劉博,陳正樂,袁峰,張青,韓鳳彬,張文高,霍海龍,李季霖,趙同陽,韓瓊,李平,夏冬,屈夢夢






摘? 要:中天山北緣剪切帶東段位于東天山地區,是重塑中亞造山帶西南緣演化過程的關鍵斷裂之一。在雅滿蘇南,中天山北緣剪切帶東段韌性變形強烈。野外觀測和鏡下觀察表明,剪切帶具有典型的右旋走滑特征。糜棱巖化片巖的絹云母40Ar/39Ar坪年齡為(211.5±1.3) Ma,說明該變形事件發生在晚三疊世。進一步綜合區域資料分析認為,中天山北緣剪切帶東段晚三疊世的韌性走滑是對中亞造山帶西南緣聚合后再次復活造山的響應;中亞造山帶西南緣晚三疊世復活造山時限為230~210 Ma,其動力主要來自于NWW方向的波羅的海克拉通的擠壓。
關鍵詞:中天山北緣剪切帶;中亞造山帶西南緣;40Ar/39Ar定年;晚三疊世;右旋走滑
中亞造山帶是世界上最典型的增生型造山帶之一,由古亞洲洋長期俯沖-碰撞而聚合形成[1],在其聚合完成后,造山作用并沒有徹底終止,之后又經歷了多期的造山復活。在造山帶復活過程中,剪切帶往往扮演著異常活躍的角色,例如秦嶺構造帶受新生代以來印度-歐亞大陸碰撞影響而造山復活,其南部邊界青川剪切帶同時以強烈走滑的方式響應[2]。在中亞造山帶西南緣,剪切帶極為發育,多條大規模剪切帶因后期隆升剝蝕而出露良好,為研究中亞造山帶西南緣的造山復活過程提供了一個窗口。在中亞造山帶西南緣的東天山地區,中天山北緣剪切帶東段(阿其克庫都克斷裂)出露較好,其完整地經歷了中亞造山帶西南緣造山過程中復雜的多期變形作用[3-12],其活動歷史是東天山地區乃至中亞造山帶西南緣的演化過程的縮影,對其研究意義重大。但目前為止,學者們多關注其在俯沖-碰撞過程中的活動,對其在后期復活造山中的活動過程和時限卻缺乏研究。
本文對雅滿蘇南中天山北緣剪切帶東段進行了研究,通過詳細的野外觀測,結合室內微觀構造分析,明確了其幾何學、運動學特征,同時通過絹云母40Ar/39Ar年齡測定,制約了該剪切帶復活時限,并進一步結合中亞造山帶西南緣該時期整體復活造山運動特征,探討該剪切帶復活的動力學背景,為今后研究工作提供了新的視角。
1? 區域地質概況
中亞造山帶位于波羅的海(東歐)克拉通以東、西伯利亞克拉通以南、塔里木克拉通和華北克拉通以北,呈EW向從里海延伸至西太平洋北部,橫跨俄羅斯、哈薩克斯坦、吉爾吉斯斯坦、烏茲別克斯坦、塔吉克斯坦、蒙古和中國北部(圖1-a)[1,13-19]。中亞造山帶由不同的構造單元(包括島弧、弧相關盆地、蛇綠巖、增生楔、海山、大洋高原及微大陸等)聚合形成[1,20,21]。 寬約300 km的東天山位于北部的吐魯番-哈密盆地和南部的塔里木克拉通之間,在中亞造山帶西南緣占據重要位置,東天山由北向南主要由覺羅塔格構造帶、中天山地塊和南天山造山帶組成(圖1-b)[22-30]。
中天山北緣剪切帶為一條大型巖石圈斷裂[31],該剪切帶在東天山走向近EW向,延伸1 000 km以上,分隔了北側覺羅塔格構造帶晚古生代火山-沉積建造與南側中天山前寒武系變質巖系[3-4,25,32-35]。剪切帶主要由綠片巖化和糜棱巖化的早古生代雜砂巖、中—新元古代片巖、石英片巖、片麻巖及花崗質片麻巖組成[3-4],并發育有古生代高壓變質巖和蛇綠巖[36-37]。
2? 野外描述與樣品采集
雅滿蘇南出露中新統桃樹園組、中元古界星星峽群,區域上侵入巖有二長花崗巖。中天山北緣韌性剪切帶沿中天山地塊北部邊緣展布,寬500~1 000 m,韌性變形組構發育在中元古界星星峽群糜棱巖化片巖中(圖2-a)。在研究區進行了詳細的糜棱面理和拉伸線理的測量與統計,并將糜棱面理的法線和拉伸線理進行了等面積、下半球赤平投影(圖2-b),糜棱面理產狀穩定,傾向SSE向,主體產狀為155°~180°∠55°~85°(圖3-a),拉伸線理近水平,大部分向SWW傾伏,主體產狀為235°~270°∠5°~25°,少數向NEE傾伏,主體產狀為79°~90°∠5°~10°(圖3-b)。剪切帶內發育有典型的鞘褶皺,樞紐產狀260°∠15°(圖3-c)。樞紐近水平的鞘褶皺和區域上近水平的拉伸線理均暗示該剪切帶為走滑剪切帶。糜棱巖化片巖中露頭尺度發育典型的S-C組構,形成S面理與剪切帶C面理兩種面理,其S面理與C面理夾角明確指示右旋剪切(圖3-d)。
對糜棱巖化片巖樣品的薄片在鏡下進行了觀察,顯微構造現象也十分豐富:大量剛性石英或長石顆粒作為“”型旋轉碎斑系,細小的石英和云母類礦物組成拖尾,其拖尾明確指示右旋剪切(圖4-a,b);斜長石、石英、云母類礦物組成礦物集合體,拉伸方向沿S面理展布,與剪切帶C面理組成S-C組構,指示右旋剪切(圖4-c);細小的石英組成的S面理,與絹云母組成的C面理共同構成S-C組構,指示右旋剪切(圖4-d)。這些野外和鏡下特征表明,雅滿蘇南中天山北緣剪切帶具明顯的右旋走滑特征。
3? 變形年代學
3.1? 測試方法
在河北廊坊市地科技術服務有限公司對糜棱巖化片巖樣品D1923-2(采樣位置見圖2)進行測年單礦物絹云母的挑選,絹云母無污染,無氧化,純度大于99%,達到測試的要求。
絹云母的40Ar/39Ar測試在核工業北京地質研究院分析測試研究中心完成,具體步驟如下:①配置濃度為5%的稀硝酸浸泡樣品,經過去離子水、丙酮分別超聲清洗15 min后,將樣品放置烘箱內60℃干燥;②將樣品用鋁箔包好放置石英管內,同時將標準物質黑云母ZBH-25放置石英管不同位置用于計算中子通量梯度,然后將石英管真空熔封,放置鋁制柵格內,鋁制柵格裹上Cd皮,焊接在5052型合金鋁罐內,送至反應堆輻照孔道內進行輻照;③照射過的樣品冷卻至安全放射劑量返回實驗室,采用雙真空鉭片加熱爐階段升溫法釋放樣品中氣體,氣體依次經過液氮U型冷阱,兩組鋯-鋁吸氣劑泵(溫度分別為450℃、室溫)對氣體進行純化,最后僅留惰性氣體進入稀有氣體質譜儀Argus VI進行Ar同位素組成測試,測試全流程均為自動化控制;④通過輻照純凈的CaF2 和K2SO4,對樣品的Ca和K在輻照過程中產生的干擾進行校正,通過全熔石英管內黑云母ZBH-25獲得石英管內的中子通量梯度,計算獲得不同位置樣品的輻照常數(J值),通過測試大氣中的氬同位素組成獲得質譜的質量歧視校正因子,衰變常數則采用推薦值5.543×10-10[40];⑤采用CALC 2.40軟件進行數據處理,獲得樣品年齡譜圖。
3.2? 測試結果
D1923-2樣品40Ar/39Ar階段升溫年齡分析結果見表1。絹云母經歷了11個階段的分步加熱,加熱溫度區間為700℃~1 300℃,總氣體年齡(tT)為(209.48±0.81) Ma。900℃~1 300℃的8個溫度階段組成了一個年齡坪,坪年齡(tp)為(211.5±1.3) Ma(MSWD=7.3),對應了76.08%的39Ar釋放量(圖5-a),相應的39Ar/36Ar-40Ar/36Ar等時線年齡(ti)為(213.0±1.1) Ma,(MSWD=3.5)(圖5-b),反等時線年齡為(212.9±1.1) Ma(MSWD=3.5)。在該數據中,坪年齡包括了3個以上的連續溫度階段,對應超過了50%的39Ar釋放量,且坪年齡、等時線年齡和反等時線年齡在誤差范圍內一致,數據整體質量較好,可制約中天山北緣剪切帶東段右旋走滑活動的時限。
4? 討論
4.1? 活動時限探討
一般認為,中亞造山帶西南緣的增生造山作用終止于約240 Ma[38],但增生造山作用的終止并不是造山運動的終結,后期往往有幕式的造山復活事件。最新的研究表明,在東天山地區,磷灰石裂變徑跡揭示了在230~210 Ma期間存在快速隆升剝蝕[41],且本文得到的絹云母40Ar/39Ar年齡暗示了中天山北緣剪切帶東段在212 Ma再次以右旋走滑的形式復活,這些證據表明東天山乃至中亞造山帶西南緣在晚三疊世可能存在一期區域性的造山復活事件。造山帶的再次復活不僅會造成先存剪切帶的再次活動,也往往伴隨著逆沖推覆和大規模的隆升剝蝕。從目前的研究成果來看,該期構造事件在整個中亞造山帶西南緣都有較好體現,本次對該期構造事件的時限進行了整理:①在準噶爾盆地西北緣,詳細的地震資料表明,紅山嘴-車排子、克拉瑪依-百口泉、烏爾禾-夏子街斷裂等盆地邊緣斷裂系統在晚三疊世重新活化,發生了右旋扭壓運動,隨后傾斜的侏羅系覆蓋了變形的二疊—三疊系,形成了區域不整合[42];②在準噶爾盆地內部,烏倫古坳陷的上三疊統整體沉積厚度較穩定,朝著陸梁隆起方向有輕微的減薄,這種生長地層指示了陸梁隆起從晚三疊世開始在擠壓作用下隆升[43] ;③在準噶爾盆地南緣,地震資料顯示柴窩堡凹陷的三葛莊次凸晚三疊世又遭受了強烈的擠壓運動,在三葛莊次凸表現為三疊系與侏羅系之間的角度不整合[44] ;④在博格達地區,地震反射特征表明,下侏羅統八道灣組地層明顯超覆于下伏上三疊統郝家溝組地層之上,表明晚三疊世存在大規模的擠壓隆升[45] ;⑤在準噶爾盆地西南緣,自晚三疊世開始發育的四棵樹山前坳陷屬獨立的小型走滑盆地,與當時中天山北緣大型剪切帶在擠壓同時兼具一定的走滑活動有關[46] ;⑥在準噶爾-阿拉套地區,磷灰石裂變徑跡記錄了230~210 Ma的快速隆升剝蝕[47],這與在東天山記錄的隆升剝蝕時限完全一致 [41]。
綜上所述,諸多證據表明該期復活造山運動發生在晚三疊世,具體時限約為230~210 Ma。
4.2? 構造背景探討
前文已述,230~210 Ma這期復活造山運動在中亞造山帶西南緣均有體現,但其動力學背景需進一步探討。Xiao Wenjiao et al.和Yi Zhiyu et al.對中亞造山帶西南緣的古板塊格局進行了重建[19,48],結果表明,中亞造山帶西南緣自晚石炭世開始處于西伯利亞、塔里木和波羅的海3個剛性克拉通的擠壓中心,主要受到近NS向和NWW向的擠壓作用。這種擠壓作用自中亞造山帶西南緣開始聚合以來,是表現為多期的、幕式的,在不同時期所受到的擠壓應力方向略有不同,擠壓應力強度則處于波動狀態,使中亞造山帶西南緣構造演化呈現出明顯的階段性。
中亞造山帶西南緣晚三疊世的構造運動過程表明,中亞造山帶西南緣在230~210 Ma,仍然受到NS向和NWW向擠壓應力作用,但這種擠壓應力可能更多地來自于NWW向的波羅的海克拉通,證據如下:
(1) 烏拉爾造山系是波羅的海克拉通與中亞造山帶西南緣的結合帶,在烏拉爾造山系中,斷層系統的Rb-Sr同位素測年表明,與斷層相關糜棱巖的發育年齡分為247~240 Ma和229 Ma兩個階段[49],說明至少在約247 Ma,波羅的海克拉通和中亞造山帶西南緣的哈薩克斯坦造山系已經發生碰撞,NNE向的烏拉爾造山系將它們縫合在一起[50],在240 Ma的中亞造山帶西南緣的增生造山作用暫時中止,這已得到了大量年代學數據的證實[38]。229 Ma的糜棱巖發育說明烏拉爾造山帶又再度活化,中亞造山帶西南緣再次受到來自波羅的海克拉通NWW向應力的強擠壓,這與本文所認為的約230~210 Ma的這期構造運動開始時限相吻合。
(2) 在晚三疊世,西準噶爾地區持續向準噶爾盆地內部擠壓沖斷,構造變形主要集中在車排子凸起南側,逆沖斷層平面上呈NNE向[51],說明該時期擠壓應力可能來自NWW向的波羅的海克拉通。
(3) 在準噶爾盆地南緣的柴窩堡凹陷,其內部在晚三疊世再次活化的逆沖斷裂呈NNE向[44],暗示該時期擠壓應力來源于NWW向。
(4) 在準噶爾盆地的內部東緣,晚三疊世明顯受到來自NWW向應力的強擠壓。該地區的東南部在擠壓應力作用下處于抬升剝蝕狀態,同時該地區的西北部開始活動,形成了NNE向展布的帳北斷褶帶的雛形[46]。
綜上,中亞造山帶西南緣在230~210 Ma的動力學模式得以還原(圖6)。中亞造山帶西南緣在該階段處于西伯利亞、波羅的海和塔里木克拉通的擠壓作用下,但來自NWW向波羅的海克拉通的擠壓應力占主導作用。在這種強擠壓背景下,中亞造山帶西南緣以斷裂走滑、逆沖或區域上的隆升剝蝕等多種方式響應。中天山北緣剪切帶東段走向為近EW向或NEE向,與來自于NWW向的擠壓應力存在一定交角,擠壓應力在靠近剪切帶時會分解成垂直剪切帶的擠壓分量和平行剪切帶的走滑分量,使中天山北緣剪切帶東段再次以右旋走滑形式復活。
5? 結論
(1) 對雅滿蘇南中天山北緣剪切帶東段的運動學研究表明,該剪切帶具明顯右旋走滑的特征。糜棱巖化片巖絹云母40Ar/39Ar坪年齡為(211.5±1.3) Ma,說明該期變形事件發生在晚三疊世。
(2) 中天山北緣剪切帶東段晚三疊世的右旋走滑是對中亞造山帶西南緣增生造山結束后再次復活造山的響應,中亞造山帶西南緣的復活造山時限為230~210 Ma,其動力來自于NWW向的波羅的海克拉通的擠壓。
致謝:十分感謝審稿人和編輯部對本文提出的諸多寶貴意見和建議,對提高本文質量起到很大作用,在此一并表示衷心感謝!
參考文獻
[1]? ? Windley B F , Alexeiev D , Xiao W , et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31-47.
[2]? ? 李建,張岳橋,熊金紅,等.秦嶺南緣青川斷裂新生代變形特征及其走滑運動學轉換[J].大地構造與成礦學,2016,40(3):405-418.
[3]? ? 舒良樹, 夏飛雅克, 馬瑞士. 中天山北緣大型右旋走滑韌剪帶研? 究[J]. 新疆地質, 1998(04):326-336.
[4]? ? 舒良樹, 夏飛雅克, 郭令智,等. 新疆中天山北緣阿齊克庫都格—尾亞古生代大型韌性剪切帶研究[J]. 地質學報, 1999, 2:95-95.
[5]? ? Shu L S, Charvet J, Lu H, et al. Paleozoic accretion-collision events and kinematics of ductile deformation in the eastern part of the southern-central Tianshan Belt, China[J]. Acta Geologica Sinica, 2002, 76(3): 308-323.
[6]? ? Laurent-Charvet S, Charvet J, Monié P, et al. Late Paleozoic strike-slip shear zones in eastern Central Asia (NW China): New structural and geochronological data[J].Tectonics, 2003,22(2) :1-24.
[7]? ? De Jong K, Wang B, Faure M, et al. New 40 Ar/39 Ar age constraints on the Late Palaeozoic tectonic evolution of the western Tianshan (Xinjiang, northwestern China), with emphasis on Permian fluid ingress[J]. International Journal of Earth Sciences, 2009, 98(6): 1239-1258.
[8]? ? Yang T N , Li J Y , Wang Y , et al. Late Early Permian (266Ma) N-S compressional deformation of the Turfan basin, NW China: the cause of the change in basin pattern[J]. International Journal of Earth Sciences, 2009, 98(6):1311-1324.
[9]? ? 許志琴, 李思田, 張建新,等. 塔里木地塊與古亞洲/特提斯構造體系的對接[J]. 巖石學報, 2010, 27(1):1-22.
[10]? Zhu Y. Zircon U-Pb and muscovite 40Ar/39Ar geochronology of the gold-bearing Tianger mylonitized granite, Xinjiang, northwest China: Implications for radiometric dating of mylonitized magmatic rocks[J]. Ore Geology Reviews, 2011, 40(1): 108-121.
[11]? 蔡志慧, 許志琴, 何碧竹,等. 東天山-北山造山帶中大型韌性剪切帶屬性及形成演化時限與過程[J]. 巖石學報, 2012, 28(6):1875-1895.
[12]? 王凱, 計文化, 孟勇,等. 天山造山帶東段構造變形對增生造山末期的響應[J]. 大地構造與成礦學, 2019, 43(5):894-910.
[13]? Jahn B, Wu F, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2000, 91(1-2): 181-193.
[14]? Khain E V, Bibikova E V, Salnikova E B, et al. The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions[J]. Precambrian Research, 2003, 122(1-4): 329-358.
[15]? Jahn B. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society, London, Special Publications, 2004, 226(1): 73-100.
[16]? Sun M, Yuan C, Xiao W, et al. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic[J]. Chemical Geology, 2008, 247(3-4): 352-383.
[17] Schulmann K, Paterson S. Asian continental growth[J]. Nature Geoscience, 2011, 4(12): 827-829.
[18]? Kr?ner A, Kovach V, Belousova E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1): 103-125.
[19]? Xiao W, Windley B F, Sun S, et al. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: oroclines, sutures, and terminal accretion[J]. Annual review of earth and planetary sciences, 2015, 43: 477-507.
[20]? Wilhem C, Windley B F, Stampfli G M. The Altaids of Central Asia: a tectonic and evolutionary innovative review[J]. Earth-Science Reviews, 2012, 113(3-4): 303-341.
[21]? Zhou J B, Wilde S A, Zhao G C, et al. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 76-93.
[22]? Coleman R G. Continental growth of northwest China[J]. Tectonics, 1989, 8(3): 621-635.
[23]? Allen M B, Windley B F, Zhang C. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia[J]. Tectonophysics, 1993, 220(1-4): 89-115.
[24]? Allen M B, Windley B F, Zhang C, et al. Evolution of the Turfan basin, Chinese central Asia[J]. Tectonics, 1993, 12(4): 889-896.
[25]? Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370-395.
[26]? Xiao W, Windley B F, Allen M B, et al. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J]. Gondwana Research, 2013, 23(4): 1316-1341.
[27]? Charvet J, Shu L S, Laurent-Charvet S, et al. Palaeozoic tectonic evolution of the Tianshan belt, NW China[J]. Science China Earth Sciences, 2011, 54(2): 166-184.
[28]? Chen X, Shu L, Santosh M, et al. Island arc-type bimodal magmatism in the eastern Tianshan Belt, Northwest China: geochemistry, zircon U-Pb geochronology and implications for the Paleozoic crustal evolution in Central Asia[J]. Lithos, 2013, 168: 48-66.
[29]? Zhang X, Zhao G, Sun M, et al. Tectonic evolution from subduction to arc-continent collision of the Junggar ocean: Constraints from U-Pb dating and Hf isotopes of detrital zircons from the North Tianshan belt, NW China[J]. Bulletin, 2016, 128(3-4): 644-660.
[30]? Zhang X, Zhao G, Eizenh?fer P R, et al. Tectonic transition from Late Carboniferous subduction to Early Permian post-collisional extension in the Eastern Tianshan, NW China: Insights from geochronology and geochemistry of mafic-intermediate intrusions[J]. Lithos, 2016, 256: 269-281.
[31]? 舍建忠, 朱志新, 賈健,等. 新疆主要斷裂的分布及其特征[J]. 新疆地質, 2020, 38(1):9-20.
[32]? Windley B F, Allen M B, Zhang C, et al. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, central Asia[J]. Geology, 1990, 18(2): 128-131.
[33]? 馬瑞士, 舒良樹, 孫家齊.東天山構造演化與成礦[M].北京:地質出版社,1997.
[34]? Xiao W, Han C, Yuan C, et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2-4): 102-117.
[35]? 木合塔爾·扎日, 張曉帆, 吳兆寧,等. 東天山準噶爾—哈薩克斯? ? ? ? ? ?坦板塊與塔里木板塊縫合線的再厘定及其意義[J]. 地學前緣,? ? ?2009, 016(3):138-148.
[36]? 舒良樹,盧華復,印棟豪,等.中、南天山古生代增生-碰撞事件和變形運動學研究[J].南京大學學報(自然科學版),2003,(1):17-30.
[37]? 陳希節,舒良樹,馬緒宣.新疆尾亞蛇綠混雜巖與鎂鐵質麻粒巖地球化學特征及構造意義[J].高校地質學報,2012,18(4):661-675.
[38]? Han Y, Zhao G. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 129-152.
[39]? Zhang X, Zhao G, Sun M, et al. Tectonic evolution from subduc? ? ?tion to arc-continent collision of the Junggar ocean:Constraints? ? ? ?from U-Pb dating and Hf isotopes of detrital zircons from the? ? ? ? ? North Tianshan belt, NW China[J]. Bulletin, 2016, 128(3-4): 644-? 660.
[40]? Steiger R H, J?ger E. Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology[J]. Earth and planetary science letters, 1977, 36(3): 359-362.
[41]? Gong L, Kohn B P, Zhang Z, et al. Exhumation and preservation of Paleozoic porphyry Cu deposits: Insights from the Yandong deposit, southern Central Asian orogenic belt[J]. Economic Geology, 2021, 116(3): 607-628.
[42]? Liang Y, Zhang Y, Chen S, et al. Controls of a strike-slip fault system on the tectonic inversion of the Mahu depression at the northwestern margin of the Junggar Basin, NW China[J]. Journal of Asian Earth Sciences, 2020, 198: 104229.
[43]? 文磊, 孫相燦, 李程,等. 準噶爾盆地烏倫古坳陷中-新生代構造演化及成因機制[J]. 巖石學報, 2019, 35(4):1107-1120.
[44]? 梁鑫鑫,陳石,陳書平,等.博格達山西緣三葛莊凸起多期構造變形及其對博格達山隆升的響應[J].科學技術與工程,2020,20? ? ? ? (28):11455-11462.
[45]? 王新桐.博格達山周緣二疊—侏羅系地層格架及沉積演化[D].中國石油大學(華東),2017.
[46]? 盧苗安.天山東段盆山構造格局的多期演變[D].中國地震局地質研究所,2007.
[47]? Glorie S, Otasevic A, Gillespie J, et al. Thermo-tectonic history of the Junggar Alatau within the Central Asian Orogenic Belt (SE Kazakhstan, NW China): Insights from integrated apatite U/Pb, fission track and (U-Th)/He thermochronology[J]. Geoscience Frontiers, 2019, 10(6): 2153-2166.
[48]? Yi Z, Huang B, Xiao W, et al. Paleomagnetic study of Late Paleozoic rocks in the Tacheng Basin of West Junggar (NW China): Implications for the tectonic evolution of the western Altaids[J]. Gondwana Research, 2015, 27(2): 862-877.
[49]? Hetzel R, Glodny J. A crustal-scale, orogen-parallel strike-slip fault in the Middle Urals: age, magnitude of displacement, and geodynamic significance[J]. International Journal of Earth Sciences, 2002, 91(2): 231-245.
[50]? Pease V. Eastern Europe: The Timanian and Urailian Orogens[M]. Department of Geological Sciences, Stockholm University, Stockholm, Sweden, 2020, 302-310.
[51]? 梁宇生. 準噶爾盆地西部車排子凸起的地質結構及形成演化[D].中國地質大學(北京),2019.
Late Triassic Dextral Strike-Slip Deformation in the Eastern Segment of the North Central Tianshan Shear Zone: Response to an Orogenic Revival Event in the Southwestern Margin of the
Central Asian Orogenic Belt
Liu Bo1,2,Cheng Zhengle1,3,Yuan Feng2,Zhang Qing1,Han Fengbin1,Zhang Wengao1,Huo Hailong1,Li Jilin1,2,Zhao Tongyang4,Han Qiong4,Li Ping4,Xia Dong4,Qu Mengmeng3
(1.Key Laboratory of Paleomagnetism and Tectonic Reconstruction of Ministry of Land and Resources,
Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing,100081, China;2.School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, , Anhui 230009, China;3.State Key Laboratory of nuclear resources and environment, East China University of Technology, Nanchang , Jiangxi ,330013, China;
4.Xinjiang Institute of Geological Survey, Urumqi,Xinjiang,830000, China)
Abstract: The eastern segment of the North Central Tianshan Shear Zone, located in the Eastern Tianshan area, is one of the key faults to understand the evolution processes of the southwestern margin of the Central Asian Orogenic Belt. In southern Yamansu, the eastern part of the shear zone in the northern margin of the Middle Tianshan Mountains has strong ductile deformation. Field and microscopic observations show that the shear zone is characterized by dextral strike-slip deformation. The 40Ar/39Ar dating of sericite from a mylonitic schist yields an age of 211.5 ± 1.3Ma, indicating that the deformation event occurred in the Late Triassic. Further analyses of regional data suggest that the Late Triassic strike-slip in this shear zone should be a response to an orogenic revival event in the southwestern margin of the Central Asian Orogenic Belt.The Late Triassic revival orogeny time in the southwest margin of the Central Asian Orogenic Belt is 230 ~ 210 Ma.Its driving force mainly comes from the compression of the Baltic craton in the NWW direction.
Key words: 40Ar/39Ar dating; late Triassic; dextral strike-slip; Shear Zone in northern margin of Central Tianshan; The southwestern margin of the Central Asian Orogenic Belt