周 游 張廣智* 張圣澤 劉俊州 韓 磊
(①中國石油大學(xué)(華東)深層油氣重點(diǎn)實(shí)驗(yàn)室,山東青島266580; ②中國石油大學(xué)(華東)地球科學(xué)與技術(shù)學(xué)院,山東青島266580; ③中國石油化工股份有限公司石油勘探開發(fā)研究院,北京100083)
致密油氣是一種非常重要的非常規(guī)資源,是接替常規(guī)油氣資源、支撐油氣革命不可或缺的力量[1]。中國擁有豐富的致密油氣資源,儲(chǔ)層普遍經(jīng)歷了復(fù)雜的成巖和構(gòu)造作用,多以基質(zhì)致密、儲(chǔ)集空間類型多樣、特低孔低滲的縫控型為主[2]。縫控型致密儲(chǔ)層中的裂縫不僅控制有效儲(chǔ)層的規(guī)模和油氣儲(chǔ)量,同時(shí)還是油氣開采過程中重要的運(yùn)輸通道。由于儲(chǔ)層含油氣性和產(chǎn)能高度依賴裂縫,裂縫的有效性評(píng)價(jià)是分析儲(chǔ)層質(zhì)量以及油氣勘探部署的重要依據(jù)[3-4]。裂縫開度(FVA)作為定量描述裂縫發(fā)育特征的參數(shù),是評(píng)價(jià)裂縫有效性的基礎(chǔ),對(duì)于指導(dǎo)致密油氣儲(chǔ)層勘探開發(fā)具有重要的參考價(jià)值[5]。
目前,裂縫開度的計(jì)算方法主要包括實(shí)驗(yàn)測(cè)量、數(shù)值模擬及測(cè)井計(jì)算等三種。Ponziani等[6]利用實(shí)驗(yàn)裝置準(zhǔn)確測(cè)量巖心的裂縫開度,但受取心技術(shù)的限制,測(cè)量結(jié)果數(shù)量較少且在深度上不連續(xù); Van Stappen等[7]依靠微CT成像和三維激光掃描設(shè)備獲取了不同圍壓下的裂縫開度,但裝備適用范圍有限,無法真實(shí)還原地層條件; 丁文龍等[8]基于數(shù)學(xué)模型,運(yùn)用有限元方法對(duì)構(gòu)造應(yīng)力場(chǎng)進(jìn)行數(shù)值模擬,得到了裂縫發(fā)育區(qū)的裂縫開度信息,但應(yīng)力場(chǎng)有限元模擬需考慮地質(zhì)體的巖石物理特征,所需參數(shù)較多,且參數(shù)的選取依賴研究者的主觀經(jīng)驗(yàn); Boadu[9]通過數(shù)值模擬實(shí)驗(yàn)建立了地震信號(hào)特征與裂縫開度之間的關(guān)系,利用地震屬性預(yù)測(cè)裂縫開度等儲(chǔ)層特征參數(shù),但預(yù)測(cè)結(jié)果存在垂向分辨率低、多解性強(qiáng)等問題; Aghli等[10]采用圖像處理的方法對(duì)電成像測(cè)井資料進(jìn)行處理、計(jì)算,得到了連續(xù)且垂向分辨率高的裂縫開度數(shù)據(jù),但由于成像測(cè)井測(cè)量成本高昂,計(jì)算的開度數(shù)據(jù)受測(cè)量深度的限制。地球物理常規(guī)測(cè)井資料具有縱向分辨率高、連續(xù)性好、信息量大、成本低等優(yōu)點(diǎn),對(duì)大多數(shù)油氣田而言,如何利用常規(guī)測(cè)井信息建立裂縫的測(cè)井響應(yīng)機(jī)理模型,進(jìn)而計(jì)算地層裂縫開度,是亟需解決的實(shí)際問題[11]。
在常規(guī)油氣儲(chǔ)層中,成巖作用差異往往導(dǎo)致巖石成分和結(jié)構(gòu)發(fā)生變化,產(chǎn)生不同的測(cè)井響應(yīng),可以利用多元線性回歸(MLR)等線性方法預(yù)測(cè)儲(chǔ)層參數(shù)[12]。而縫控型致密油氣儲(chǔ)層的強(qiáng)非均質(zhì)性導(dǎo)致常規(guī)測(cè)井?dāng)?shù)據(jù)與裂縫開度之間存在復(fù)雜的非線性關(guān)系,簡(jiǎn)單的線性模型并不能準(zhǔn)確表征地下裂縫張開程度的變化趨勢(shì),因此需要建立一個(gè)非線性預(yù)測(cè)模型表示常規(guī)測(cè)井?dāng)?shù)據(jù)與裂縫開度之間的轉(zhuǎn)換關(guān)系。機(jī)器學(xué)習(xí)可通過模擬人類、自然行為對(duì)歷史數(shù)據(jù)進(jìn)行學(xué)習(xí),找出其中的規(guī)律,進(jìn)而利用新的數(shù)據(jù)對(duì)目標(biāo)進(jìn)行預(yù)測(cè)[13-14]。國內(nèi)外許多學(xué)者借助機(jī)器學(xué)習(xí)模型強(qiáng)大的非線性映射能力,對(duì)常規(guī)測(cè)井資料的數(shù)據(jù)特征進(jìn)行深度挖掘,在儲(chǔ)層參數(shù)預(yù)測(cè)方面取得了良好的應(yīng)用效果[15-19],但單一機(jī)器學(xué)習(xí)模型仍存在泛化性差、易受噪聲數(shù)據(jù)干擾等缺點(diǎn)[20]。
委員會(huì)機(jī)器(CM)采用集成的思想,模仿人類委員會(huì)的決策機(jī)制,將一個(gè)復(fù)雜的計(jì)算任務(wù)分給多個(gè)計(jì)算能力優(yōu)異的專家,各個(gè)專家各自獨(dú)立求解,然后利用某種組合機(jī)制組合這些專家的解,得到最終的全局最優(yōu)解[21-23]。委員會(huì)機(jī)器可將訓(xùn)練好的學(xué)習(xí)模型全部利用起來,整合各個(gè)學(xué)習(xí)模型的優(yōu)勢(shì),在儲(chǔ)層參數(shù)預(yù)測(cè)方面得到了有效應(yīng)用[24-25]。盡管委員會(huì)機(jī)器方法取得了成功,但各專家模型的組合權(quán)重一般是通過人工平均賦值或優(yōu)化算法獲得,這些組合策略易受到人為經(jīng)驗(yàn)和模型各種參數(shù)調(diào)節(jié)的影響。如何得到合理、有效的組合策略,是模型面臨的難題之一[26-27]。
為了提高組合權(quán)重的計(jì)算精度,增加模擬組合策略的可解釋性,本文利用遞階層次結(jié)構(gòu)模型和門神經(jīng)網(wǎng)絡(luò)模型對(duì)傳統(tǒng)委員會(huì)機(jī)器進(jìn)行改進(jìn),基于條件交替期望變換理論,綜合考慮各個(gè)專家網(wǎng)絡(luò)的預(yù)測(cè)性能,添加組合權(quán)重自適應(yīng)生成的層次網(wǎng)絡(luò)模塊,形成了一個(gè)新的委員會(huì)機(jī)器模型——層次專家委員會(huì)機(jī)器模型(HECM)。運(yùn)用該模型在研究工區(qū)實(shí)現(xiàn)了井中裂縫開度預(yù)測(cè),并與單一機(jī)器模型和傳統(tǒng)委員會(huì)機(jī)器模型的預(yù)測(cè)結(jié)果進(jìn)行了對(duì)比。結(jié)果表明,HECM的預(yù)測(cè)結(jié)果與巖心測(cè)量結(jié)果更吻合。
委員會(huì)機(jī)器網(wǎng)絡(luò)由幾個(gè)訓(xùn)練有素的專家機(jī)器組成,專家機(jī)器通常是由多種智能算法并行構(gòu)建的機(jī)器學(xué)習(xí)模型。每個(gè)專家機(jī)器使用完全相同的輸入,基于不同的初始網(wǎng)絡(luò)條件獨(dú)立完成訓(xùn)練,最后將各專家機(jī)器輸出的結(jié)果進(jìn)行線性加權(quán)平均并作為委員會(huì)機(jī)器的輸出。委員會(huì)機(jī)器的網(wǎng)絡(luò)結(jié)構(gòu)如圖1所示。

圖1 委員會(huì)機(jī)器的網(wǎng)絡(luò)結(jié)構(gòu)
在使用單一機(jī)器學(xué)習(xí)模型預(yù)測(cè)裂縫開度時(shí),通常會(huì)訓(xùn)練多種機(jī)器學(xué)習(xí)模型,最終選取預(yù)測(cè)效果最好的一個(gè),其余的模型則被舍棄,從而造成學(xué)習(xí)資源的浪費(fèi)。當(dāng)各學(xué)習(xí)模型預(yù)測(cè)效果相當(dāng)時(shí),則會(huì)出現(xiàn)難以選擇的情況。此外,模型的泛化性能很大程度上取決于數(shù)據(jù)本身,在某一樣本集取得最佳預(yù)測(cè)效果的模型并不一定適用其他的獨(dú)立樣本集。而委員會(huì)機(jī)器能夠充分利用這些訓(xùn)練好的模型,整合各模型的優(yōu)勢(shì),有效提高自身的泛化性和預(yù)測(cè)性能[28]。
類似于委員會(huì)機(jī)器的搭建思想,本文提出的HECM也要對(duì)各專家機(jī)器的輸出進(jìn)行加權(quán)組合,但不同的是,這些權(quán)重不再是人為指定或無條件求和平均,而是由一個(gè)額外的層次網(wǎng)絡(luò)模塊自適應(yīng)生成。該模塊主要由遞階層次結(jié)構(gòu)模型和門神經(jīng)網(wǎng)絡(luò)模型構(gòu)成,可對(duì)基礎(chǔ)專家的輸出結(jié)果進(jìn)行評(píng)價(jià)、分析,決定各個(gè)基礎(chǔ)專家在全局輸出中的貢獻(xiàn)。基于層次網(wǎng)絡(luò)模塊自適應(yīng)計(jì)算權(quán)重的步驟如下[29]。
(1)構(gòu)建遞階層次結(jié)構(gòu)。將影響預(yù)定目標(biāo)的因素進(jìn)行分組,并將每一組作為一個(gè)層次,按最高層(目標(biāo)層)、多重中間層(準(zhǔn)則層)以及最低層(方案層)的形式排列起來。層與層之間可以建立子層次,上、下層因素之間的聯(lián)系可用連接線表示,形成具有自上而下主導(dǎo)關(guān)系的遞階層次結(jié)構(gòu)。
(2)構(gòu)造判斷矩陣。當(dāng)確定好上、下層之間的主導(dǎo)關(guān)系后,需計(jì)算聯(lián)系上層某因素(目標(biāo)A或某個(gè)準(zhǔn)則U)的下層各因素在上層因素之中所占的比重。
假定A層中的某一因素與下一層次B中的因素有聯(lián)系,則可構(gòu)造A、B層次之間的判斷矩陣
(1)
式中bij表示對(duì)于A層某一因素而言,因素bi對(duì)bj的相對(duì)重要性的判斷值。一般取1、3、5、7、9等5個(gè)等級(jí)標(biāo)度,其中1表示bi與bj同等重要,3表示bi較bj稍重要,5表示bi較bj明顯重要。按照該準(zhǔn)則,因素之間的相對(duì)重要性依次上升。當(dāng)5個(gè)等級(jí)不夠用時(shí),可采取2、4、6、8表示相鄰判斷的中值。
(3)層次單排序。層次單排序是為了確定同一層次因素對(duì)于上一層次某因素相對(duì)重要性的排序權(quán)值。通過求解判斷矩陣的最大特征根λmax所對(duì)應(yīng)的歸一化后的特征向量W,其分量即為對(duì)應(yīng)因素單排序的權(quán)重值
PW=λmaxW
(2)
為了檢驗(yàn)層次單排序的合理性,需要對(duì)判斷矩陣進(jìn)行一致性檢驗(yàn)。可用隨機(jī)一致性比率(Random Conformance Rate,CR)對(duì)判斷矩陣進(jìn)行檢驗(yàn)
(3)
(4)
式中:CI(Consistency Index)為矩陣一致性指標(biāo); RI(Mean Random Consistency Index)為平均隨機(jī)一致性指標(biāo),其取值規(guī)則如表1所示[30]。當(dāng)CR<0.01時(shí),判斷矩陣具有令人滿意的一致性,否則需要對(duì)判斷矩陣進(jìn)行調(diào)整,直到CR<0.01為止。


表1 平均隨機(jī)一致性指標(biāo)的取值規(guī)則
(5)
其中U(k)中的第j列為第k層m個(gè)因素對(duì)于第k-1層上第j個(gè)因素為準(zhǔn)則的單排序向量。

w(k)=U(k)w(k-1)
(6)
從而得到各基礎(chǔ)方案對(duì)應(yīng)的初始權(quán)重
(7)
同樣,為了評(píng)價(jià)層次總排序的計(jì)算結(jié)果的一致性,也需要計(jì)算與單排序類似的檢驗(yàn)量。第k層的總排序的一致性比率計(jì)算公式為
(8)

(5)門網(wǎng)絡(luò)模塊更新權(quán)重。利用單層感知器(SLP),構(gòu)建一個(gè)由多元非線性函數(shù)和交替條件期望變換(ACE)算法激活的門神經(jīng)網(wǎng)絡(luò)模塊,即
(9)
式中:θ是關(guān)于因變量Y的期望轉(zhuǎn)化函數(shù);φ是關(guān)于自變量X的期望轉(zhuǎn)化函數(shù);ε為回歸誤差;p為變量的個(gè)數(shù)。
按照ACE算法的理論[31],利用式(9)進(jìn)行非線性回歸得到的誤差方差方程為
(10)
據(jù)此建立以誤差方差最小為優(yōu)化目標(biāo)的優(yōu)化方程
(11)
為了求解誤差方差方程,每個(gè)變量建立如下的單一條件期望函數(shù)
(12)
(13)

那么,在變換空間中,最優(yōu)的期望變換方程可表示為
(14)
式中ε*遵循均值為零的正態(tài)分布。
因此,通過門神經(jīng)網(wǎng)絡(luò)模塊更新權(quán)重后,可進(jìn)一步提高基礎(chǔ)方案的預(yù)測(cè)精度。
如圖2所示,為了獲得最佳的預(yù)測(cè)性能,以目標(biāo)預(yù)測(cè)精度作為總體評(píng)價(jià)目標(biāo),選取平均絕對(duì)誤差(MAE)、均方根誤差(RMSE)、總絕對(duì)誤差(TAE)、決定系數(shù)(R2)等4個(gè)參數(shù)為目標(biāo)評(píng)價(jià)準(zhǔn)則因素; 將每個(gè)準(zhǔn)則因素作為基礎(chǔ)專家網(wǎng)絡(luò)單元的性能評(píng)價(jià)指標(biāo),構(gòu)建相應(yīng)的判斷矩陣,兩兩比較每個(gè)基礎(chǔ)專家網(wǎng)絡(luò)單元的性能表現(xiàn),以確定各自重要性; 將核嶺回歸(KRR)、支持向量回歸(SVR)、BP神經(jīng)網(wǎng)絡(luò)(BPN)等3個(gè)機(jī)器學(xué)習(xí)模型作為基礎(chǔ)專家網(wǎng)絡(luò)單元,把每個(gè)基礎(chǔ)網(wǎng)絡(luò)單元的輸出結(jié)果選為待評(píng)價(jià)方案,送入性能評(píng)議模塊進(jìn)行評(píng)判打分。最后利用單層感知器和ACE算法構(gòu)成一個(gè)門神經(jīng)網(wǎng)絡(luò)模塊(主席決策層),對(duì)打分結(jié)果進(jìn)行綜合決策,從而得到最優(yōu)的解決方案。

圖2 HECM的網(wǎng)絡(luò)結(jié)構(gòu)
研究區(qū)位于四川盆地川西坳陷孝泉—豐谷隆起帶的新場(chǎng)氣田。受龍門山造山帶抬升的影響,目的層須家河組經(jīng)歷了由海相向陸相的變遷,經(jīng)過印支期、燕山期和喜山期等多期次構(gòu)造運(yùn)動(dòng),形成了氣水關(guān)系復(fù)雜的致密碎屑巖氣藏。須二段(須家河組二段)為主要含氣層段,儲(chǔ)層巖性主要為淺灰色中粒巖屑石英砂巖,受構(gòu)造、沉積以及差異成巖作用等多種因素的影響,不同深度的儲(chǔ)集性能差異明顯[32]。
統(tǒng)計(jì)、分析工區(qū)的高產(chǎn)氣井S井4000~5400m段的105組巖心和井壁成像測(cè)井資料,發(fā)現(xiàn)該段裂縫以低角度斜縫為主,裂縫充填程度較低,裂縫開度最小值為0.018mm,最大值為1.950mm,平均值為0.410mm,裂縫開度主要集中在0.100~0.700mm。將裂縫開度與實(shí)際產(chǎn)能關(guān)聯(lián)分析,發(fā)現(xiàn)主要產(chǎn)氣層的裂縫開度與產(chǎn)氣量存在明顯的正相關(guān)。因此,本文以巖心和成像測(cè)井資料計(jì)算的裂縫開度作為預(yù)測(cè)對(duì)象,基于提出的HECM,選取常規(guī)測(cè)井?dāng)?shù)據(jù)當(dāng)作模型驅(qū)動(dòng),研究適用于致密砂巖儲(chǔ)層的裂縫開度預(yù)測(cè)方法。
在機(jī)器學(xué)習(xí)中,學(xué)習(xí)樣本的有效性和代表性是決定預(yù)測(cè)效果的兩個(gè)重要因素。儲(chǔ)層裂縫張開程度受巖性的控制,而各類測(cè)井曲線又能夠從不同角度反映地下巖石的物理特性,因此可結(jié)合不同測(cè)井資料的響應(yīng)特征,篩選對(duì)裂縫開度敏感的測(cè)井參數(shù)作為預(yù)測(cè)模型的學(xué)習(xí)樣本。
巖石礦物組成的差異對(duì)裂縫的形成和發(fā)育具有控制作用,因而能夠揭示泥質(zhì)含量的測(cè)井曲線會(huì)對(duì)開啟裂縫較為敏感。對(duì)于裂縫開度較大的地層,泥漿濾液會(huì)在井壁滲透形成泥餅,導(dǎo)致井徑(CAL)測(cè)量值變小。同時(shí),泥漿和地層水的流動(dòng)不僅使地層產(chǎn)生電動(dòng)勢(shì),也使鈾元素更易被裂縫或井壁吸附而發(fā)生沉淀,導(dǎo)致自然電位(SP)和自然伽馬(GR)測(cè)量值變大。另外,致密砂巖孔隙結(jié)構(gòu)的不同導(dǎo)致地層非均質(zhì)性和流體壓力產(chǎn)生差異,也能影響裂縫的形成與分布,因而揭示孔隙度的測(cè)井曲線也對(duì)裂縫較為敏感。由于裂縫開啟,井壁內(nèi)充填密度較小的流體造成聲波能量衰減嚴(yán)重、地層中含氫指數(shù)增大、密度測(cè)井儀器極板不能較好地貼合井壁,導(dǎo)致密度(DEN)測(cè)量值降低,聲波時(shí)差(AC)和中子孔隙度(CNL)測(cè)量值升高。與巖性和孔隙度系列測(cè)井相比,電阻率系列測(cè)井提供的信息能更好地反映裂縫的張開程度。致密砂巖作為高阻地層,其電阻率變化主要取決于地層巖性和流體性質(zhì),裂縫的存在會(huì)引起地層水和泥漿的入侵,導(dǎo)致深側(cè)向(RD)和淺側(cè)向(RS)電阻率明顯降低,且裂縫的張開程度越大,深、淺側(cè)向電阻率之間的差異越小[33]。
定性分析測(cè)井資料變化規(guī)律不足以獲得實(shí)際工區(qū)敏感的測(cè)井參數(shù),需要結(jié)合實(shí)際工區(qū)樣本集的數(shù)據(jù)分布特征,進(jìn)行相關(guān)系數(shù)定量計(jì)算,排序、篩選出敏感的測(cè)井參數(shù),結(jié)果如圖3所示。從圖中可以看出,各常規(guī)測(cè)井參數(shù)與裂縫開度雖具有一定的相關(guān)性,但整體的相關(guān)系數(shù)都較低。直接利用測(cè)井參數(shù)進(jìn)行訓(xùn)練,預(yù)測(cè)難度較大,需要進(jìn)一步的數(shù)據(jù)處理以提升樣本集的質(zhì)量。因此,基于計(jì)算結(jié)果,初步選擇AC、CNL、RS、SP這4個(gè)參數(shù)構(gòu)建預(yù)測(cè)模型的學(xué)習(xí)樣本數(shù)據(jù)集。
利用Z-Score標(biāo)準(zhǔn)化處理和主成分分析(PCA)構(gòu)建數(shù)據(jù)預(yù)處理模塊,可以消除數(shù)據(jù)間量綱不同和相關(guān)冗余性對(duì)模型預(yù)測(cè)精度的影響[34]。數(shù)據(jù)處理后的結(jié)果如圖4所示。從圖4a中可以看出,處理后的學(xué)習(xí)樣本前三個(gè)主成分的累計(jì)貢獻(xiàn)率就超過90%,能夠較好地代替原有輸入樣本變量。從圖4b中可以看出,處理后的學(xué)習(xí)樣本之間的偽相關(guān)性消失,各主成分之間的相關(guān)系數(shù)為0,各主成分變量與裂縫開度的整體相關(guān)性有所提升。因此,經(jīng)數(shù)據(jù)預(yù)處理后的學(xué)習(xí)樣本屬性由4個(gè)減少到3個(gè),不僅減輕了模型的學(xué)習(xí)負(fù)擔(dān),還進(jìn)一步提高了學(xué)習(xí)樣本的質(zhì)量。
工區(qū)的研究樣本數(shù)量較少,裂縫開度的預(yù)測(cè)本質(zhì)上屬于極小樣本的非線性回歸問題。利用HECM

圖3 不同測(cè)井參數(shù)與裂縫開度相關(guān)性分析(a)測(cè)井參數(shù)與裂縫開度的散點(diǎn)交會(huì)圖; (b)各變量間的相關(guān)系數(shù)熱力圖

圖4 數(shù)據(jù)處理后的結(jié)果(a)各主成分貢獻(xiàn)率; (b)各變量間的相關(guān)系數(shù)熱力圖
預(yù)測(cè)裂縫開度主要包括兩個(gè)階段:第一階段,通過KRR、SVR、BPN等不同的機(jī)器學(xué)習(xí)模型構(gòu)建基礎(chǔ)專家網(wǎng)絡(luò)單元,每個(gè)網(wǎng)絡(luò)單元接收相同的輸入數(shù)據(jù)并給出獨(dú)立的裂縫開度預(yù)測(cè)結(jié)果,評(píng)判專家以各性能評(píng)價(jià)指標(biāo)表現(xiàn)作為評(píng)判標(biāo)準(zhǔn),為各基礎(chǔ)專家網(wǎng)絡(luò)單元的預(yù)測(cè)結(jié)果進(jìn)行打分,再由大會(huì)評(píng)議層討論、確定各基礎(chǔ)專家網(wǎng)絡(luò)單元所占的初始權(quán)重; 第二階段,利用SLP模型和ACE算法構(gòu)建主席決策層,對(duì)大會(huì)評(píng)議層討論的結(jié)果進(jìn)行迭代更新,從而得到模型的最終輸出。
將經(jīng)過預(yù)處理后的樣本數(shù)據(jù)按2∶1的比例進(jìn)行分區(qū),隨機(jī)選取70個(gè)樣本數(shù)據(jù)作為訓(xùn)練集,剩余的35個(gè)樣本數(shù)據(jù)作為測(cè)試集。先將帶有標(biāo)簽的訓(xùn)練集輸入到各基礎(chǔ)專家網(wǎng)絡(luò)單元中進(jìn)行訓(xùn)練,再利用測(cè)試集進(jìn)行結(jié)果的驗(yàn)證,各模型的超參數(shù)設(shè)置及預(yù)測(cè)的性能表現(xiàn)如表2、圖5所示。
從表2中可以看出,KRR網(wǎng)絡(luò)單元超參數(shù)設(shè)置少,網(wǎng)絡(luò)復(fù)雜度低,訓(xùn)練集預(yù)測(cè)結(jié)果穩(wěn)定,但容錯(cuò)能力較差,測(cè)試集預(yù)測(cè)效果不佳; BPN網(wǎng)絡(luò)單元超參數(shù)調(diào)節(jié)簡(jiǎn)單,非線性映射能力強(qiáng),訓(xùn)練集預(yù)測(cè)結(jié)果極為優(yōu)秀,但在訓(xùn)練中過于追求經(jīng)驗(yàn)風(fēng)險(xiǎn)最小,出現(xiàn)了過擬合的現(xiàn)象,面對(duì)小樣本的測(cè)試集數(shù)據(jù)時(shí)泛化能力不足,預(yù)測(cè)效果一般; SVR網(wǎng)絡(luò)單元雖超參數(shù)設(shè)置較多,但基于結(jié)構(gòu)風(fēng)險(xiǎn)最小化原則,對(duì)噪聲數(shù)據(jù)的容忍度高,訓(xùn)練集和預(yù)測(cè)集預(yù)測(cè)效果均較好。
從圖5可以看出,面對(duì)無規(guī)律的實(shí)際數(shù)據(jù),單個(gè)網(wǎng)絡(luò)單元在小樣本訓(xùn)練中易受方差和偏差的影響,各基礎(chǔ)專家網(wǎng)絡(luò)單元輸出誤差波動(dòng)性大,穩(wěn)定性不足,預(yù)測(cè)結(jié)果與實(shí)際結(jié)果有差異,預(yù)測(cè)精度仍需提升。各基礎(chǔ)網(wǎng)絡(luò)單元之間的預(yù)測(cè)結(jié)果差異較大,因此需要通過專家評(píng)判層和大會(huì)評(píng)議層依據(jù)模型性能評(píng)價(jià)指標(biāo),從不同角度對(duì)各基礎(chǔ)專家網(wǎng)絡(luò)單元的性能進(jìn)行綜合評(píng)判、打分,并根據(jù)打分結(jié)果確定每個(gè)基礎(chǔ)網(wǎng)絡(luò)單元的初始權(quán)重。
將各基礎(chǔ)專家網(wǎng)絡(luò)單元的預(yù)測(cè)結(jié)果當(dāng)成門神經(jīng)網(wǎng)絡(luò)的自變量,利用SLP模型將各自變量輸入到ACE算法的變換空間,以回歸誤差方差最小為期望,通過反復(fù)交替條件期望,迭代更新各自變量的初始權(quán)重。最后將取得最優(yōu)變換后的自變量總和作為HECM的輸出,并將輸出的結(jié)果與傳統(tǒng)的CM和SVR回歸模型進(jìn)行對(duì)比(圖6)。
從圖6可以看出,SVR回歸模型作為基礎(chǔ)網(wǎng)絡(luò)單元中綜合性能表現(xiàn)最好的學(xué)習(xí)模型,預(yù)測(cè)結(jié)果的箱線圖與實(shí)測(cè)結(jié)果差異明顯。SVR模型的上、下界限相對(duì)于中位數(shù)的跨度遠(yuǎn)高于實(shí)測(cè)結(jié)果,上、下四分位數(shù)和中位數(shù)也都大于實(shí)測(cè)結(jié)果,導(dǎo)致箱體之內(nèi)的正常數(shù)據(jù)波動(dòng)較大,對(duì)離群值的預(yù)測(cè)精度較低。CM模型雖然整體數(shù)據(jù)分布與實(shí)測(cè)結(jié)果類似,但箱體特征與實(shí)測(cè)結(jié)果差異較大,四分位間距遠(yuǎn)大于實(shí)測(cè)結(jié)果,箱體之內(nèi)的正常數(shù)據(jù)分布不穩(wěn)定,上、下界限波動(dòng)范圍較廣,對(duì)離群值的預(yù)測(cè)能力有限。HECM模型無論是整體數(shù)據(jù)分布,還是箱體特征,都與實(shí)測(cè)結(jié)果吻合程度較高,對(duì)離群值尤其是特殊極端值仍有穩(wěn)定的預(yù)測(cè)能力,具備較高的預(yù)測(cè)精度。

表2 各基礎(chǔ)網(wǎng)絡(luò)單元超參數(shù)設(shè)置及模型性能評(píng)估指標(biāo)

圖5 基礎(chǔ)專家網(wǎng)絡(luò)單元KRR(a)、BPN(b)、SVR(c)的裂縫開度預(yù)測(cè)結(jié)果及性能得分雷達(dá)圖(d)

圖6 各模型的預(yù)測(cè)結(jié)果與實(shí)測(cè)結(jié)果的箱線圖
為了進(jìn)一步驗(yàn)證HECM在實(shí)際資料中的應(yīng)用效果,利用訓(xùn)練好的模型對(duì)工區(qū)的高產(chǎn)S探井的裂縫開度進(jìn)行預(yù)測(cè),并與常用的裂縫開度計(jì)算經(jīng)驗(yàn)公式進(jìn)行預(yù)測(cè)效果對(duì)比(圖7)。
由圖可見,基于雙側(cè)向電阻率經(jīng)驗(yàn)公式[35]計(jì)算

圖7 不同方法預(yù)測(cè)的裂縫開度結(jié)果對(duì)比(a)HECM; (b)經(jīng)驗(yàn)公式
的裂縫開度與實(shí)測(cè)結(jié)果吻合較差,受限于公式形式和經(jīng)驗(yàn)參數(shù)的選取,在某些非裂縫因素引起的電阻率降低的深度段,得到的裂縫開度誤差較大; 另外在裂縫非常發(fā)育的深度段,由于雙側(cè)向的深、淺電阻率的差異較小,導(dǎo)致計(jì)算的裂縫開度過于穩(wěn)定,從而無法準(zhǔn)確表征實(shí)際地層裂縫張開程度的變化趨勢(shì)。從整體上看,HECM預(yù)測(cè)的裂縫開度與實(shí)測(cè)結(jié)果更加吻合,預(yù)測(cè)的裂縫開度曲線變化趨勢(shì)更符合地下的實(shí)際情況,可為后續(xù)利用地震數(shù)據(jù)進(jìn)行三維裂縫開度反演提供可靠的井中裂縫開度信息。
(1)致密油氣儲(chǔ)層巖性復(fù)雜、儲(chǔ)集空間類型多樣、縱向非均質(zhì)性極強(qiáng),常規(guī)裂縫開度預(yù)測(cè)方法難以準(zhǔn)確估算井中裂縫開度。基于層次專家委員會(huì)機(jī)器模型有效地建立了常規(guī)測(cè)井?dāng)?shù)據(jù)、成像測(cè)井、巖心資料與巖石裂縫張開程度之間的非線性映射關(guān)系,可以很好地應(yīng)用于致密油氣儲(chǔ)層的裂縫開度預(yù)測(cè)。
(2)層次專家委員會(huì)機(jī)器模型在計(jì)算復(fù)雜度沒有明顯增加的情況下,能夠發(fā)揮各個(gè)機(jī)器學(xué)習(xí)模型的優(yōu)勢(shì),充分挖掘測(cè)井?dāng)?shù)據(jù)中蘊(yùn)含的地質(zhì)信息,克服了經(jīng)驗(yàn)公式的巖性適用限制,為致密油氣儲(chǔ)層裂縫開度的定量預(yù)測(cè)提供了新的思路。
(3)致密油氣儲(chǔ)層裂縫開度預(yù)測(cè)本質(zhì)上屬于含噪聲的小樣本復(fù)雜、無規(guī)律回歸問題,數(shù)據(jù)質(zhì)量的好壞直接關(guān)系到模型的預(yù)測(cè)精度。如果能增加實(shí)測(cè)樣本的數(shù)量,豐富測(cè)井曲線的類型,選擇相關(guān)性更好的測(cè)井?dāng)?shù)據(jù)參與訓(xùn)練,那么模型的預(yù)測(cè)精度能夠得到提升。另外,如何剔除性能較差的基礎(chǔ)網(wǎng)絡(luò)單元,挑選性能更強(qiáng)、差異更大的基礎(chǔ)網(wǎng)絡(luò)單元進(jìn)行組合,進(jìn)一步提高模型的泛化能力,仍需要進(jìn)行更深層次的研究。