999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Analysis of Pneumonia Model via Efficient Computing Techniques

2022-03-14 09:27:36KamaledinAbodayehAliRazaMuhammadRafiqMuhammadShoaibArifMuhammadNaveedZunirZebSyedZaheerAbbasKiranShahzadiSanaSarwarQasimNaveedBadarUlZamanandMuhammadMohsin
Computers Materials&Continua 2022年3期

Kamaledin Abodayeh,Ali Raza*,Muhammad Rafiq,Muhammad Shoaib Arif,Muhammad Naveed,Zunir Zeb,Syed Zaheer Abbas,Kiran Shahzadi,Sana Sarwar,Qasim Naveed,Badar Ul Zaman and Muhammad Mohsin

1Department of Mathematics and General Sciences,Prince Sultan University Riyadh,66833,Saudi Arabia

2Department of Mathematics,Govt.Maulana Zafar Ali Khan Graduate College Wazirabad,52000,Punjab Higher Education Department(PHED),Lahore,54000,Pakistan

3Department of Mathematics,National College of Business Administration and Economics Lahore,54660,Pakistan

4Department of Mathematics,Faculty of Sciences,University of Central Punjab,Lahore,54500,Pakistan

5Department of Mathematics,Air University,Islamabad,44000,Pakistan

6Department of Mathematics,Technische Universitat Chemnitz,62 09111,Germany

Abstract: Pneumonia is a highly transmissible disease in children.According to the World Health Organization(WHO),the most affected regions include south Asia and sub-Saharan Africa.Worldwide,15%of pediatric deaths can be attributed to pneumonia.Computing techniques have a significant role in science, engineering, and many other fields.In this study, we focused on the efficiency of numerical techniques via computer programs.We studied the dynamics of the pneumonia-like infections of epidemic models using numerical techniques.We discuss two types of analysis:dynamical and numerical.The dynamical analysis included positivity,boundedness,local stability,reproduction number,and equilibria of the model.We also discuss well-known computing techniques including Euler,Runge Kutta,and non-standard finite difference(NSFD)for the model.The non-standard finite difference(NSFD)technique shows convergence to the true equilibrium points of the model for any time step size.However, Euler and Runge Kutta do not work well over large time intervals.Computing techniques are the suitable tool for crosschecking the theoretical analysis of the model.

Keywords: Pneumonia disease; epidemic model; computing techniques; convergence analysis

1 Introduction

Pneumonia is a disease of the lungs that can cause minor to severe illness in people of different ages.The swelling of the lungs that occurs during pneumonia is most commonly caused by infection with bacteria or molds.There are also a few noninfectious types of pneumonia.These are caused by inhaling contaminated materials into the lungs.Most pneumococcal poisons are insignificant,but some of them are harmful,causing such issues as brain damage and hearing problems.Meningitis is the most severe disease caused by pneumococcal pneumonia,and it is more common in children who are less than five years old and it can cause long-term disease in individuals over 50 years old.Bacteria are a main and major cause of pneumococcal disease and blood-borne infection.About 1%of children under five years old with this infection die.The chance of death from pneumococcal pneumonia is also higher among the elderly.About 5%of people with pneumonia die,but the ratio is higher among the elderly.Pneumococcal pneumonia can be asymptomatic if there are no bacteria or cold weather during that period.Pneumococcal pneumonia can cause swelling of the throat, necessitating ear tubes in some children.Symptoms of pneumococcal pneumonia can include greenish,yellow,or bloody liquid produced during coughing, weakness, profuse sweating, difficulty breathing, severe headache, and severe chest pain.Symptoms tend to worsen when the patient is hungry or exhausted.In 2014,Mochan et al.[1] dynamically described the interhost immune response to bacterial pneumonia infection in murine strains in a simple ordinary differential equation model.In 2014,Drusano et al.[2]reported the effects of granulocytes in the eradication of bacterial pathogens,and there was no antimicrobial therapy involved in this work.In 2015,Ndelwa et al.[3]produced a dynamic mathematical model for the transmission of pneumonia with screening and medication and analyzed it to assess transmission and effects.In 2015,Kosasih et al.[4]analyzed a mathematical model of cough sounds using waveletbased crackle detection work for rapid diagnosis of bacterial pneumonia in children.In 2016,Cesar et al.[5] mathematically estimated fine particulate matter in a model and evaluated medications for pneumonia and asthma among children.In 2016,Marchello et al.[6]listed atypical bacterial pathogens as the main causes of such lower respiratory diseases as coughs,bronchitis,and CAP.In 2017,Cheng et al.mathematically and dynamically evaluated an IAV-SP model.A quantitative risk-assessment framework was established to improve respiratory health due to COPD [7].In 2017, Kosasih et al.[8] provided a simple mathematical model showing the analysis of measurements for clinical diagnosis of pneumonia among children.In 2017,Tilahun et al.proposed a deterministic nonlinear mathematical model and analyzed optical control strategies for bacterial pneumonia.Results are shown graphically [9].In 2018, Raj et al.[10] analyzed the classification of asthma and pneumonia based upon mathematical features of cough sounds among poorer segments of the population.In 2018, Kizito et al.presented a mathematical model that shows the control of pneumonia spread by bacteria.It also gave the dynamics of treatment and formulation of vaccines[11].In 2018,Mbabazi et al.[12]investigated a nonlinear mathematical model that modeled intra-host co-infection influenza A virus and pneumonia.In 2018, Tilahun et al.[13] proposed a co-infection model for pneumoniatyphoid and mathematically analyzed their characteristic relationship for the development of medical strategies.In 2019, Tilahun et al.described a model of pneumonia-meningitis co-infection with the help of ordinary differential equations and theorems.It explained different techniques for disease clearance[14].In 2020,Naveed et al.[15]reported a dynamic analysis of coronavirus while assessing the sensitivity of model parameters.In 2019,Kosasih et al.[16]explained the main cause of pneumonia affecting children in early childhood in poor regions of the world.In 2019,Tilahun et al.[17]analyzed a co-infection mathematical model for the bacterial disease of pneumonia and meningitis.In 2019,Mbabazi et al.[18] proposed a mathematical model of pneumococcal pneumonia with time delays and performed Hopf-bifurcation analysis.In 2020, Otoo et al.[19] analyzed a model of pneumonia spread by bacteria.The analysis determined the effects of vaccination on control of this disease.In 2020,Zephaniah et al.[20]presented the dynamics of a mathematical model of pneumonia,showing the result graphically.In 2019, Raza et al.[21] described the stochastic dynamics of gonorrhea-like infections.In 2020, Jung et al.[22] demonstrated the observations using different clinical tests and showed the cause of disease,a novel pathogen.Many mathematical models are studied with different techniques,as shown in previous works[23-27].Well-known mathematical models can be investigated with the help of efficient techniques[28-39].The rest of the paper is organized as follows.In Sections 2-4, we investigate the dynamic analysis of the model.Section 5 explains the well-known computer methods used on this model.The last two sections present the results,discussion,and conclusion.

2 Formulation of Pneumonia Model

For any arbitrary time t,the parameters and variables of pneumonia disease described as follows:S(t):represents the susceptible,who is at risk of acquiring infection pneumonia,C(t):represents the carrier individuals carrying the pneumonia bacteria and can transfer the infection,I(t):represents the infective individuals that are capable of transmitting the infection to individuals at risk,R(t):represents the individuals who have been recovered after the treatment of Pneumonia,μ:represents the natural mortality rate of individuals per capita,Λ:represents the recruitment rate into susceptible population per capita,θ:represents the proportion of susceptible individuals who joins the carriers,σ:represents the disease induced mortality rate birth rate of human population per capita,β:represents the recovery rate of carriers per capita,α: represents the infection force of susceptible individuals,τ: represents the recovery rate of individuals who are infected of Pneumonia per capita,π: represents the rate of developing symptoms by carriers,η: represents the rate of treated individuals becoming susceptible,γ: represents the rate of susceptible individuals getting vaccinated,ω: represents the rate of treated individuals having vaccinated,ω:represents the coefficient of transmission for the carrier subgroup,δ: represents the rate of transmission,p: represents the probability that shows a contact is efficient enough to cause infection,k:represents the rate of contact.The governing equations of the model are as follows:

2.1 Fundamental Properties of Model

We consider all parameters positive and show that the solution is bounded inΨ={(S,C,I,R)?0 ≤N≤=S+C+I+R.

Lemma 1:The initial values{S(0),C(0),I(0),R(0)}∈Ψ,then the solution set{S(t),C(t),I(t),R(t)}is positive of allt≥0.

Proof:From Eq.(1),we have

So,S ≥0 similarly shows that for Eqs.(2)-(4)

Lemma 2:The solution of the model equation in(1-4)are bounded inΨfor allt≥0.

Proof:Firstly,adding the Eqs.(1)-(4)as follows:

whereN0is the initial condition ofN,

So,limt→∞Sup N(t)≤.This show that 0 ≤N≤andN=S+C+I+R,then all variable is bounded inΨ.

2.2 Steady States of Pneumonia Model

3 Reproduction Number of Pneumonia Model

The next-generation matrix method is presented for the system(1-4).We calculate two types of matrices like transmission and transition after assuming the disease-free equilibrium as follows:

whereKa=(μ+β+π),Kb=τ+μ+σ.

The spectral radius of the model is denoted by.

4 Local Stability

Theorem:The disease-free equilibrium of model (1-4) is locally asymptotically stable if the reproduction number is less than one and unstable if it is greater than one.

Proof:To prove the local asymptotically stable disease-free equilibrium, we take the Jacobian matrix of SCIR Model of pneumonia model at disease-free equilibrium.To show that trace is less than zero and a determinant greater than zero.

where,Ka=(μ+β+π),Kb=τ+μ+σ.

trace(J)=-μ-Ka-Kb-(μ+η)=-(2μ+Ka+Kb+η)〈0, det(J)=-μ(-KaKb(μ+η))〉0.where-(2μ+Ka+Kb+η <0).

Be not be negative andδ[Ka (1-θ)+θ(ωKb+π)]is positive and alsoKaKb >0 and we note that determinant(J)also positive,which is-μ(-KaKb(μ+η)) >0,thus we have

The above discussion is about the matrixJ, a trace is less than zero and a determinant greater than zero.So,the disease-free equilibrium point is locally asymptotically stable ifR0<1.

Theorem:If the reproduction number is greater than one, then the endemic equilibrium of the model Eqs.(1)-(4)is locally asymptotically stable inΨ.

Proof:The Jacobian matrix at endemic equilibrium is as follows:

whereKa=(μ+β+π),Kb=τ+μ+σ.

P(λ)=λ4+c1λ3+c2λ2+c3λ+c4

wherec1= 2μ+η+Ka+Kb+α1,c2=(η+μ)(Ka+Kb+α1+μ)+KaKb+(α1+μ)(Ka+Kb),c3=KaKb(η+μ)+(Ka+Kb)(α1+μ)(η+μ)+KaKb(α1+μ)+ητα1(1-θ)+ηβθα1,c4=KaKb(α1+μ)(η+μ)+ηα1τθπ+ηKaα1τ(1-θ)+α1Kaηβθ.

By using Routh Hurwitz method for order 4thas follows:

The endemic equilibrium is locally asymptotically stable for the reproduction number greater than one if

5 Computing Techniques

In this section,we present the well-known techniques like Euler,Runge Kutta,and non-standard finite difference for the system(1-4)as follows:

5.1 Euler Technique

The system(1-4)is described under Euler technique,as follows:

where the time step is represented by h.

5.2 Runge-Kutta Technique

The system(1-4)is described under Runge Kutta technique,as follows:

Stage 1:

N1=h[-βCn+τIn-(μ+η)Rn]

Stage 2:

Stage 3:

Stage 4:

N4=h[β(Cn+N3)+τ(In+M3)-(μ+η)(Rn+L3)].

Final stage:

where the time step is represented by h.

3 Non-standard Finite Difference Technique

The system(1-4)is described under NSFD technique,as follows:

where the time step is represented by h.

5.4 Convergence Analysis

Theorem:The computing technique of the proposed system(10-13)is stable for anyn≥0 if the absolute eigenvalues are less than one[40].

Proof:We considerF1,F2,F3,andF4from Eqs.(10)-(13),as follows:

The Jacobian matrix is defined as

The eigenvalues of the Jacobian matrix are

Lemma 3:For the quadratic equationλ2-- P1λ+ P2= 0 ,|λi|<1, i = 1, 2,if and only if the following conditions are satisfied:

(i).1+P1+P2>0

(ii).1-P1+P2>0

(iii).P2<1.

5.5 Computing Results

In this section,we investigate the computing results for the said model with the help of computer software and the scientific literature presented in Tab.1 as follows:

Table 1: Values of parameters

Figure 1:Combined graphical behaviors for DFE and EE at different subpopulations of the pneumonia disease(a)subpopulations for DFE at any time t(b)subpopulations for EE at any time t

Figure 2:Euler method for the behavior of infected individuals at different time-step sizes(a)infected individuals at h=0.01(b)infected individuals at h=0.8

Figure 3: Runge Kutta method for the behavior of carrier individuals at different time-step sizes (a)carrier individuals at h=0.01(b)carrier individuals at h=0.9

Figure 4:NSFD method for the behavior of carrier individuals at different time-step sizes(a)carrier individuals at h=0.01.(b)carrier individuals at h=100

5.6 Comparison Section

Figure 5:Combined graphical behaviors of NSFD with Euler and Runge Kutta methods at different time-step sizes(a)infective individuals for EE at h=0.01(Euler and NSFD)(b)infective individuals for EE at h = 3 (Euler and NSFD) (c) infective individuals for EE at h = 0.01(Runge Kutta and NSFD)(d)infective individuals for EE at h=3(Runge Kutta and NSFD)

6 Results and Discussion

We present the solution to the system (1-4) via Matlab ordinary differential equations-45 at disease-free and endemic equilibria of the model in Figs.1a and 1b.Also,the solutions of the system(5-8) via the Euler method at different time step sizes are in Figs.2a and 2b.The solution of the system(9)via the Runge Kutta method at different time step sizes is in Figs.3a and 3b.In the same,we plot the solutions of the system (10-13) via the NSFD method in Figs.4a and 4b.In Figs.5a-5d, the comparison section shows the investigation of computer methods such as Euler and Runge Kutta with NSFD approximations.Here,we observe that Euler and Runge Kutta show negativity and unboundedness and violate the dynamical properties of the model.However,our proposed numerical approximation is reliable, inexpensive, independent of the time step, and an efficient computational method.

7 Conclusion

We here investigated analyses of pneumonia infections via well-known computing techniques.Computer results of epidemic models are an authentic tool to cross-check the dynamical analysis of the model.For the sake of computational analysis, Euler, Runge Kutta, and the non-standard finite difference techniques(NSFD)are presented.Throughout the analysis,we observe that Euler and Runge Kutta are time-dependent techniques.Even when we increase the duration of the time step,these techniques violate such dynamic properties as positivity, boundedness, and dynamical consistency.However,NSFD is always convergent and independent of the size of the time step.These things could be observed from the comparison section.This idea could be extended to different types of disease modeling.

Acknowledgement:We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding Statement:The authors received no specific funding for this study.

Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

主站蜘蛛池模板: 亚洲欧美一级一级a| 91精品久久久无码中文字幕vr| 又粗又硬又大又爽免费视频播放| 国产99热| 日本免费福利视频| 国产精品欧美在线观看| 国产极品美女在线| 在线免费观看AV| 国产理论一区| 国产在线第二页| 亚洲无码A视频在线| 日韩精品无码一级毛片免费| 亚洲国产天堂久久综合226114| 91青青草视频在线观看的| 国产在线第二页| 国产精鲁鲁网在线视频| 亚洲精品天堂在线观看| 亚洲欧美另类视频| 91在线国内在线播放老师| 国产一区二区人大臿蕉香蕉| 天天色综合4| 精品国产成人三级在线观看| 久久国产免费观看| 99久久国产自偷自偷免费一区| 男人天堂亚洲天堂| 日韩 欧美 小说 综合网 另类| 亚洲日韩高清在线亚洲专区| 国产色婷婷视频在线观看| 日韩福利视频导航| 一本大道无码高清| 欧美午夜小视频| 九九久久精品国产av片囯产区| 日韩福利在线视频| 69免费在线视频| 国产香蕉97碰碰视频VA碰碰看| 试看120秒男女啪啪免费| 国模粉嫩小泬视频在线观看| 九九香蕉视频| 欧美a√在线| 国产全黄a一级毛片| 香蕉蕉亚亚洲aav综合| 午夜无码一区二区三区在线app| 国产精品分类视频分类一区| 亚洲精品无码AⅤ片青青在线观看| 国产精品亚洲专区一区| 色吊丝av中文字幕| av一区二区三区高清久久| 无码精品国产VA在线观看DVD | 狠狠色噜噜狠狠狠狠色综合久| 国产浮力第一页永久地址| 99久久婷婷国产综合精| 18禁黄无遮挡网站| 四虎亚洲国产成人久久精品| 亚洲精品在线影院| 99在线观看国产| 丰满人妻一区二区三区视频| 日本尹人综合香蕉在线观看| 色色中文字幕| 萌白酱国产一区二区| 国产爽妇精品| 日韩午夜伦| 99久久精品国产麻豆婷婷| 欧美一级在线| 91九色国产porny| 国内精品自在欧美一区| 特黄日韩免费一区二区三区| 尤物成AV人片在线观看| 国产精品亚洲欧美日韩久久| 67194在线午夜亚洲| 久综合日韩| 99久久精品国产自免费| 国产精品久久久久鬼色| 黄色网址免费在线| 午夜无码一区二区三区| 女人18一级毛片免费观看| 乱人伦视频中文字幕在线| 视频二区国产精品职场同事| 亚洲AV无码一二区三区在线播放| 尤物国产在线| 亚洲精品你懂的| 国产又粗又爽视频| 浮力影院国产第一页|