999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于觀測(cè)器的時(shí)滯離散時(shí)間馬爾可夫跳變系統(tǒng)有限時(shí)間H∞控制

2022-04-27 10:18:20魏雪雪劉凝哲劉西奎李艷
關(guān)鍵詞:系統(tǒng)研究

魏雪雪,劉凝哲,劉西奎,,李艷

(1. 山東科技大學(xué) 數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院, 山東 青島 266590;2.中國(guó)礦業(yè)大學(xué)(北京) 機(jī)電與信息工程學(xué)院, 北京 100083;3.山東科技大學(xué) 電氣信息系,山東 濟(jì)南 250031)

馬爾可夫跳變系統(tǒng)(MJSs)是一類由多個(gè)子系統(tǒng)組成的混合系統(tǒng),每一個(gè)模態(tài)對(duì)應(yīng)一個(gè)確定的子系統(tǒng),模態(tài)間的切換由馬爾可夫隨機(jī)過(guò)程決定[1-6]。MJSs可以用來(lái)建模具有結(jié)構(gòu)突變的動(dòng)力學(xué)系統(tǒng),在實(shí)際中有著廣泛的應(yīng)用,如Dong等[7]研究了具有傳感器飽和的離散時(shí)間馬爾可夫跳變系統(tǒng)的故障檢測(cè)問(wèn)題;Shi等[8]利用李雅普諾夫函數(shù)理論和凸多面體技術(shù),研究了不確定離散時(shí)間奇異MJSs的故障檢測(cè)濾波器設(shè)計(jì)問(wèn)題;Liu等[9]提出了一種新的基于動(dòng)態(tài)輸出反饋的異步控制器,研究了網(wǎng)絡(luò)化MJSs的異步H∞控制問(wèn)題。此外,MJSs在網(wǎng)絡(luò)[10-12]、采樣[13-15]、滑模[16-18]、容錯(cuò)[19-21]等控制系統(tǒng)中也有著重要的應(yīng)用。對(duì)于MJSs,其穩(wěn)定性研究是一項(xiàng)最基本的問(wèn)題。然而,由于時(shí)滯廣泛存在于各種系統(tǒng)之中,導(dǎo)致系統(tǒng)性能變差,甚至不穩(wěn)定。因此,具有時(shí)滯的MJSs引起了學(xué)者的廣泛關(guān)注,取得了眾多的研究成果,如Du等[22]研究了具有時(shí)滯的MJSs的異步控制方法;Zhuang等[23]研究了帶有時(shí)變時(shí)滯的中立型MJSs的非脆弱時(shí)滯反饋控制問(wèn)題;Fang等[24]通過(guò)設(shè)計(jì)一種新型的切換滑面函數(shù),研究了帶有時(shí)滯的非線性MJSs的滑模控制問(wèn)題;更多關(guān)于時(shí)滯MJSs的研究成果可見(jiàn)文獻(xiàn)[25-29]。

眾所周知,李雅普諾夫穩(wěn)定性理論研究無(wú)限時(shí)間間隔上系統(tǒng)的漸近穩(wěn)定性。然而,在許多實(shí)際應(yīng)用中,需要更加關(guān)注系統(tǒng)在有限時(shí)間間隔內(nèi)的暫態(tài)性能,例如,過(guò)大的瞬時(shí)電壓會(huì)對(duì)電力系統(tǒng)造成損壞[30];海浪會(huì)對(duì)欠驅(qū)動(dòng)船舶的航向角造成影響,使得船舶偏離預(yù)設(shè)路徑[31];擾動(dòng)會(huì)影響有限時(shí)間內(nèi)航天器的姿態(tài)[32]。基于上述類似問(wèn)題,Dorato[33]在1961年首次提出有限時(shí)間穩(wěn)定(finite-time stability,F(xiàn)TS)這一概念。不同于李雅普諾夫意義下的穩(wěn)定性,F(xiàn)TS描述的是有限時(shí)間區(qū)間上系統(tǒng)的暫態(tài)性能,即在固定的時(shí)間間隔內(nèi),系統(tǒng)的狀態(tài)不會(huì)超過(guò)某個(gè)確定的閾值,已經(jīng)取得許多關(guān)于FTS的研究成果[34-38]。在實(shí)現(xiàn)系統(tǒng)FTS后,需要抑制干擾對(duì)系統(tǒng)的影響,而H∞控制可以解決此問(wèn)題。因此,學(xué)者在FTS的基礎(chǔ)上又引入了H∞控制,以確保閉環(huán)系統(tǒng)有限時(shí)間穩(wěn)定且干擾滿足一定的抑制水平,從而得到了有限時(shí)間H∞有界的概念。如Chen等[39]研究了具有區(qū)間時(shí)變時(shí)滯的離散時(shí)變系統(tǒng)的有限時(shí)間H∞控制問(wèn)題,Ju等[40]研究了事件觸發(fā)下線性中立半馬爾可夫跳變系統(tǒng)的有限時(shí)間H∞控制問(wèn)題,Liu等[41]研究了狀態(tài)相關(guān)不確定系統(tǒng)的有限時(shí)間H∞濾波問(wèn)題。雖然已經(jīng)取得許多有限時(shí)間H∞控制的研究結(jié)果,但是對(duì)于離散時(shí)間馬爾可夫跳變系統(tǒng)(DMJSs)的有限時(shí)間H∞控制問(wèn)題有待研究,這是本文研究的主要內(nèi)容。

此外,上述的研究成果都是在假設(shè)系統(tǒng)狀態(tài)可測(cè)量的情況下進(jìn)行的,然而在實(shí)際中,由于技術(shù)、成本等因素的影響,系統(tǒng)的狀態(tài)不一定可以完全得到。而基于觀測(cè)器的控制器則可以克服此困難,所以最近幾年,基于觀測(cè)器的控制方法受到了學(xué)者的廣泛關(guān)注。如Tan等[42]研究了量化和隨機(jī)網(wǎng)絡(luò)攻擊下基于觀測(cè)器的互聯(lián)模糊系統(tǒng)的有限時(shí)間H∞控制問(wèn)題,Gao等[43]研究了基于觀測(cè)器的不確定離散時(shí)間非齊次馬爾可夫跳變系統(tǒng)的有限時(shí)間H∞控制問(wèn)題,Zhang等[44]研究了基于觀測(cè)器的離散時(shí)間齊次馬爾可夫跳變系統(tǒng)的有限時(shí)間H∞控制問(wèn)題。然而,鮮有文獻(xiàn)對(duì)基于觀測(cè)器的DMJSs的有限時(shí)間H∞控制問(wèn)題進(jìn)行研究。本文將考慮基于觀測(cè)器的時(shí)滯DMJSs的有限時(shí)間H∞控制問(wèn)題,即設(shè)計(jì)基于觀測(cè)器的狀態(tài)反饋控制器使閉環(huán)誤差系統(tǒng)有限時(shí)間有界且滿足規(guī)定的干擾衰減水平。

1 定義和系統(tǒng)描述

記號(hào):Rn,Rn×m,N分別表示n維實(shí)向量,n×m維實(shí)矩陣和非負(fù)整數(shù)集;A>0(A<0)表示A是正定(負(fù)定)矩陣;E{·}表示某種概率測(cè)度P的數(shù)學(xué)期望;*表示矩陣中的對(duì)稱項(xiàng);diag{…}表示塊對(duì)角矩陣;σmin(A)和σmax(A)分別表示矩陣A的最小和最大特征值;MT和M-1分別表示矩陣M的轉(zhuǎn)置和逆矩陣。如果矩陣的維數(shù)沒(méi)有說(shuō)明,則認(rèn)為矩陣與代數(shù)運(yùn)算是相容的。

考慮如下時(shí)滯DMJSs:

x(k+1)=A1(rk)x(k)+Ad1(rk)x(k-d)+

B1(rk)u(k)+C1(rk)v(k)+[A2(rk)x(k)+

Ad2(rk)x(k-d)+B2(rk)u(k)+

C2(rk)v(k)]w(k),

(1)

y(k)=D(rk)x(k)+G(rk)u(k),

(2)

z(k)=D1(rk)x(k)+Dd(rk)x(k-d)+

G1(rk)u(k)+G2(rk)v(k),

(3)

x(n)=φ(n),n∈{-d,…,0},

(4)

外部干擾v(k)滿足

(5)

定義如下基于觀測(cè)器的狀態(tài)反饋控制器:

(6)

(7)

(8)

(9)

(10)

G2(l)v(k),

(11)

式中

定義1如果系統(tǒng)(10) (u(k)=0,v(k)=0)滿足

(12)

(13)

引理1(舒爾補(bǔ)引理)[45]對(duì)于實(shí)矩陣N,MT=M,RT=R>0,有

本文的主要目的是設(shè)計(jì)一個(gè)形如式(6)—(9)的基于觀測(cè)器的狀態(tài)反饋控制器,保證閉環(huán)誤差DMJSs (10)和(11)有限時(shí)間H∞有界。

2 有限時(shí)間H∞控制分析

本節(jié)討論系統(tǒng)(1)—(4)的基于觀測(cè)器的有限時(shí)間H∞控制問(wèn)題,以線性矩陣不等式的形式給出閉環(huán)誤差系統(tǒng)(10)和(11)有限時(shí)間有界,且控制輸出z(k)和外部干擾v(k)滿足條件(13)的充分條件。

(14)

(15)

證明定義如下Lyapunov-Krasovskii函數(shù)

經(jīng)計(jì)算,可得

V(k+1,rk+1=m)-V(k,rk=l)=

(16)

其中

根據(jù)引理1,可以證明條件(14)等價(jià)于

<0。

(17)

(18)

對(duì)條件(18)應(yīng)用引理1,可以得到

(19)

<0。

(20)

根據(jù)條件(16)和(20),得

E{V(k+1,rk+1=m)-V(k,rk=l)}<

從而

E{V(k+1,rk+1=m)}<δE{V(k,rk=l)}+

(21)

E{V(k)}<δkE{V(0,r0=h)}+

(22)

i∈{-d,…,0} ,則

(23)

(24)

根據(jù)條件(22)—(24),得

由條件(15)可得

考慮上述Lyapunov-Krasovskii函數(shù),則有

E{V(k+1,rk+1=m)}<δE{V(k,rk=l)}-

(25)

E{V(k,rk=l)}<δkE{V(0,r0=h)}-

(26)

因?yàn)閂(k,rk=l)≥0,k∈N,在零初始條件下,根據(jù)條件(26)可以得到

(27)

又δ≥1,根據(jù)條件(27)

(28)

注1當(dāng)w(k)=0時(shí),定理1即為文獻(xiàn)[44]的定理3;當(dāng)w(k)=d=0時(shí),定理1即為文獻(xiàn)[43]的定理2。

3 有限時(shí)間H∞控制器設(shè)計(jì)

定理2考慮時(shí)滯DMJSs(10)和(11),如果存在標(biāo)量δ≥1,η>0,τ>0,ξ1>0,ξ2>0,γ>0, 矩陣J>0,正定矩陣X(l),矩陣Y(l)、F(l)和非奇異矩陣Z(l),對(duì)任意l∈S,使得下式成立

D(l)X(l)=Z(l)D(l),

(29)

(30)

ηR-1(l)

(31)

ξ1R-1(l)

(32)

(33)

(34)

因此,條件(29)和(30)能保證(14)成立。

(35)

注2當(dāng)w(k)=0時(shí),定理2退化為文獻(xiàn)[44]的定理4;當(dāng)w(k)=d=0時(shí),定理2即為文獻(xiàn)[43]的定理3。

注3條件(29)無(wú)法用線性矩陣不等式的方法求解,為了解決這個(gè)問(wèn)題,將(29)轉(zhuǎn)化為條件

(36)

式中λ是給定的足夠小的常數(shù)。 根據(jù)引理1,條件(36)等價(jià)于下列線性矩陣不等式

(37)

注4條件(30)和(33)不是嚴(yán)格的線性矩陣不等式,但是,如果固定參數(shù)δ,上述條件就可以轉(zhuǎn)化為基于線性矩陣不等式的可行性問(wèn)題。因此,定理2中的可行性問(wèn)題可以轉(zhuǎn)化為下述具有固定參數(shù)δ的可行性問(wèn)題:

min(τ2+γ2)

s.t. LMIs (30)—(33)和(37)。

注5基于上述討論可知,當(dāng)δ=1時(shí),如果可以求得可行解,則可以證明本文所設(shè)計(jì)的有限時(shí)間H∞控制器可以保證時(shí)滯DMJSs有限時(shí)間有界和有限時(shí)間穩(wěn)定。

4 數(shù)值算例

本節(jié)將通過(guò)改進(jìn)的害蟲(chóng)種群結(jié)構(gòu)動(dòng)態(tài)模型[46]證明本文所提方法的有效性。由于天敵數(shù)量、環(huán)境溫度的突然變化,害蟲(chóng)種群的出生率、死亡率會(huì)發(fā)生改變,假設(shè)這些突然變化滿足馬爾可夫跳變規(guī)律;另一方面,害蟲(chóng)種群當(dāng)前的數(shù)量受到過(guò)去數(shù)量的影響,將過(guò)去數(shù)量的影響描述為時(shí)滯。因此,改進(jìn)的害蟲(chóng)種群結(jié)構(gòu)動(dòng)態(tài)模型可描述為形如(1)—(4)的系統(tǒng),其中x1(k),x2(k),x3(k)分別表示在k時(shí)刻幼年害蟲(chóng)、未成熟害蟲(chóng)和成熟害蟲(chóng)的數(shù)量;u(k)表示人為對(duì)害蟲(chóng)種群數(shù)量的干預(yù),如引進(jìn)捕食者、噴灑殺蟲(chóng)劑等;v(k)表示從其他區(qū)域遷移至此區(qū)域的害蟲(chóng)的數(shù)量;z(k)表示該區(qū)域害蟲(chóng)的總數(shù)量;w(k)表示該區(qū)域的氣溫、降雨量等因素。

考慮具有兩個(gè)模態(tài)的害蟲(chóng)種群結(jié)構(gòu)動(dòng)態(tài)模型,系數(shù)矩陣為

模態(tài)1:

G(1)=1,G1(1)=0.06,G2(1)=0;

模態(tài)2:

G(2)=1,G1(2)=0.05,G2(2)=0。

圖1 τ和γ的局部最優(yōu)界

圖2 初始模態(tài)為1的系統(tǒng)(10)的切換信號(hào)

由定理2得τ=150.414 6,γ=105.952 6,反饋控制增益及觀測(cè)器增益分別為:

圖3 系統(tǒng)狀態(tài)的響應(yīng)

圖4 估計(jì)狀態(tài)的響應(yīng)

圖的演化

5 結(jié)束語(yǔ)

本文通過(guò)構(gòu)造李雅普諾夫函數(shù)并結(jié)合線性矩陣不等式,設(shè)計(jì)了基于觀測(cè)器的時(shí)滯離散時(shí)間馬爾可夫跳變系統(tǒng)狀態(tài)反饋控制器,給出了閉環(huán)誤差系統(tǒng)有限時(shí)間有界并滿足H∞性能指標(biāo)的充分條件。此外,利用本文提出的設(shè)計(jì)方法可以研究離散時(shí)間模糊系統(tǒng)的有限時(shí)間H∞控制問(wèn)題。

猜你喜歡
系統(tǒng)研究
Smartflower POP 一體式光伏系統(tǒng)
FMS與YBT相關(guān)性的實(shí)證研究
2020年國(guó)內(nèi)翻譯研究述評(píng)
遼代千人邑研究述論
WJ-700無(wú)人機(jī)系統(tǒng)
ZC系列無(wú)人機(jī)遙感系統(tǒng)
視錯(cuò)覺(jué)在平面設(shè)計(jì)中的應(yīng)用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
基于PowerPC+FPGA顯示系統(tǒng)
EMA伺服控制系統(tǒng)研究
半沸制皂系統(tǒng)(下)
主站蜘蛛池模板: 最近最新中文字幕在线第一页| 高清无码一本到东京热| 人妻丰满熟妇αv无码| 色综合天天视频在线观看| 亚洲日韩AV无码精品| 2021国产精品自产拍在线| 中文一级毛片| 亚洲天堂网站在线| 色哟哟国产成人精品| 中文字幕在线播放不卡| 国产精品久久久久婷婷五月| 久久国产精品娇妻素人| 一个色综合久久| 91人人妻人人做人人爽男同 | 亚洲色图欧美在线| 日韩精品一区二区三区大桥未久| 欧美中文字幕一区| 欧美自拍另类欧美综合图区| 伊人久久综在合线亚洲91| 精品在线免费播放| 无码免费视频| 在线观看国产精美视频| 久久婷婷六月| 国产成人乱无码视频| 国产一区二区三区视频| 国产免费福利网站| 无码人妻免费| 波多野结衣视频一区二区| 国内精品小视频在线| 欧美性爱精品一区二区三区| 亚洲伦理一区二区| 国产91av在线| 亚洲精品波多野结衣| AV不卡在线永久免费观看| 国产无套粉嫩白浆| 国产精品女同一区三区五区| 午夜精品区| 欧美视频在线第一页| 毛片免费高清免费| 国产亚洲欧美日韩在线观看一区二区| 看国产一级毛片| 2020极品精品国产| 亚洲swag精品自拍一区| 亚洲欧美一区二区三区蜜芽| 久久久噜噜噜| 国产肉感大码AV无码| 色婷婷色丁香| 亚洲国产成人久久精品软件 | 国产真实二区一区在线亚洲 | 亚洲乱伦视频| 国产精品一区在线观看你懂的| AV网站中文| 亚洲综合色在线| 亚洲水蜜桃久久综合网站| 亚洲黄色高清| 国产一区亚洲一区| 97人人做人人爽香蕉精品| 人禽伦免费交视频网页播放| 国产在线91在线电影| 久青草免费在线视频| 国产老女人精品免费视频| 97影院午夜在线观看视频| 国产麻豆91网在线看| 久久这里只精品国产99热8| 在线观看视频99| 99久久国产综合精品2020| 欧美日韩国产综合视频在线观看| 天天色综网| 大香网伊人久久综合网2020| 一级做a爰片久久免费| 男女男免费视频网站国产| 国产精品亚洲天堂| 亚洲天堂视频在线观看免费| 国产一级一级毛片永久| 亚洲 成人国产| 真实国产乱子伦视频| 久久久国产精品无码专区| 一级毛片无毒不卡直接观看| 2022国产91精品久久久久久| 67194亚洲无码| 日本高清有码人妻| 成人第一页|