Environments[J]. Systematic and Applied Microbiology, 1988, 11(1): 28-35.
[37] JIANG Zhou, SHI Mei-mei, SHI Liang. Degradation of Organic Contaminants and Steel Corrosion by the Dissimilatory Metal-Reducing MicroorganismsandSpp[J]. International Biodeterioration & Biodegradation, 2020, 147: 104842.
[38] MOHAPATRA B R, DINARDO O, GOULD W D, et al. Biochemical and Genomic Facets on the Dissimilatory Reduction of Radionuclides by Microorganisms - A Review [J]. Minerals Engineering, 2010, 23(8): 591-599.
[39] GREENE A C, PATEL B K, SHEEHY A J.Gen. Nov., Sp. Nov., a Novel Thermophilic Manganese- and Iron-Reducing Bacterium Isolated from a Petroleum Reservoir[J]. International Journal of Systematic Bacteriology, 1997, 47(2): 505-509.
[40] LOVLEY D. Dissimilatory Fe(III)- and Mn(IV)-Reducing Prokaryotes[M]. New York: Springer New York, 2006: 635- 658.
[41] CLéMENT J C, SHRESTHA J, EHRENFELD J G, et al. Ammonium Oxidation Coupled to Dissimilatory Reduction of Iron under Anaerobic Conditions in Wetland Soils[J]. Soil Biology and Biochemistry, 2005, 37(12): 2323-2328.
[42] ABDULSHAHEED A, MUSTAPHA F, GHAVAMIAN A. A Pressure-Based Method for Monitoring Leaks in a Pipe Distribution System: A Review[J]. Renewable and Sustai-na-ble Energy Reviews, 2017, 69: 902-911.
[43] MACHUCA L L, MURRAY L, GUBNER R, et al. Evaluation of the Effects of Seawater Ingress into 316L Lined Pipes on Corrosion Performance[J]. Materials and Corrosion, 2014, 65(1): 8-17.
[44] ZHOU Lei, LU Yu-wei, WANG Da-wei, et al. Microbial Community Composition and Diversity in Production Water of a High-Temperature Offshore Oil Reservoir Assessed by DNA- and RNA-Based Analyses[J]. Inter-national Biodeterioration & Biodegradation, 2020, 151: 104970.
[45] FRIEDRICH C G, ROTHER D, BARDISCHEWSKY F, et al. Oxidation of Reduced Inorganic Sulfur Compounds by Bacteria: Emergence of a Common Mechanism?[J]. Applied and Environmental Microbiology, 2001, 67(7): 2873-2882.
[46] JAVAHERDASHTI R. Microbiologically Influenced Corro-sion (MIC) Microbiologically Influenced Corrosion[M]. New York: Springer, 2008: 29-79.
[47] FIDA T T, CHEN Chuan, OKPALA G, et al. Implications of Limited Thermophilicity of Nitrite Reduction for Con-trol of Sulfide Production in Oil Reservoirs[J]. Applied and Environmental Microbiology, 2016, 82(14): 4190-4199.
[48] WANG Xiao-tong, LI Xi-zhe, YU Li, et al. Distinctive Microbial Communities Imply the Main Mechanism in a MEOR Trial in High Pour-Point Reservoir[J]. Journal of Petroleum Science and Engineering, 2019, 175: 97-107.
[49] S J G, BANAT I M, JOSHI S J. Biosurfactants: Pro-duction and Potential Applications in Microbial Enhanced Oil Recovery (MEOR)[J]. Biocatalysis and Agricultural Biotechnology, 2018, 14: 23-32.
[50] C?MARA J M D A, SOUSA M A S B, BARROS NETO E L, et al. Application of Rhamnolipid Biosurfactant Produced byin Microbial- Enhanced Oil Recovery (MEOR)[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(3): 2333- 2341.
[51] ZHANG Jun-hui, GAO Hui, XUE Quan-hong. Potential Applications of Microbial Enhanced Oil Recovery to Heavy Oil[J]. Critical Reviews in Biotechnology, 2020, 40(4): 459-474.
[52] KATO S, YUMOTO I, KAMAGATA Y. Isolation of Acetogenic Bacteria that Induce Biocorrosion by Utilizing Metallic Iron as the Sole Electron Donor[J]. Applied and Environmental Microbiology, 2015, 81(1): 67-73.
[53] FLEMMING H C, WUERTZ S. Bacteria and Archaea on Earth and Their Abundance in Biofilms[J]. Nature Reviews Microbiology, 2019, 17(4): 247-260.
[54] DANG Hong-yue, LOVELL C R. Microbial Surface Colo-ni-zation and Biofilm Development in Marine Envi-ron-ments[J]. Microbiology and Molecular Biology Reviews: MMBR, 2015, 80(1): 91-138.
[55] BEECH I B, SUNNER J. Biocorrosion: Towards Under-s-tanding Interactions between Biofilms and Metals[J]. Current Opinion in Biotechnology, 2004, 15(3): 181-186.
[56] WEN Xiang-li, BAI Peng-peng, LUO Bing-wei, et al. Review of Recent Progress in the Study of Corrosion Products of Steels in a Hydrogen Sulphide Environment [J]. Corrosion Science, 2018, 139: 124-140.
[57] LIU T, LIU H, HU Y, et al. Growth Characteristics of Thermophile Sulfate-Reducing Bacteria and Its Effect on Carbon Steel[J]. Materials and Corrosion, 2009, 60(3): 218-224.
[58] JIA Ru, TAN Jie long, JIN Peng, et al. Effects of Biogenic H2S on the Microbiologically Influenced Corrosion of C1018 Carbon Steel by Sulfate Reducing[J]. Corrosion Science, 2018, 130: 1-11.
[59] PROCóPIO L. Microbially Induced Corrosion Impacts on the Oil Industry[J]. Archives of Microbiology, 2022, 204(2): 138.
[60] ENNING D, VENZLAFF H, GARRELFS J, et al. Marine Sulfate-Reducing Bacteria Cause Serious Corrosion of Iron under Electroconductive Biogenic Mineral Crust[J]. Environmental Microbiology, 2012, 14(7): 1772-1787.
[61] HUANG Lu-yao, CHANG Wei-wei, ZHANG Da-wei, et al. Acceleration of Corrosion of 304 Stainless Steel by Outward Extracellular Electron Transfer of[J]. Corrosion Science, 2022, 199: 110159.
[62] QIAN Hong-chang, LIU Shang-yu, LIU Wen-long, et al. Microbiologically Influenced Corrosion of Q235 Carbon Steel by Aerobic[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(2): 201-211.
[63] HARRIS H W, EL-NAGGAR M Y, BRETSCHGER O, et al. Electrokinesis is a Microbial Behavior that Requires Extracellular Electron Transport[J]. PNAS, 2010, 107(1): 326-331.
[64] LOU Yun-tian, DAI Chun-duo, CHANG Wei-wei, et al. Microbiologically Influenced Corrosion of FeCoCrNiMo0.1High-Entropy Alloys by Marine[J]. Corrosion Science, 2020, 165: 108390.
[65] LI Zi-yu, CHANG Wei-wei, CUI Tian-yu, et al. Adaptive Bidirectional Extracellular Electron Transfer during Acce-lerated Microbiologically Influenced Corrosion of Stain-less Steel[J]. Communications Materials, 2021, 2: 67.
[66] KIM H J, PARK H S, HYUN M S, et al. A Mediator-less Microbial Fuel Cell Using a Metal Reducing Bacterium,[J]. Enzyme and Microbial Tech-nology, 2002, 30(2): 145-152.
[67] HARRIS H W, EL-NAGGAR M Y, BRETSCHGER O, et al. Electrokinesis is a Microbial Behavior that Requires Extracellular Electron Transport[J]. PNAS, 2010, 107(1): 326-331.
[68] XU Da-ke, GU Ting-yue. Carbon Source Starvation Trig-ge-red more Aggressive Corrosion Against Carbon Steel by theBiofilm[J]. International Biodeterioration & Biodegradation, 2014, 91: 74-81.
[69] LYLES C N, LE H M, BEASLEY W H, et al. Anaerobic Hydrocarbon and Fatty Acid Metabolism by Syntrophic Bacteria and Their Impact on Carbon Steel Corrosion[J]. Frontiers in Microbiology, 2014, 5: 114.
[70] VIGNERON A, ALSOP E B, CHAMBERS B, et al. Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility[J]. Applied and Environmental Microbiology, 2016, 82(8): 2545-2554.
[71] GU T, GALICIA B. Can Acid Producing Bacteria Be Responsible for very Fast MIC Pitting[C]. International Corrosion Conference. Houston: HACE, 2012.
[72] KATO S. Microbial Extracellular Electron Transfer and Its Relevance to Iron Corrosion[J]. Microbial Biotechno-logy, 2016, 9(2): 141-148.
[73] VIGNERON A, HEAD I M, TSESMETZIS N. Damage to Offshore Production Facilities by Corrosive Microbial Biofilms[J]. Applied Microbiology and Biotechnology, 2018, 102(6): 2525-2533.
[74] DUNCAN K E, DAVIDOVA I A, NUNN H S, et al. Design Features of Offshore Oil Production Platforms Influence Their Susceptibility to Biocorrosion[J]. Applied Microbiology and Biotechnology, 2017, 101(16): 6517-6529.
[75] ENNING D, SMITH R, STOLLE J. Evaluating the Efficacy of Weekly THPS and Glutaraldehyde Batch Treatment to Control Severe Microbial Corrosion in a Simulated Seawater Injection System[C]. International Corrosion Conference. Houston: HACE, 2016
[76] THAUER R K, JUNGERMANN K, DECKER K. Energy Conservation in Chemotrophic Anaerobic Bacteria[J]. Bacteriological Reviews, 1977, 41(3): 809.
[77] VOORDOUW G, GRIGORYAN A A, LAMBO A, et al. Sulfide Remediation by Pulsed Injection of Nitrate into a Low Temperature Canadian Heavy Oil Reservoir[J]. Envi-ro-nmental Science & Technology, 2009, 43(24): 9512-9518.
[78] KASTER K M, GRIGORIYAN A, JENNEMAN G, et al. Effect of Nitrate and Nitrite on Sulfide Production by Two Thermophilic, Sulfate-Reducing Enrichments from an Oil Field in the North Sea[J]. Applied Microbiology and Biotechnology, 2007, 75(1): 195-203.
[79] XU Da-ke, LI Ying-chao, SONG Feng-mei, et al. Labora-tory Investigation of Microbiologically Influenced Corro-sion of C1018 Carbon Steel by Nitrate Reducing Bac-terium[J]. Corrosion Science, 2013, 77: 385-390.
[80] LOU Yun-tian, CHANG Wei-wei, CUI Tian-yu, et al. Microbiologically Influenced Corrosion Inhibition Mech-a-ni-sms in Corrosion Protection: A Review[J]. Bioelectro-chemistry, 2021, 141: 107883.
[81] RENDULIC S, JAGTAP P, ROSINUS A, et al. A Predator Unmasked: Life Cycle offrom a Genomic Perspective[J]. Science, 2004, 303(5658): 689-692.
[82] SCHOOLEY R T, BISWAS B, GILL J J, et al. Development and Use of Personalized Bacteriophage- Based Therapeutic Cocktails to Treat a Patient with a Disseminated Resistant Acinetobacter Baumannii Infection[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(10): e00954-e00917.
[83] FORTI F, ROACH D R, CAFORA M, et al. Design of a Broad-Range Bacteriophage Cocktail that ReducesBiofilms and Treats Acute Infec-tions in Two Animal Models[J]. Antimicrobial Agents and Chemotherapy, 2018, 62(6): e02573-e02517.
[84] YANG Yu-hui, SHEN Wei, ZHONG Qiu, et al. Develop-ment of a Bacteriophage Cocktail to Constrain the Emer-gence of Phage-Resistant[J]. Frontiers in Microbiology, 2020, 11: 327.
Research Progress on Microbiologically Influenced Corrosion of Oil and Gas Pipelines in Marine Environment
1,2,1,2,1,2,1,1,2
(1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China; 2. Shunde Graduate School of University of Science and Technology Beijing, Guangdong Foshan 528399, China)
Corrosion of offshore oil-gas gathering and transportation pipelines can lead to serious environmental risks and economic losses. With the continuous development of China's marine energy industry, it is imperative to accelerate the rational exploitation and utilization of offshore oil-gas resources as well as upgrade the oil-gas production equipment. As an important part of oil-gas gathering and transportation networks, submarine pipeline is known as the "artery" of offshore oil-gas production systems. Under actual working conditions, submarine pipelines are inevitably exposed to corrosion and failure. Microbiologically influenced corrosion (MIC) has been considered one of the main factors causing this problem. According to statistics, more than 20% of the oil-gas pipeline corrosion and oil leakage accidents are directly or indirectly related to MIC. The vast ocean includes a wide range of extreme environments such as high salt, high pressure, and low temperature environments. Marine environments are more diverse and complex than terrestrial environments, indicating that marine microbes are more tolerant to extreme conditions. Herein, the sources of corrosive microorganisms in offshore oil-gas pipelines, including reservoir endogenous microorganisms, exogenous microorganisms introduced by seawater injection, and microbial enhanced oil recovery, were classified. The characteristics of fluid chemical substances in submarine reservoirs were analyzed. It was confirmed that they were rich in methane, sulfides, and volatile fatty acids, and they were classified according to the characteristics of endogenous microbial metabolism and products, including sulfate-reducing bacteria, methanogens, fermentative bacteria, and iron-reducing bacteria. Moreover, the characteristics of microbial community abundance in the produced water of an oilfield were analyzed with an example, and the evolution rule of the microbial community under long-term oilfield environmental stress was clarified. Complex gathering and transport networks are particularly prone to biofilm formation and metabolite accumulation, which may cause or exacerbate corrosion problems. A corrosive biofilm, composed of various environmental microorganisms, is a general life form used by microorganisms to resist changes in the external environment and maintain homeostasis of the internal environment, which includes a complex symbiotic relationship between microorganisms with different metabolic characteristics. Accordingly, theories of metabolite-MIC, extracellular electron transfer-MIC, and synergism/antagonism among corrosive microorganisms in offshore pipeline networks were further reviewed. Pure/mixed culture in laboratory conditions can hardly represent the complexity of in situ biofilms in oil-gas pipelines; therefore, it is almost impossible to reconstruct the corrosion behavior of microorganisms in a real service environment. Industrial bactericides are one of the most widely used strategies for MIC in oil-gas pipeline networks. Advanced composite bactericides often possess broad-spectrum antibacterial properties, low toxicity, and sustained bactericidal activity. However, bactericides have drawbacks such as increased microbial resistance, difficulty in degradation, and deterioration of crude oil quality. Therefore, it is extremely challenging to detect the corrosive microbial community and the metabolic processes leading to corrosion accurately under actual working conditions. Advanced biological detection technologies, including environmental genomics, microfluidics, and high-throughput rapid detection technology, should be fully utilized in future research on the MIC of oil-gas pipelines. In this paper, the types of potential microbial species, types of MIC, and the corrosion mechanisms are summarized in detail, and novel anti-corrosion methods based on biotechnology are proposed.
offshore oil and gas pipeline; microbiologically influenced corrosion; reservoir microorganism; MIC mechanism
TG174
A
1001-3660(2022)05-0129-10
10.16490/j.cnki.issn.1001-3660.2022.05.014
2022–03–12;
2022–04–21
2022-03-12;
2022-04-21
國家自然科學基金面上項目(52071015)
General Program of the National Natural Science Foundation of China (52071015)
婁云天(1990—),男,博士,主要研究方向為微生物腐蝕。
LOU Yun-tian (1990-), Male, Doctor, Research focus: microbiological influenced corrosion.
張達威(1984—),男,博士,教授,主要研究方向為智能耐蝕材料、微生物腐蝕與材料腐蝕大數據預測評價。
ZHANG Da-wei (1984-), Male, Ph. D., Professor, Research focus: intelligent corrosion resistant material, microbiological influenced corrosion, prediction and evaluation of material corrosion with big data.
婁云天, 何盛宇, 陳旭東, 等. 海洋環境中油氣管道的微生物腐蝕研究進展[J]. 表面技術, 2022, 51(5): 129-138.
LOU Yun-tian, HE Sheng-yu, CHEN Xu-dong, et al. Research Progress on Microbiologically Influenced Corrosion of Oil and Gas Pipelines in Marine Environment[J]. Surface Technology, 2022, 51(5): 129-138.
責任編輯:萬長清